Policy Gradient Methods: Estimation

Lucas Janson and Sham Kakade

CS/Stat 184: Introduction to Reinforcement Learning Fall 2023

Today

- Recap
- Estimation: REINFORCE
- Variance Reduction
- Other Gradient Expressions
- Baselines and Advantages
- Examples

Recap

Optimization Objective

- Consider a parameterize class of policies:

$$
\left\{\pi_{\theta}(a \mid s) \mid \theta \in \mathbb{R}^{d}\right\}
$$

(why do we make it stochastic?)
. Objective $\max J(\theta)$, where

$$
J(\theta):=E_{s_{0} \sim \mu}\left[V^{\pi_{\theta}}\left(s_{0}\right)\right]=E_{\tau \sim \rho_{\pi_{\theta}}}\left[\sum_{h=0}^{H-1} r\left(s_{h}, a_{h}\right)\right]
$$

-Policy Gradient Descent:

$$
\theta^{k+1}=\theta^{k}+\eta \nabla J\left(\theta^{k}\right)
$$

Example Policy Parameterizations

Recall that we consider parameterized policy $\pi_{\theta}(\cdot \mid s) \in \Delta(A), \forall s$

$$
\begin{array}{c|c}
\text { 1. Softmax linear Policy } & \text { 2. Neural Policy: } \\
\text { Feature vector } \phi(s, a, h) \in \mathbb{R}^{d} \text {, and } & \text { Neural network } \\
\text { parameter } \theta \in \mathbb{R}^{d} & f_{\theta}: S \times A \times[H] \mapsto \mathbb{R} \\
\pi_{\theta}(a \mid s, h)=\frac{\exp \left(\theta^{\top} \phi(s, a, h)\right)}{\sum_{a^{\prime}} \exp \left(\theta^{\top} \phi\left(s, a^{\prime}, h\right)\right)} & \pi_{\theta}(a \mid s, h)=\frac{\exp \left(f_{\theta}(s, a, h)\right)}{\sum_{a^{\prime}} \exp \left(f_{\theta}\left(s, a^{\prime}, h\right)\right)}
\end{array}
$$

Neural Policy Parameterization for "Controls"

Suppose $a \in R^{k}$, as it might be for a control problem.

3. Gaussian + Linear Model

- Feature vector: $\phi(s, h) \in \mathbb{R}^{d}$,
- Parameters: $\theta \in \mathbb{R}^{k \times d}$, (and maybe $\sigma \in R^{+}$)
- Policy: sample action from a (multivariate) Normal with mean $\theta \cdot \phi(s, h)$ and variance $\sigma^{2} I$, i.e.
$\pi_{\theta, \sigma}(\cdot \mid s, h)=\mathcal{N}\left(\theta \cdot \phi(s, h), \sigma^{2} I\right)$

4. Gaussian + Neural Model

- Neural network $g_{\theta}: S \times[H] \mapsto \mathbb{R}^{k}$
- Parameters: $\theta \in R^{d}$, (and maybe $\sigma \in R^{+}$)
- Policy: a (multivariate) Normal with mean $g_{\theta}(s)$ and variance $\sigma^{2} I$, i.e.

$$
\pi_{\theta, \sigma}(\cdot \mid s, h)=\mathcal{N}\left(g_{\theta}(s, h), \sigma^{2} I\right)
$$

The Likelihood Ratio Method

- Suppose $J(\theta)=\mathbb{E}_{x \sim P_{\theta}}[f(x)]=\sum_{x} P_{\theta}(x) f(x)$, and our objective is $\max _{\theta} J(\theta)$.
- Computing $\nabla_{\theta} J(\theta)$ exactly may be difficult to compute (due to the sum over x).
- Can we estimate $\nabla_{\theta} J(\theta)$?
- Suppose we can: compute $f(x), P_{\theta}(x)$, and $\nabla P_{\theta}(x) \&$ sample $x \sim P_{\theta}$
- We have that:

$$
\nabla_{\theta} J(\theta)=\mathbb{E}_{x \sim P_{\theta}(x)}\left[\nabla_{\theta} \log P_{\theta}(x) f(x)\right]
$$

Proof:

$$
\begin{aligned}
\nabla_{\theta} J(\theta) & =\sum_{x} \nabla_{\theta} P_{\theta}(x) f(x) \\
& =\sum_{\theta} P_{\theta}(x) \frac{\nabla_{\theta} P_{\theta}(x)}{P_{\theta}(x)} f(x) \\
& =\sum_{x}^{x} P_{\theta}(x) \nabla_{\theta} \log P_{\theta}(x) f(x)
\end{aligned}
$$

The Likelihood Ratio Method, continued

- We have:

$$
\nabla_{\theta} J(\theta)=\mathbb{E}_{x \sim P_{\theta}(x)}\left[\nabla_{\theta} \log P_{\theta}(x) f(x)\right]
$$

- An unbiased estimate is given by:

$$
\widehat{\nabla}_{\theta} J(\theta)=\nabla_{\theta} \log P_{\theta}(x) \cdot f(x), \text { where } x \sim P_{\theta}
$$

- We can lower variance by draw N i.i.d. samples from P_{θ} and averaging:

$$
\widehat{\nabla}_{\theta} J(\theta)=\frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}\left(x_{i}\right) f\left(x_{i}\right)
$$

Today:

Today

- Recap

Estimation: REINFORCE

- Variance Reduction
- Other Gradient Expressions
- Baselines and Advantages
- Examples

REINFORCE: A Policy Gradient Algorithm

- Let $\rho_{\theta}(\tau)$ be the probability of a trajectory $\tau=\left\{s_{0}, a_{0}, s_{1}, a_{1}, \ldots, s_{H-1}, a_{H-1}\right\}$, i.e.

$$
\rho_{\theta}(\tau)=\mu\left(s_{0}\right) \pi_{\theta}\left(a_{0} \mid s_{0}\right) P\left(s_{1} \mid s_{0}, a_{0}\right) \ldots P\left(s_{H-1} \mid s_{H-2}, a_{H-2}\right) \pi_{\theta}\left(a_{H-1} \mid s_{H-1}\right)
$$

. Let $R(\tau)$ be the cumulative reward on trajectory τ, i.e. $R(\tau):=\sum_{h=0}^{H-1} r\left(s_{h}, a_{h}\right)$

- Our objective function is:

$$
J(\theta)=E_{\tau \sim \rho_{\theta}}[R(\tau)]
$$

-The REINFORCE Policy Gradient expression:

$$
\nabla_{\theta} J(\theta):=\mathbb{E}_{\tau \sim \rho_{\theta}}\left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\right) R(\tau)\right]
$$

Proof

-From the likelihood ratio method, we have:

$$
\nabla_{\theta} J(\theta):=\mathbb{E}_{\tau \sim \rho_{\theta}}\left[\nabla_{\theta} \ln \rho_{\theta}(\tau) R(\tau)\right]
$$

-We have:

$$
\begin{aligned}
\nabla_{\theta} \ln \rho_{\theta}(\tau) & =\nabla_{\theta}\left(\ln \mu\left(s_{0}\right)+\ln \pi_{\theta}\left(a_{0} \mid s_{0}\right)+\ln P\left(s_{1} \mid s_{0}, a_{0}\right)+\ldots\right) \\
& =\nabla_{\theta}\left(\ln \pi_{\theta}\left(a_{0} \mid s_{0}\right)+\ln \pi_{\theta}\left(a_{1} \mid s_{1}\right) \ldots\right) \\
& =\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\right)
\end{aligned}
$$

Obtaining an Unbiased Gradient Estimate at θ_{0}

$$
\nabla_{\theta} J(\theta):=\mathbb{E}_{\tau \sim \rho_{\theta}}\left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\right) R(\tau)\right]
$$

1. Obtain a trajectory $\tau \sim \rho_{\theta_{0}}$
(which we can do in our learning setting)
2. Set:

$$
\widetilde{\nabla}_{\theta} J\left(\theta_{0}\right):=\left(\sum_{h=0}^{H-1} \nabla \ln \pi_{\theta_{0}}\left(a_{h} \mid s_{h}\right)\right) R(\tau)
$$

We have: $\mathbb{E}\left[\widetilde{\nabla}_{\theta} J\left(\theta_{0}\right)\right]=\nabla_{\theta} J\left(\pi_{\theta_{0}}\right)$

PG with REINFORCE:

1. Initialize θ_{0}, parameters: $\eta^{1}, \eta^{2}, \ldots$
2. For $\mathrm{k}=0, \ldots$:
3. Obtain a trajectory $\tau \sim \rho_{\theta^{k}}$

$$
\text { Set } \widetilde{\nabla}_{\theta} J\left(\theta^{k}\right)=\sum_{h=0}^{H-1} \nabla \ln \pi_{\theta^{k}}\left(a_{h} \mid s_{h}\right) R(\tau)
$$

2. Update: $\theta^{k+1}=\theta^{k}+\eta^{k} \widetilde{\nabla}_{\theta} J\left(\theta^{k}\right)$

The (mini-batch) PG procedure with REINFORCE

(reducing variance using batch sizes of M)

1. Initialize θ_{0}, parameters: $\eta^{1}, \eta^{2}, \ldots$
2. For $k=0, \ldots$:
3. Init $g=0$ and do M times:

Obtain a trajectory $\tau \sim \rho_{\theta^{k}}$
Update: $g \leftarrow g+\sum_{h=0}^{H-1} \nabla \ln \pi_{\theta^{k}}\left(a_{h} \mid s_{h}\right) R(\tau)$
2. Set $\widetilde{\nabla}_{\theta} J\left(\theta^{k}\right):=\frac{1}{M} g$
3. Update: $\theta^{k+1}=\theta^{k}+\eta^{k} \widetilde{\nabla}_{\theta} J\left(\theta^{k}\right)$

We sill have: $\mathbb{E}\left[\widetilde{\nabla}_{\theta} J\left(\theta^{k}\right)\right]=\nabla_{\theta} J\left(\theta^{k}\right)$

Today

- Recap
- Estimation: REINFORCE

Variance Reduction

- Other Gradient Expressions
- Baselines and Advantages
- Examples

Other PG formulas

(that are lower variance for sampling)

$$
\begin{aligned}
\nabla J(\theta) & =\mathbb{E}_{\tau \sim \rho_{\theta}}\left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\right) R(\tau)\right] \\
& =\mathbb{E}_{\tau \sim \rho_{\theta}}\left[\sum_{h=0}^{H-1}\left(\nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right) \sum_{t=h}^{H-1} r_{t}\right)\right] \\
& =\mathbb{E}_{\tau \sim \rho_{\theta}}\left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right) Q_{h}^{\pi_{\theta}\left(s_{h}, a_{h}\right)}\right]
\end{aligned}
$$

Intuition: Change action distribution at h only affects rewards later on...
HW: You will show these simplified version are also valid PG expressions

An improved PG procedure:

1. Initialize θ_{0}, parameters: $\eta_{1}, \eta_{2}, \ldots$
2. For $\mathrm{k}=0, \ldots$:
3. Obtain a trajectory $\tau \sim \rho_{\theta^{k}}$

$$
\text { Set } \widetilde{\nabla}_{\theta} J\left(\theta^{k}\right)=\sum_{h=0}^{H-1}\left(\nabla \ln \pi_{\theta^{k}}\left(a_{h} \mid s_{h}\right) R_{h}(\tau)\right)
$$

On a trajectory τ, define:

$$
R_{h}(\tau)=\sum_{t=h}^{H-1} r_{t}
$$

2. Update: $\theta^{k+1}=\theta^{k}+\eta^{k} \widetilde{\nabla}_{\theta} J\left(\theta^{k}\right)$

Comments:

- We still have unbiased gradient estimates.
- Easy to use a mini-batch algorithm to reduce variance.
- Easy to compute the gradient in "one pass" over the data.

Today

- Recap
- Estimation: REINFORCE
- Variance Reduction
- Other Gradient Expressions
- Baselines and Advantages
- Examples

With a "baseline" function:

For any function only of the state, $b_{h}: S \rightarrow R$, we have:

$$
\begin{aligned}
\nabla J(\theta) & =\mathbb{E}_{\tau \sim \rho_{\theta}}\left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\left(Q_{h}^{\pi_{\theta}}\left(s_{h}, a_{h}\right)-b_{h}\left(s_{h}\right)\right)\right] \\
& =\mathbb{E}_{\tau \sim \rho_{\theta}}\left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\left(\sum_{t=h}^{H-1} r_{t}-b_{h}\left(s_{h}\right)\right)\right]
\end{aligned}
$$

This is (basically) the method of control variates.

Proof:

- By the tower property of conditional expectations,

$$
\begin{aligned}
\nabla J(\theta) & =\mathbb{E}_{\tau \sim \rho_{\theta}}\left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right) Q_{h}^{\pi_{\theta}}\left(s_{h}, a_{h}\right)\right] \\
& =\sum_{h=0}^{H-1} \mathbb{E}_{s_{h} \sim \rho_{\theta}}\left[\mathbb{E}_{a_{h} \sim \pi\left(\cdot \mid s_{h}\right)}\left[\nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right) Q_{h}^{\pi_{\theta}}\left(s_{h}, a_{h}\right) \mid s_{h}\right]\right]
\end{aligned}
$$

(where $s_{h} \sim \rho_{\theta}$ is a sample from the marginal state distribution at time h)

- To see this, first note:

$$
\mathbb{E}_{x \sim P_{\theta}}\left[\nabla \log P_{\theta}(x) c\right]=
$$

- The claims follows due to that for any constant c, $\mathbb{E}_{x \sim P_{\theta}}\left[\nabla \log P_{\theta}(x)(f(x)-c)\right]=\mathbb{E}_{x \sim P_{\theta}}\left[\nabla \log P_{\theta}(x) f(x)\right]$

(M=1) PG with a Naive (constant) Baseline:

- Let try to use a constant (time-dependent) baseline: $b_{h}^{\theta}=\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} E\left[R_{h}(\tau)\right]$

1. Initialize θ_{0}, parameters: $\eta_{1}, \eta_{2}, \ldots$
2. For $\mathrm{k}=0, \ldots$:
3. Sample M trajectories, $\tau_{1}, \ldots, \tau_{M}$ under $\pi_{\theta^{k}}$. Set:
$\widetilde{b}_{h}=\frac{1}{M} \sum_{i=1}^{M} R_{h}\left(\tau_{i}\right)$
4. Obtain a trajectory $\tau \sim \rho_{\theta^{k}}$

Set $\widetilde{\nabla}_{\theta} J\left(\theta^{k}\right)=\sum_{h=0}^{H-1} \nabla \ln \pi_{\theta^{k}}\left(a_{h} \mid s_{h}\right)\left(R_{h}(\tau)-\widetilde{b}_{h}\right)$
3. Update: $\theta^{k+1}=\theta^{k}+\eta^{k} \widetilde{\nabla}_{\theta} J\left(\theta^{k}\right)$

The Advantage Function (finite horizon)

$$
V_{h}^{\pi}(s)=\mathbb{E}\left[\sum_{\tau=h}^{H-1} r\left(s_{\tau}, a_{\tau}\right) \mid s_{h}=s\right] \quad Q_{h}^{\pi}(s, a)=\mathbb{E}\left[\sum_{\tau=h}^{H-1} r\left(s_{\tau}, a_{\tau}\right) \mid\left(s_{h}, a_{h}\right)=(s, a)\right]
$$

- The Advantage function is defined as:

$$
A_{h}^{\pi}(s, a)=Q_{h}^{\pi}(s, a)-V_{h}^{\pi}(s)
$$

- We have that:

$$
E_{a \sim \pi(\cdot \mid s)}\left[A_{h}^{\pi}(s, a) \mid s, h\right]=\sum_{a} \pi(a \mid s) A_{h}^{\pi}(s, a)=? ?
$$

- What do we know about $A_{h}^{\pi^{\star}}(s, a)$?
- For the discounted case, $A^{\pi}(s, a)=Q^{\pi}(s, a)-V^{\pi}(s)$

The Advantage-based PG:

$$
\begin{aligned}
\nabla J(\theta) & =\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\left(Q_{h}^{\pi_{\theta}}\left(s_{h}, a_{h}\right)-b_{h}\left(s_{h}\right)\right)\right] \\
& =\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right) A_{h}^{\pi_{\theta}}\left(s_{h}, a_{h}\right)\right]
\end{aligned}
$$

- The second step follows by choosing $b_{h}(s)=V_{h}^{\pi}(s)$.
- In practice, the most common approach is to use $b_{h}(s)$ as an estimate of $V_{h}^{\pi}(s)$.

Summary:

1. REINFORCE (a direct application of the likelihood ratio method)

2. Variance Reduction: with baselines

Feedback:
bit.Iy/3RHt|xy

