Trust Region Policy Optimization & The Natural Policy Gradient

Lucas Janson and Sham Kakade CS/Stat 184: Introduction to Reinforcement Learning Fall 2023

- The Performance Difference Lemma
- Algorithms:
 - Conservative Policy Iteration (CPI)
 - Trust Region Policy Optimization (TRPO)
 - The Natural Policy Gradient (NPG)
 - Proximal Policy Optimization (PPO)

Ethics Lecture Mon!

Recap++

Optimization Objective

 Consider a parameterize class of policies: $\{\pi_{\theta}(a \mid s) \mid \theta \in \mathbb{R}^d\}$ (why do we make it stochastic?)

•Objective $\max J(\theta)$, where θ

• Policy Gradient Descent:

 $\theta^{k+1} = \theta^k + \eta \nabla J(\theta^k)$

 θ $J(\theta) := E_{s_0 \sim \mu} \left[V^{\pi_{\theta}}(s_0) \right] = E_{\tau \sim \rho_{\pi_{\theta}}} \left[\sum_{h=0}^{H-1} r(s_h, a_h) \right]$

REINFORCE: A Policy Gradient Algorithm

- Let $R(\tau)$ be the cumulative reward on
- Our objective function is:
- $J(\theta) = E_{\tau \sim \rho_{\theta}} \left[R(\tau) \right]$ • The REINFORCE Policy Gradient expression: $\nabla_{\theta} J(\theta) := \mathbb{E}_{\tau \sim \rho_{\theta}} \left(\sum_{h=0}^{H-1} \nabla_{\theta} \right)^{H-1}$

• Let $\rho_{\theta}(\tau)$ be the probability of a trajectory $\tau = \{s_0, a_0, s_1, a_1, \dots, s_{H-1}, a_{H-1}\}$, i.e. $\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0 | s_0)P(s_1 | s_0, a_0)\dots P(s_{H-1} | s_{H-2}, a_{H-2})\pi_{\theta}(a_{H-1} | s_{H-1})$

trajectory
$$\tau$$
, i.e. $R(\tau) := \sum_{h=0}^{H-1} r(s_h, a_h)$

$$\nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) R(\tau)$$

- From the likelihood ratio method, we have: $\nabla_{\theta} J(\theta) := \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\nabla_{\theta} \ln \rho_{\theta}(\tau) R(\tau) \right]$
- •We have: $\nabla_{\theta} \ln \rho_{\theta}(\tau) = \nabla_{\theta} \left(\ln \mu(s_0) + \ln \pi_{\theta}(a_0 | s_0) + \ln P(s_1 | s_0, a_0) + \dots \right)$ $= \nabla_{\theta} \left(\ln \pi_{\theta}(a_0 | s_0) + \ln \pi_{\theta}(a_1 | s_1) \dots \right)$

$$= \left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h)\right)$$

Proof

PG with REINFORCE:

- 1. Initialize θ_0 , parameters: η^1, η^2, \dots
- 2. For k = 0, ...:
 - 1. Obtain a trajectory $\tau \sim \rho_{\theta^k}$

Set
$$\widetilde{\nabla}_{\theta} J(\theta^k)$$
 =

H–1 $= \sum_{h=1}^{n-1} \nabla \ln \pi_{\theta^k}(a_h | s_h) R(\tau)$ h=0

2. Update: $\theta^{k+1} = \theta^k + \eta^k \widetilde{\nabla}_{\theta} J(\theta^k)$

Intuition: Change action distribution at h only affects rewards later on... **HW:** You will show these simplified version are also valid PG expressions

Other PG formulas (that are lower variance for sampling)

$$\sum_{h=0}^{I-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) R(\tau)$$

$$\int_{0}^{1} \left(\nabla_{\theta} \ln \pi_{\theta}(a_{h} | s_{h}) \sum_{t=h}^{H-1} r_{t} \right)$$

$$\nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) Q_h^{\pi_{\theta}}(s_h, a_h)$$

With a "baseline" function: For any function only of the state, $b_h : S \rightarrow R$, we have: $\pi_{\theta}(a_h | s_h) \left(Q_h^{\pi_{\theta}}(s_h, a_h) - b_h(s_h) \right)$ $1 \pi_{\theta}(a_h | s_h) \left(\sum_{t=h}^{H-1} r_t - b_h(s_h) \right) \right] \quad C \stackrel{\text{Complex}}{\underset{\text{K}}{\longrightarrow}}$

$$\nabla J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \right]$$
$$= \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \right]$$

For the proof, it was helpful to note: $\mathbb{E}_{x \sim P_{\theta}} \left[\nabla \log P_{\theta}(x) c \right] = 0$

$$V_h^{\pi}(s) = \mathbb{E}\left[\left|\sum_{\tau=h}^{H-1} r(s_{\tau}, a_{\tau})\right| s_h = s\right]$$

$$Q_h^{\pi}(s,a) = \mathbb{E}\left[\left|\sum_{\tau=h}^{H-1} r(s_{\tau},a_{\tau})\right| (s_h,a_h) = (s,a)\right]$$

$$V_h^{\pi}(s) = \mathbb{E}\left[\left|\sum_{\tau=h}^{H-1} r(s_{\tau}, a_{\tau})\right| s_h = s\right]$$

 The Advantage function is defined as: $A_h^{\pi}(s, a) = Q_h^{\pi}(s, a) - V_h^{\pi}(s)$

$$Q_h^{\pi}(s,a) = \mathbb{E}\left[\sum_{\tau=h}^{H-1} r(s_{\tau},a_{\tau}) \middle| (s_h,a_h) = (s,a)\right]$$

$$V_h^{\pi}(s) = \mathbb{E}\left[\left|\sum_{\tau=h}^{H-1} r(s_{\tau}, a_{\tau})\right| s_h = s\right]$$

- The Advantage function is defined as: $A_{h}^{\pi}(s,a) = Q_{h}^{\pi}(s,a) - V_{h}^{\pi}(s)$
- We have that:

$$E_{a \sim \pi(\cdot|s)} \left[A_h^{\pi}(s,a) \, \middle| \, s,h \right] = \sum_{n=1}^{\infty} \left[A_h^{\pi}(s,a) \, \middle| \, s,h \right] = \sum_{n=1}^{\infty} \left[A_h^{\pi}(s,a) \, \middle| \, s,h \right]$$

$$Q_h^{\pi}(s,a) = \mathbb{E}\left[\sum_{\tau=h}^{H-1} r(s_{\tau},a_{\tau}) \middle| (s_h,a_h) = (s,a)\right]$$

 $\sum \pi(a \,|\, s) A_h^{\pi}(s, a) = ??$

 \mathcal{A}

$$V_h^{\pi}(s) = \mathbb{E}\left[\left|\sum_{\tau=h}^{H-1} r(s_{\tau}, a_{\tau})\right| s_h = s\right]$$

- The Advantage function is defined as: $A_{h}^{\pi}(s,a) = Q_{h}^{\pi}(s,a) - V_{h}^{\pi}(s)$
- We have that:

$$E_{a \sim \pi(\cdot|s)} \left[A_h^{\pi}(s,a) \, \middle| \, s,h \right] = \sum_{k=1}^{n}$$

• What do we know about $A_h^{\pi^*}(s, a)$?

$$Q_h^{\pi}(s,a) = \mathbb{E}\left[\sum_{\tau=h}^{H-1} r(s_{\tau},a_{\tau}) \middle| (s_h,a_h) = (s,a)\right]$$

 $\sum_{i} \pi(a \mid s) A_{h}^{\pi}(s, a) = ??$ $A_{h}^{\pi}(s, a) \leq O$ 4Sa iff IT is optimal.

$$V_h^{\pi}(s) = \mathbb{E}\left[\left|\sum_{\tau=h}^{H-1} r(s_{\tau}, a_{\tau})\right| s_h = s\right]$$

- The Advantage function is defined as: $A_{h}^{\pi}(s,a) = Q_{h}^{\pi}(s,a) - V_{h}^{\pi}(s)$
- We have that:

$$E_{a \sim \pi(\cdot|s)} \left[A_h^{\pi}(s,a) \, \middle| \, s,h \right] = \sum_{k=1}^{n}$$

- What do we know about $A_h^{\pi^*}(s, a)$?
- For the discounted case, $A^{\pi}(s, a) = Q^{\pi}(s, a) V^{\pi}(s)$

$$Q_h^{\pi}(s,a) = \mathbb{E}\left[\left|\sum_{\tau=h}^{H-1} r(s_{\tau},a_{\tau})\right| (s_h,a_h) = (s,a)\right]$$

 $\sum \pi(a \,|\, s) A_h^{\pi}(s, a) = ??$

 $\nabla J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \left(Q_h^{\pi_{\theta}}(s_h, a_h) - b_h(s_h) \right) \right]$

 $\nabla J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \left(Q_h^{\pi_{\theta}}(s_h, a_h) - b_h(s_h) \right) \right]$ $= \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) A_h^{\pi_{\theta}}(s_h, a_h) \right]$

• The second step follows by choosing $b_h(s) = V_h^{\pi}(s)$.

 $\nabla J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}(\tau)} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_h | s_h) \left(Q_h^{\pi_{\theta}}(s_h, a_h) - b_h(s_h) \right) \right]$

- The second step follows by choosing $b_h(s) = V_h^{\pi}(s)$.

$$\pi_{\theta}(a_h | s_h) \left(Q_h^{\pi_{\theta}}(s_h, a_h) - b_h(s_h) \right)$$

• In practice, the most common approach is to use $b_h(s)$ as an estimate of $V_h^{\pi}(s)$.

1. Initialize θ_0 , parameters: η_1, η_2, \ldots

- 1. Initialize θ_0 , parameters: η_1, η_2, \ldots
- 2. For k = 0, ...:

- 1. Initialize θ_0 , parameters: η_1, η_2, \ldots
- 2. For k = 0, ...:
 - 1. Sup. Learning: Using *N* trajectories sa $\widetilde{b}(s) \approx V_h^{\theta^k}(s)$

- 1. Initialize θ_0 , parameters: η_1, η_2, \ldots
- 2. For k = 0, ...:
 - $\widetilde{b}(s) \approx V_{h}^{\theta^{k}}(s)$

h=0

2. Obtain a trajectory $\tau \sim \rho_{\theta^k}$ Set $\widetilde{\nabla}_{\theta} J(\theta^k) = \sum_{k=1}^{H-1} \nabla \ln \pi_{\theta^k}(a_h | s_h) \left(R_h(\tau) - \widetilde{b}(s_h) \right)$

- 1. Initialize θ_0 , parameters: η_1, η_2, \ldots
- 2. For k = 0, ...:
 - $\widetilde{b}(s) \approx V_{h}^{\theta^{k}}(s)$
 - 2. Obtain a trajectory $\tau \sim \rho_{\theta^k}$ Set $\widetilde{\nabla}_{\theta} J(\theta^k) = \sum_{k=1}^{H-1} \nabla \ln \pi_{\theta^k}(a_h | s_h) \left(R_h(\tau) - \widetilde{b}(s_h) \right)$ h=()
 - 3. Update: $\theta^{k+1} = \theta^k + \eta^k \widetilde{\nabla}_{\theta} J(\theta^k)$

- 1. Initialize θ_0 , parameters: η_1, η_2, \ldots
- 2. For k = 0, ...:
 - $\widetilde{b}(s) \approx V_{h}^{\theta^{k}}(s)$
 - 2. Obtain a trajectory $\tau \sim \rho_{\theta^k}$ Set $\widetilde{\nabla}_{\theta} J(\theta^k) = \sum_{k=1}^{H-1} \nabla \ln \pi_{\theta^k}(a_h | s_h) \left(R_h(\tau) - \widetilde{b}(s_h) \right)$ h=()
 - 3. Update: $\theta^{k+1} = \theta^k + \eta^k \widetilde{\nabla}_{\rho} J(\theta^k)$

Note that regardless of our choice of $b_h(s)$, we still get unbiased gradient estimates.

- 1. Initialize θ_0 , parameters: η_1, η_2, \ldots
- 2. For k = 0, ...:
 - 1. Sup. Learning: Using *N* trajectories satisfies $\widetilde{b}(s) \approx V_h^{\theta^k}(s)$

- 1. Initialize θ_0 , parameters: η_1, η_2, \ldots
- 2. For k = 0, ...:
 - $\tilde{b}(s) \approx V_{h}^{\theta^{k}}(s)$
 - 2. Obtain M trajectories $\tau_1, \ldots, \tau_M \sim \rho_{\theta^k}$ Set $\widetilde{\nabla}_{\theta} J(\theta^k) = \frac{1}{M} \sum_{k=1}^{M} \sum_{k=1}^{H-1} \nabla \ln \pi_{\theta^k}(a_h^m | s_h^m) \left(R_h(\tau^m) - \widetilde{b}(s_h) \right)$ m=1 h=0

- 1. Initialize θ_0 , parameters: η_1, η_2, \ldots
- 2. For k = 0, ...:
 - $\tilde{b}(s) \approx V_{k}^{\theta^{k}}(s)$
 - 2. Obtain M trajectories $\tau_1, \ldots \tau_M \sim \rho_{\rho k}$ Set $\widetilde{\nabla}_{\theta} J(\theta^k) = \frac{1}{M} \sum_{k=1}^{M} \sum_{k=1}^{H-1} \nabla \ln \pi_{\theta^k}(a_h^m | s_h^m) \left(R_h(\tau^m) - \widetilde{b}(s_h) \right)$ m=1 h=0
 - 3. Update: $\theta^{k+1} = \theta^k + \eta^k \widetilde{\nabla}_{\theta} J(\theta^k)$

A (Sn, Ch)

Today:

- Softmax Example
- The Performance Difference Lemma
- Algorithms:
 - Trust Region Policy Optimization (TRPO)
 - The Natural Policy Gradient (NPG)
 - Proximal Policy Optimization (PPO)

Policy Parameterizations

Recall that we consider parameterized policy $\pi_{\theta}(\cdot | s) \in \Delta(A), \forall s$

1. Softmax linear Policy

Feature vector $\phi(s, a) \in \mathbb{R}^d$, and parameter $\theta \in \mathbb{R}^d$

 $\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\top} \phi(s, a))}{\sum_{a'} \exp(\theta^{\top} \phi(s, a'))}$

$$\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\top} \phi(s, a))}{\sum_{a'} \exp(\theta^{\top} \phi(s, a'))}$$

 $\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\top} \phi(s, a))}{\sum_{a'} \exp(\theta^{\top} \phi(s, a'))}$

Two properties (see HW):

 $\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\top} \phi(s, a))}{\sum_{a'} \exp(\theta^{\top} \phi(s, a'))} \cdot$

- Two properties (see HW):
- More probable actions have features which align with θ . Precisely,
 - $\pi_{\theta}(a \mid s) \geq \pi_{\theta}(a' \mid s)$ if and only if $\theta^{\top} \phi(s, a) \geq \theta^{\top} \phi(s, a')$

 $\pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\top} \phi(s, a))}{\sum_{a'} \exp(\theta^{\top} \phi(s, a'))}$

- Two properties (see HW):
- More probable actions have features which align with θ . Precisely,
- $\pi_{\theta}(a \mid s) \geq \pi_{\theta}(a' \mid s)$ if and only if $\theta^{\top} \phi(s, a) \geq \theta^{\top} \phi(s, a')$

• The gradient of the log policy is: $\nabla_{\theta} \log(\pi_{\theta}(a \mid s)) = \phi(s, a) - \mathbb{E}_{a' \sim \pi_{\theta}(\cdot \mid s)}[\phi(s, a')]$

Softmax Policy Properties

- Two properties (see HW):
- More probable actions have features which align with θ . Precisely,
- $\pi_{\theta}(a \mid s) \geq \pi_{\theta}(a' \mid s)$ if and only if $\theta^{\top} \phi(s, a) \geq \theta^{\top} \phi(s, a')$

• The gradient of the log policy is: $\sum_{\substack{\theta \in \mathcal{A}_{\theta}(a \mid s) \\ \pi_{\theta}(s, a) = \phi(s, a) - \mathbb{E}_{a' \sim \pi_{\theta}(\cdot \mid s)}[\phi(s, a')]$ $\nabla J(\theta) = \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\sum_{h=1}^{H-1} Q_{h}^{\pi_{\theta}}(s_{h}, a_{h}) \left(\phi(s_{h}, a_{h}) - \mathbb{E}_{a' \sim \pi_{\theta}(\cdot \mid s_{h})}[\phi(s_{h}, a')] \right) \right]$

$$(s_h, a_h)$$

- Recap++
- Softmax Example
- The Performance Difference Lemma
- Algorithms:
 - Trust Region Policy Optimization (TRPO)
 - The Natural Policy Gradient (NPG)
 - Proximal Policy Optimization (PPO)

Fitted Policy Iteration:

• Initialization: choose a policy $\pi^0 : S \mapsto A$ and a sample size N • For k = 0, 1, ...1. Fitted Policy Evaluation: Using N sampled trajectories $\tau_1, \ldots \tau_N \sim \rho_{\pi^k}$, obtain approximation $\hat{Q}^{\pi^k} \approx Q^{\pi^k}$ 2. Policy Improvement: set $\pi_h^{k+1}(s) := \arg \max \hat{Q}^{\pi^k}(s, a, h)$

Fitted Policy Iteration: Advantage Version

Initialization: choose a policy π⁰ : S → A and a sample size N
For k = 0,1,...
1. Fitted Policy Evaluation: Using N sampled trajectories τ₁, ...τ_N ~ ρ_{π^k}, obtain approximation Â^{π^k} ≈ A^{π^k}
2. Policy Improvement: set π_h^{k+1}(s) := arg max Â^{π^k}(s, a, h)

(we are making the starting distribution explicit now).

• Let $\rho_{\pi,s}$ be the distribution of trajectories from starting state s acting under π .

- (we are making the starting distribution explicit now).
- For any two policies π and $\widetilde{\pi}$ and any state s,

• Let $\rho_{\tilde{\pi},s}$ be the distribution of trajectories from starting state s acting under π .

- (we are making the starting distribution explicit now).
- For any two policies π and $\widetilde{\pi}$ and any state s,

Comments:

• Let $\rho_{\tilde{\pi},s}$ be the distribution of trajectories from starting state s acting under π .

- (we are making the starting distribution explicit now).
- For any two policies π and $\widetilde{\pi}$ and any state s,

Comments:

• Helps us think about error analysis, instabilities of fitted PI, and sub-optimality.

• Let $\rho_{\tilde{\pi},s}$ be the distribution of trajectories from starting state s acting under π .

 $V^{\widetilde{\pi}}(s) - V^{\pi}(s) = H \cdot \mathbb{E}_{\tau \sim \rho_{\widetilde{\pi},s}} \left| \sum_{h=0}^{H-1} A_h^{\pi}(s_h, a_h) \right|$

- (we are making the starting distribution explicit now).
- For any two policies π and $\widetilde{\pi}$ and any state s,

Comments:

- •Helps to understand algorithm design (TRPO, NPG, PPO)

• Let $\rho_{\tilde{\pi},s}$ be the distribution of trajectories from starting state s acting under π .

• Helps us think about error analysis, instabilities of fitted PI, and sub-optimality.

- (we are making the starting distribution explicit now).
- For any two policies π and $\widetilde{\pi}$ and any state s,

Comments:

- •Helps to understand algorithm design (TRPO, NPG, PPO)

• Let $\rho_{\tilde{\pi},s}$ be the distribution of trajectories from starting state s acting under π .

• Helps us think about error analysis, instabilities of fitted PI, and sub-optimality. • This also motivates the use of "local" methods (e.g. policy gradient descent)

• Suppose π^k gets updated to π^{k+1} . How much worse could π^{k+1} be?

- Suppose π^k gets updated to π^{k+1} . How much worse could π^{k+1} be?

• Suppose at some state s, π^{k+1} choose an action which has a negative advantage for π^k .

- Suppose π^k gets updated to π^{k+1} . How much worse could π^{k+1} be?
- Suppose at some state s, π^{k+1} choose an action which has a negative advantage for π^k .
 - •Since $\widetilde{A^k}(s, a, h) \approx A_h^{\pi^k}(s, a, h)$, we expect some error.

- Suppose π^k gets updated to π^{k+1} . How much worse could π^{k+1} be?
- Suppose at some state s, π^{k+1} choose an action which has a negative advantage for π^k .
 - •Since $\widetilde{A}^k(s, a, h) \approx A_h^{\pi^k}(s, a, h)$, we expect some error.
 - In the worst case, let us consider the most negative advantage:

 $\Delta_{\infty} := \min_{s \in S} A_h^{\pi^k}(s, \pi^{k+1}(s))$

- Suppose π^k gets updated to π^{k+1} . How much worse could π^{k+1} be?
- Suppose at some state s, π^{k+1} choose an action which has a negative advantage for π^k .
 - •Since $\widetilde{A}^{k}(s, a, h) \approx A_{h}^{\pi^{k}}(s, a, h)$, we expect some error.
 - In the worst case, let us consider the most negative advantage: $\Delta_{\infty} := \min A_h^{\pi^k}(s, \pi^{k+1}(s))$ $s \in S$
 - •Here, if $\Delta_{\infty} < 0$, it is possible that degradation may occur:

- Suppose π^k gets updated to π^{k+1} . How much worse could π^{k+1} be?
- Suppose at some state s, π^{k+1} choose an action which has a negative advantage for π^k .
 - •Since $\overline{A^k(s, a, h)} \approx A_h^{\pi^k}(s, a, h)$, we expect some error.
 - In the worst case, let us consider the most negative advantage: $\Delta_{\infty} := \min_{\tilde{A}} A_h^{\pi^k}(s, \pi^{k+1}(s))$ $s \in S$
 - •Here, if $\Delta_{\infty} < 0$, it is possible that degradation may occur: $V^{\pi^{k+1}}(s_0) \geq V^{\pi^k}(s_0) - H \cdot |\Delta_{\infty}|$

- Suppose π^k gets updated to π^{k+1} . How much worse could π^{k+1} be?
- Suppose at some state s, π^{k+1} choose an action which has a negative advantage for π^k .
 - •Since $\overline{A^k(s, a, h)} \approx A_h^{\pi^k}(s, a, h)$, we expect some error.
 - In the worst case, let us consider the most negative advantage: $\Delta_{\infty} := \min_{\tilde{a}} A_h^{\pi^k}(s, \pi^{k+1}(s))$ $s \in S$

•Here, if $\Delta_{\infty} < 0$, it is possible that degradation may occur: $V^{\pi^{k+1}}(s_0) \geq V^{\pi^k}(s_0) - H \cdot |\Delta_{\infty}|$

Proof sketch:

- Suppose π^k gets updated to π^{k+1} . How much worse could π^{k+1} be?
- Suppose at some state s, π^{k+1} choose an action which has a negative advantage for π^k .
 - •Since $\widetilde{A}^{k}(s, a, h) \approx A_{h}^{\pi^{k}}(s, a, h)$, we expect some error.
 - In the worst case, let us consider the most negative advantage: $\Delta_{\infty} := \min_{\alpha} A_h^{\pi^k}(s, \pi^{k+1}(s))$ $S \in S$

•Here, if $\Delta_{\infty} < 0$, it is possible that degradation may occur: $V^{\pi^{k+1}}(s_0) \geq V^{\pi^k}(s_0) - H \cdot |\Delta_{\infty}|$

Proof sketch:

• Fitted PI does not enforce that the trajectory distributions, ρ_{π^k} and $\rho_{\pi^{k+1}}$, be close to each other.

- Suppose π^k gets updated to π^{k+1} . How much worse could π^{k+1} be?
- Suppose at some state s, π^{k+1} choose an action which has a negative advantage for π^k .
 - •Since $\overline{A^{k}(s, a, h)} \approx A_{h}^{\pi^{k}}(s, a, h)$, we expect some error.
 - In the worst case, let us consider the most negative advantage: $\Delta_{\infty} := \min_{\alpha} A_h^{\pi^k}(s, \pi^{k+1}(s))$ seS
 - •Here, if $\Delta_{\infty} < 0$, it is possible that degradation may occur: $V^{\pi^{k+1}}(s_0) \geq V^{\pi^k}(s_0) - H \cdot |\Delta_{\infty}|$

Proof sketch:

- (i.e. we get trapped at this state where we made a bad choice).
- Fitted PI does not enforce that the trajectory distributions, ρ_{π^k} and $\rho_{\pi^{k+1}}$, be close to each other. • Suppose the $ho_{\pi^{k+1}}$ has full support on these worst case states s

- Recap++
- Softmax Example
- The Performance Difference Lemma
- Algorithms:
- Trust Region Policy Optimization (TRPO)
 - The Natural Policy Gradient (NPG)
 - Proximal Policy Optimization (PPO)

What's bad about fitted PI?
 even if we pick better actions "on average

- What's bad about fitted PI?
- Can we fix this? Let's look at an incremental policy updating approach.

- What's bad about fitted PI?
- Can we fix this? Let's look at an incremental policy updating approach.

1. Init
$$\pi_0$$

2. For $k = 0, ..., K$:
try to approximately solve:
 $\theta^{k+1} = \arg \max_{\theta} \mathbb{E}_{s_0, ..., s_{H-1} \sim \rho_{\pi^k}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(s_h)} A^{\pi^k}(s_h, a_h) \right]$
s.t. ρ_{θ} is "close" to ρ_{θ^k}
3. Return π_K

- What's bad about fitted PI?
- Can we fix this? Let's look at an incremental policy updating approach.

1. Init
$$\pi_0$$

2. For $k = 0, ..., K$:
try to approximately solve:
 $\theta^{k+1} = \arg \max_{\theta} \mathbb{E}_{s_0, ..., s_{H-1} \sim \rho_{\pi^k}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(s_h)} A^{\pi^k}(s_h, a_h) \right]$
s.t. ρ_{θ} is "close" to ρ_{θ^k}
3. Return π_K

• How should we define "close"?

Given two distributions P & Q, where $P \in \Delta(X), Q \in \Delta(X)$, KL Divergence is defined as:

 $KL(P \mid Q) = \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{O(x)} \right]$

 $KL(P \mid Q) =$

Given two distributions P & Q, where $P \in \Delta(X), Q \in \Delta(X)$, KL Divergence is defined as:

$$= \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{Q(x)} \right]$$

Examples:

If Q = P, then KL(P | Q) = KL(Q | P) = 0

 $KL(P \mid Q) =$

If Q = P, then KL

If $P = \mathcal{N}(\mu_1, \sigma^2 I), Q = \mathcal{N}(\mu_2, \sigma^2 I)$

Given two distributions P & Q, where $P \in \Delta(X), Q \in \Delta(X)$, KL Divergence is defined as:

$$= \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{Q(x)} \right]$$

Examples:

$$(P | Q) = KL(Q | P) = 0$$

 $\sigma^2 I$, then $KL(P | Q) = \frac{1}{2\sigma^2} ||\mu_1 - \mu_2||^2$

 $KL(P \mid Q) =$

If Q = P, then KL

If $P = \mathcal{N}(\mu_1, \sigma^2 I), Q = \mathcal{N}(\mu_2, \sigma^2 I)$

Given two distributions P & Q, where $P \in \Delta(X), Q \in \Delta(X)$, KL Divergence is defined as:

$$= \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{Q(x)} \right]$$

Examples:

$$(P | Q) = KL(Q | P) = 0$$

 $\sigma^2 I$, then $KL(P | Q) = \frac{1}{2\sigma^2} ||\mu_1 - \mu_2||^2$

Fact:

 $KL(P \mid Q) \ge 0$, and being 0 if and only if P = Q

Trust Region Policy Optimization (TRPO)

1. Init
$$\pi_0$$

2. For $k = 0, ..., K$:
 $\theta^{k+1} = \arg \max_{\theta} \mathbb{E}_{s_0, ..., s_{H-1} \sim \rho_{\pi^k}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(s_h)} A^{\pi^k}(s_h, a_h) \right]$
s.t. $KL\left(\rho_{\pi^k} | \rho_{\pi_{\theta}} \right) \leq \delta$
3. Return π_K

- We want to maximize local advantage against π_{θ^k} ,
- •

but we want the new policy to be close to π_{θ^k} (in the KL sense) How do we implement this with sampled trajectories?)

How do we implement TRPO with samples?

1. Initialize staring policy π_0 , samples size M 2. For k = 0, ..., K: 1. [A-Evaluation Subroutine] $\widetilde{A}_k(s,a) \approx A_h^{\pi_k}(s,a)$ M H-1 $\max_{\theta} \sum_{n \in \mathbb{Z}} \sum_{n \in \mathbb{Z}} \mathbb{E}_{a \sim \pi_{\theta}(s_h^m)}$ m=1 h=0s.t. $\sum_{m=1}^{M} \sum_{h=0}^{H-1} \ln \frac{\pi_{\theta_k}(a_h)}{\pi_{\theta_k}(a_h)}$

- Using M sampled trajectories, $\tau_1, \ldots \tau_M \sim \rho_{\pi_L}$,
- 2. Solve the following optimization problem to obtain π_{k+1} :

$$(A_{h}^{m})\widetilde{A}_{k}(s_{h}^{m},a)$$

$$\frac{m | s_h^m|}{s_h^m | s_h^m|} \le \delta$$

- Recap++
- Softmax Example
- The Performance Difference Lemma
- Algorithms:
 - Trust Region Policy Optimization (TRPO)
- The Natural Policy Gradient (NPG)
 - Proximal Policy Optimization (PPO)

TRPO is locally equivalent to the NPG

TRPO at iteration k:

Intuition: maximize local adv subject to being incremental (in KL);

29

TRPO is locally equivalent to the NPG

TRPO at iteration k:

Intuition: maximize local adv subject to being incremental (in KL);

TRPO at iteration k:

Intuition: maximize local adv subject to being incremental (in KL);

TRPO at iteration k:

Intuition: maximize local adv subject to being incremental (in KL);

$\max_{\theta} \nabla_{\theta} J(\pi_{\theta^k})^{\mathsf{T}}(\theta - \theta^k)$

TRPO at iteration k:

Intuition: maximize local adv subject to being incremental (in KL);

$$\max_{\theta} \nabla_{\theta} J(\pi_{\theta^{k}})^{\mathsf{T}} (\theta - \theta^{k})$$

s.t. $(\theta - \theta^{k})^{\mathsf{T}} F_{\theta^{k}} (\theta - \theta^{k}) \leq \delta$

TRPO at iteration k:

Intuition: maximize local adv subject to being incremental (in KL);

$$\max_{\theta} \nabla_{\theta} J(\pi_{\theta^{k}})^{\mathsf{T}} (\theta - \theta^{k})$$

s.t. $(\theta - \theta^{k})^{\mathsf{T}} F_{\theta^{k}} (\theta - \theta^{k}) \leq \delta$

(Where F_{θ^k} is the "Fisher Information Matrix")

NPG: A "leading order" equivalent program to TRPO:

1. Init
$$\pi_0$$

2. For $k = 0, \dots K$:
 $\theta^{k+1} = \arg \theta^{k+1}$
s.t. $(\theta - \theta)$
3. Return π_K

 $\operatorname{rg\,max}_{\theta} \nabla_{\theta} J(\pi_{\theta^{k}})^{\mathsf{T}}(\theta - \theta^{k}) \\ \theta^{k})^{\mathsf{T}} F_{\theta^{k}}(\theta - \theta^{k}) \leq \delta$

NPG: A "leading order" equivalent program to TRPO:

1. Init
$$\pi_0$$

2. For $k = 0, ...K$:
 $\theta^{k+1} = \arg \max_{\theta} \nabla_{\theta} J(\pi_{\theta^k})^{\mathsf{T}}(\theta - \theta^k)$
s.t. $(\theta - \theta^k)^{\mathsf{T}} F_{\theta^k}(\theta - \theta^k) \leq \delta$
3. Return π_K

- Where $\nabla_{\theta} J(\pi_{\theta^k})$ is the gradient at θ^k and

$$F_{\theta} := \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\nabla_{\theta} \ln \rho_{\theta}(\tau) (\nabla_{\theta} \ln \eta) \right]$$

$$= \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_{h} | s_{h}) \left(\nabla_{\theta} \ln \pi_{\theta}(a_{h} | s_{h}) \right)^{\mathsf{T}} \right]$$

• F_{θ} is (basically) the Fisher information matrix at $\theta \in \mathbb{R}^{d}$, defined as: $F_{\theta} := \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\nabla_{\theta} \ln \rho_{\theta}(\tau) (\nabla_{\theta} \ln \rho_{\theta}(\tau))^{\mathsf{T}} \right] \in \mathbb{R}^{d \times d}$

1. Init
$$\pi_0$$

2. For $k = 0, \dots K$:
 $\theta^{k+1} = \arg S$
s.t. $(\theta - \theta)$
3. Return π_K

 $\operatorname{rg\,max}_{\theta} \nabla_{\theta} J(\pi_{\theta^{k}})^{\mathsf{T}} (\theta - \theta^{k})$ $\theta^{k})^{\mathsf{T}} F_{\theta^{k}} (\theta - \theta^{k}) \leq \delta$

1. Init
$$\pi_0$$

2. For $k = 0, \dots K$:
 $\theta^{k+1} = \arg S$
s.t. $(\theta - \theta)$
3. Return π_K

Linear objective and quadratic convex constraint, we can solve it optimally!

 $\operatorname{cg\,max}_{\theta} \nabla_{\theta} J(\pi_{\theta^{k}})^{\mathsf{T}} (\theta - \theta^{k})$ $\theta^{k})^{\mathsf{T}} F_{\theta^{k}}(\theta - \theta^{k}) \leq \delta$

1. Init
$$\pi_0$$

2. For $k = 0, \dots K$:
 $\theta^{k+1} = \arg S$
s.t. $(\theta - \theta)$
3. Return π_K

Linear objective and quadratic convex constraint, we can solve it optimally! Indeed this gives us:

$$\theta^{k+1} = \theta^k + \eta F_{\theta^k}^{-1} \nabla$$

 $\operatorname{cg\,max}_{\theta} \nabla_{\theta} J(\pi_{\theta^{k}})^{\mathsf{T}} (\theta - \theta^{k})$ $\theta^{k})^{\mathsf{T}} F_{\theta^{k}} (\theta - \theta^{k}) \leq \delta$

 $7_{\theta}J(\pi_{\theta^k})$

1. Init
$$\pi_0$$

2. For $k = 0, ..., K$:
 $\theta^{k+1} = \arg \max_{\theta} \nabla_{\theta} J(\pi_{\theta^k})^{\mathsf{T}}(\theta - \theta^k)$
s.t. $(\theta - \theta^k)^{\mathsf{T}} F_{\theta^k}(\theta - \theta^k) \leq \delta$
3. Return π_K

Linear objective and quadratic convex constraint, we can solve it optimally! Indeed this gives us:

$$\theta^{k+1} = \theta^{k} + \eta F_{\theta^{k}}^{-1} \nabla_{\theta} J(\pi_{\theta^{k}})$$

Where $\eta = \sqrt{\frac{\delta}{\nabla_{\theta} J(\pi_{\theta^{k}})^{\top} F_{\theta^{k}}^{-1} \nabla_{\theta} J(\pi_{\theta^{k}})}}$

- 1. Variance Reduction: with baselines
- 2. Perf. Diff Lemma/ TRPO/ NPG

Attendance: bit.ly/3RcTC9T

Summary:

al divergence

Feedback: <u>bit.ly/3RHtlxy</u>

An Implementation: Sample Based NPG

1. Init π_0

2. For
$$k = 0, ..., K$$
:

• Estimate PG $\nabla_{\theta} J(\pi_{\theta^k})$

Estimate Fisher info-matrix: $F_{\theta^k} = \mathbb{E}_{\tau}$

• Natural Gradient Ascent: $\theta^{k+1} = \theta^k$

3. Return π_K

$$\pi \sim \rho_{\theta^{k}} \left[\sum_{h=0}^{H-1} \nabla \ln \pi_{\theta^{k}}(a_{h} | s_{h}) \left(\nabla \ln \pi_{\theta^{k}}(a_{h} | s_{h}) \right)^{\mathsf{T}} \right] + \eta \widehat{F_{\theta^{k}}}^{-1} \widehat{\nabla_{\theta} J(\pi_{\theta^{k}})}$$

An Implementation: Sample Based NPG

1. Init π_0

2. For
$$k = 0, ..., K$$
:

• Estimate PG $\nabla_{\theta} J(\pi_{\theta^k})$

Estimate Fisher info-matrix: $F_{\theta^k} = \mathbb{E}_{\tau}$

• Natural Gradient Ascent: $\theta^{k+1} = \theta^k$

3. Return π_K

$$\pi \sim \rho_{\theta^{k}} \left[\sum_{h=0}^{H-1} \nabla \ln \pi_{\theta^{k}}(a_{h} \mid s_{h}) \left(\nabla \ln \pi_{\theta^{k}}(a_{h} \mid s_{h}) \right)^{\mathsf{T}} \right] \\ + \eta \widehat{F_{\theta^{k}}}^{-1} \widehat{\nabla_{\theta} J(\pi_{\theta^{k}})}$$

(We will implement it in HW4 on Cartpole)

$$(\pi_{\theta}[1], \pi_{\theta}[2]) := \left(\frac{\exp(\theta)}{1 + \exp(\theta)}, \frac{1}{1 + \exp(\theta)}\right)$$

 $J(\theta) = 100 \cdot \pi_{\theta}[1] + 1 \cdot \pi_{\theta}[2]$

$$(\pi_{\theta}[1], \pi_{\theta}[2]) := \left(\frac{\exp(\theta)}{1 + \exp(\theta)}, \frac{1}{1 + \exp(\theta)}\right)$$
$$J(\theta) = 100 \cdot \pi_{\theta}[1] + 1 \cdot \pi_{\theta}[2]$$

 θ^{\star}

 ∞

34

$$(\pi_{\theta}[1], \pi_{\theta}[2]) := \left(\frac{\exp(\theta)}{1 + \exp(\theta)}, \frac{1}{1 + \exp(\theta)}\right)$$

 $J(\theta) = 100 \cdot \pi_{\theta}[1] + 1 \cdot \pi_{\theta}[2]$

 θ^{\star}

)

34

 θ^{\star}

34

Gradient: $J'(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$

Gradient: $J'(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$ Exact PG: $\theta^{k+1} = \theta^k + \eta \frac{99 \exp(\theta^k)}{(1 + \exp(\theta^k))^2}$

Gradient:
$$J'(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$$

Exact PG: $\theta^{k+1} = \theta^k + \eta \frac{99 \exp(\theta^k)}{(1 + \exp(\theta^k))^2}$

i.e., vanilla GA moves to $\theta = \infty$ with smaller and smaller steps, since $J'(\theta) \to 0$ as $\theta \to \infty$

Gradient:
$$J'(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$$

Exact PG: $\theta^{k+1} = \theta^k + \eta \frac{99 \exp(\theta^k)}{(1 + \exp(\theta^k))^2}$

i.e., vanilla GA moves to $\theta = \infty$ with smaller and smaller steps, since $J'(\theta) \to 0$ as $\theta \to \infty$

Fisher information scalar: $F_{\theta} = \frac{\exp(\theta)}{(1 + \exp(\theta))^2}$

Gradient:
$$J'(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$$

Exact PG: $\theta^{k+1} = \theta^k + \eta \frac{99 \exp(\theta^k)}{(1 + \exp(\theta^k))^2}$

i.e., vanilla GA moves to $\theta = \infty$ with smaller and smaller steps, since $J'(\theta) \to 0$ as $\theta \to \infty$

Fisher information scalar: $F_{\theta} = \frac{\exp(\theta)}{(1 + \exp(\theta))^2}$

NPG:
$$\theta^{k+1} = \theta^k + \eta \frac{J'(\theta^k)}{F_{\theta^k}}$$

Gradient:
$$J'(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$$

Exact PG: $\theta^{k+1} = \theta^k + \eta \frac{99 \exp(\theta^k)}{(1 + \exp(\theta^k))^2}$

i.e., vanilla GA moves to $\theta = \infty$ with smaller and smaller steps, since $J'(\theta) \to 0$ as $\theta \to \infty$

Fisher information scalar: $F_{\theta} = \frac{\exp(\theta)}{(1 + \exp(\theta))^2}$

NPG: $\theta^{k+1} = \theta^k + \eta \frac{J'(\theta^k)}{F_{\theta^k}} = \theta_t + \eta \cdot 99$

Gradient:
$$J'(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$$

Exact PG: $\theta^{k+1} = \theta^k + \eta \frac{99 \exp(\theta^k)}{(1 + \exp(\theta^k))^2}$

i.e., vanilla GA moves to $\theta = \infty$ with smaller and smaller steps, since $J'(\theta) \to 0$ as $\theta \to \infty$

Fisher information scalar: $F_{\theta} = \frac{\exp(\theta)}{(1 + \exp(\theta))^2}$

NPG:
$$\theta^{k+1} = \theta^k + \eta \frac{J'(\theta^k)}{F_{\theta^k}} = \theta_t + \eta \cdot 99$$

NPG moves to $\theta = \infty$ much more quickly (for a fixed η)

