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Today

• Recap

• The Performance Difference Lemma

• Algorithms:

• Conservative Policy Iteration (CPI)

• Trust Region Policy Optimization (TRPO)

• The Natural Policy Gradient (NPG)

• Proximal Policy Optimization (PPO)
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Optimization Objective
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•Consider a parameterize class of policies: 
	  
(why do we make it stochastic?)  

•Objective , where 

	  

•Policy Gradient Descent: 
	

{πθ(a |s) |θ ∈ ℝd}

max
θ

J(θ)

J(θ) := Es0∼μ [Vπθ(s0)] = Eτ∼ρπθ [
H−1

∑
h=0

r(sh, ah)]
θk+1 = θk + η∇J(θk)



REINFORCE: A Policy Gradient Algorithm

5

•Let  be the probability of a trajectory , i.e. 
	  

•Let  be the cumulative reward on trajectory , i.e. 


•Our objective function is: 
	 

•The REINFORCE Policy Gradient expression: 

	

ρθ(τ) τ = {s0, a0, s1, a1, …, sH−1, aH−1}
ρθ(τ) = μ(s0)πθ(a0 |s0)P(s1 |s0, a0)…P(sH−1 |sH−2, aH−2)πθ(aH−1 |sH−1)

R(τ) τ R(τ) :=
H−1

∑
h=0

r(sh, ah)

J(θ) = Eτ∼ρθ[R(τ)]

∇θJ(θ) := &τ∼ρθ (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)



Proof
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•From the likelihood ratio method, we have:  
	  

•We have: 



 
 

 

∇θJ(θ) := &τ∼ρθ [∇θln ρθ(τ) R(τ)]

∇θln ρθ(τ) = ∇θ(ln μ(s0) + ln πθ(a0 |s0) + ln P(s1 |s0, a0) + …)
= ∇θ(ln πθ(a0 |s0) + ln πθ(a1 |s1)…)

= (
H−1

∑
h=0

∇θln πθ(ah |sh))



PG with REINFORCE:

1. Initialize , parameters: 

2. For k = 0, … : 


1. Obtain a trajectory  

Set  

2. Update: 

θ0 η1, η2, …

τ ∼ ρθk

∇̃ θJ(θk) =
H−1

∑
h=0

∇ln πθk(ah |sh)R(τ)

θk+1 = θk + ηk ∇̃ θJ(θk)
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Other PG formulas  
(that are lower variance for sampling)

∇J(θ) = &τ∼ρθ (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)

= &τ∼ρθ

H−1

∑
h=0 (∇θln πθ(ah |sh)

H−1

∑
t=h

rt)
= &τ∼ρθ [

H−1

∑
h=0

∇θln πθ(ah |sh)Qπθ
h (sh, ah)]

Intuition: Change action distribution at  only affects rewards later on…h
HW: You will show these simplified version are also valid PG expressions
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With a “baseline” function:

∇J(θ) = &τ∼ρθ [
H−1

∑
h=0

∇θln πθ(ah |sh)(Qπθ
h (sh, ah) − bh(sh))]

= &τ∼ρθ

H−1

∑
h=0

∇θln πθ(ah |sh)(
H−1

∑
t=h

rt − bh(sh))

For any function only of the state, , we have:bh : S → R
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This is (basically) the method of control variates.

• For the proof, it was helpful to note: 
&x∼Pθ [∇log Pθ(x)c] = 0
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The Advantage Function (finite horizon)

Vπ
h (s) = & [

H−1

∑
τ=h

r(sτ, aτ) sh = s] Qπ
h (s, a) = & [

H−1

∑
τ=h

r(sτ, aτ) (sh, ah) = (s, a)]
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The Advantage Function (finite horizon)

Vπ
h (s) = & [

H−1

∑
τ=h

r(sτ, aτ) sh = s] Qπ
h (s, a) = & [

H−1

∑
τ=h

r(sτ, aτ) (sh, ah) = (s, a)]
• The Advantage function is defined as: 
	 Aπ

h (s, a) = Qπ
h (s, a) − Vπ

h (s)
• We have that: 
	 Ea∼π(⋅|s)[Aπ

h (s, a) s, h] = ∑
a

π(a |s)Aπ
h (s, a) = ??

• What do we know about ? Aπ⋆
h (s, a)

• For the discounted case, Aπ(s, a) = Qπ(s, a) − Vπ(s)
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The Advantage-based PG: 

∇J(θ) = &τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)(Qπθ
h (sh, ah) − bh(sh))]
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The Advantage-based PG: 

• The second step follows by choosing .bh(s) = Vπ
h (s)
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The Advantage-based PG: 

• The second step follows by choosing .bh(s) = Vπ
h (s)

• In practice, the most common approach is to use  as an estimate of .bh(s) Vπ
h (s)

= &τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)Aπθ
h (sh, ah)]

∇J(θ) = &τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)(Qπθ
h (sh, ah) − bh(sh))]
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(M=1) PG with a Learned Baseline:
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Note that regardless of our choice of , we still get unbiased gradient estimates.b̃h(s)



(minibatch) PG with a Learned Baseline:
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• Recap++

• Softmax Example

• The Performance Difference Lemma

• Algorithms:

• Trust Region Policy Optimization (TRPO)

• The Natural Policy Gradient (NPG)

• Proximal Policy Optimization (PPO)



Policy Parameterizations

1. Softmax linear Policy

Feature vector , and 
parameter 

ϕ(s, a) ∈ ℝd

θ ∈ ℝd

πθ(a |s) = exp(θ⊤ϕ(s, a))
∑a′ 

exp(θ⊤ϕ(s, a′ ))

2. Neural Policy:

Neural network  
fθ : S × A ↦ ℝ

πθ(a |s) = exp( fθ(s, a))
∑a′ 

exp( fθ(s, a′ ))

Recall that we consider parameterized policy πθ( ⋅ |s) ∈ Δ(A), ∀s
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Softmax Policy Properties
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Precisely,  

 if and only if  

θ
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Softmax Policy Properties

πθ(a |s) = exp(θ⊤ϕ(s, a))
∑a′ 

exp(θ⊤ϕ(s, a′ ))

17

Two properties (see HW):
•  More probable actions have features which align with .  
Precisely,  

 if and only if  

θ

πθ(a |s) ≥ πθ(a′ |s) θ⊤ϕ(s, a) ≥ θ⊤ϕ(s, a′ )

•The gradient of the log policy is: 
∇θlog(πθ(a |s)) = ϕ(s, a) − &a′ ∼πθ(⋅|s)[ϕ(s, a′ )]

• We have: 

	  

 

	            

∇J(θ) = &τ∼ρθ [
H−1

∑
h=0

Qπθ
h (sh, ah)(ϕ(sh, ah) − &a′ ∼πθ(⋅|sh)[ϕ(sh, a′ )])]

= &τ∼ρθ [
H−1

∑
h=0

Aπθ
h (sh, ah)ϕ(sh, ah)]

An
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Fitted Policy Iteration: 
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• Initialization: choose a policy  and a sample size 

• For 


1. Fitted Policy Evaluation: Using  sampled trajectories 
, obtain approximation 


2. Policy Improvement: set 

π0 : S ↦ A N
k = 0,1,…

N
τ1, …τN ∼ ρπk Q̂πk ≈ Qπk

πk+1
h (s) := arg max

a
Q̂πk(s, a, h)



Fitted Policy Iteration: Advantage Version 
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• Initialization: choose a policy  and a sample size 

• For 


1. Fitted Policy Evaluation: Using  sampled trajectories 
, obtain approximation 


2. Policy Improvement: set 

π0 : S ↦ A N
k = 0,1,…

N
τ1, …τN ∼ ρπk ̂Aπk ≈ Aπk

πk+1
h (s) := arg max

a
̂Aπk(s, a, h)
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•Let  be the distribution of trajectories from starting state  acting under .  
(we are making the starting distribution explicit now).

ρπ̃,s s π

Py(z)
S
S

-
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The Performance Difference Lemma (PDL)
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•Let  be the distribution of trajectories from starting state  acting under .  
(we are making the starting distribution explicit now).

ρπ̃,s s π

•For any two policies  and  and any state , 

	  

 

π π̃ s

Vπ̃(s) − Vπ(s) = H ⋅ &τ∼ρπ̃,s [
H−1

∑
h=0

Aπ
h (sh, ah)]

Comments:
•Helps us think about error analysis, instabilities of fitted PI, and sub-optimality.
•Helps to understand algorithm design (TRPO, NPG, PPO)
•This also motivates the use of “local” methods (e.g. policy gradient descent)
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•Suppose at some state ,  choose an action which has a negative advantage for .s πk+1 πk

•Since , we expect some error.Ã k(s, a, h) ≈ Aπk

h (s, a, h)
• In the worst case, let us consider the most negative advantage:  

 Δ∞ := min
s∈S

Aπk

h (s, πk+1(s))

•Here, if , it is possible that degradation may occur:Δ∞ < 0
	 	 Vπk+1(s0) ≥ Vπk(s0)−H ⋅ |Δ∞ |
 
Proof sketch:
•Fitted PI does not enforce that the trajectory distributions,  and , be close to each other.ρπk ρπk+1

•Suppose the  has full support on these worst case states   
(i.e. we get trapped at this state where we made a bad choice).

ρπk+1 s
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• What’s bad about fitted PI? 
even if we pick better actions “on average”, the trajectory updates are unstable 

• Can we fix this? 
Let’s look at an incremental policy updating approach.

A trust region formulation for policy update:

1. Init 

2. For  :   

try to approximately solve: 

	  

	             s.t.  is “close” to 

3. Return 

π0
k = 0,…K

θk+1 = arg max
θ

&s0,…sH−1∼ρπk [
H−1

∑
h=0

&ah∼πθ(sh)A
πk(sh, ah)]

ρθ ρθk

πK
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• What’s bad about fitted PI? 
even if we pick better actions “on average”, the trajectory updates are unstable 

• Can we fix this? 
Let’s look at an incremental policy updating approach.

A trust region formulation for policy update:

•How should we define “close”?

1. Init 

2. For  :   

try to approximately solve: 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3. Return 
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θk+1 = arg max
θ

&s0,…sH−1∼ρπk [
H−1

∑
h=0

&ah∼πθ(sh)A
πk(sh, ah)]

ρθ ρθk

πK



KL-divergence: measures the distance between two distributions

Given two distributions , where , 

KL Divergence is defined as:

P & Q P ∈ Δ(X), Q ∈ Δ(X)

KL(P |Q) = &x∼P [ln P(x)
Q(x) ]
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KL Divergence is defined as:

P & Q P ∈ Δ(X), Q ∈ Δ(X)

KL(P |Q) = &x∼P [ln P(x)
Q(x) ]

Examples: 

If , then Q = P KL(P |Q) = KL(Q |P) = 0

If , then P = 5(μ1, σ2I), Q = 5(μ2, σ2I) KL(P |Q) = 1
2σ2 ∥μ1 − μ2∥2

Fact: 
, and being  if and only if KL(P |Q) ≥ 0 0 P = Q
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1. Init 

2. For  :  

	  

	 	 s.t. 


3. Return 

π0
k = 0,…K

θk+1 = arg max
θ

&s0,…sH−1∼ρπk [
H−1

∑
h=0

&ah∼πθ(sh)A
πk(sh, ah)]

KL (ρπk |ρπθ) ≤ δ
πK
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• We want to maximize local advantage against ,  
but we want the new policy to be close to  (in the KL sense)


• How do we implement this with sampled trajectories?)

πθk

πθk

Trust Region Policy Optimization (TRPO)



How do we implement TRPO with samples?

1. Initialize staring policy , samples size M

2. For  : 


1. [A-Evaluation Subroutine]  
Using M sampled trajectories,  ,  



2. Solve the following optimization problem to obtain : 

 

 

s.t. 


π0
k = 0,…K

τ1, …τM ∼ ρπk

Ã k(s, a) ≈ Aπk
h (s, a)

πk+1

max
θ

M

∑
m=1

H−1

∑
h=0

&a∼πθ(sm
h ) Ã k(sm

h , a)

M

∑
m=1

H−1

∑
h=0

ln
πθk

(am
h |sm

h )
πθ(am

h |sm
h ) ≤ δ

27



Today
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• Recap++

• Softmax Example

• The Performance Difference Lemma

• Algorithms:

• Trust Region Policy Optimization (TRPO)

• The Natural Policy Gradient (NPG)

• Proximal Policy Optimization (PPO)



TRPO is locally equivalent to the NPG

max
θ

&s0,…sH−1∼ρπk [
H−1

∑
h=0

&ah∼πθ(sh)A
πk(sh, ah)]

s.t. KL (ρπk |ρπθ) ≤ δ

Intuition: maximize local adv subject 
to being incremental (in KL);

TRPO at iteration k:
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TRPO is locally equivalent to the NPG

max
θ

!s0,…sH−1∼ρπk [
H−1

∑
h=0

!ah∼πθ(sh)A
πk(sh, ah)]

s.t. KL (ρπk |ρπθ) ≤ δ

First-order Taylor expansion at θk

second-order Taylor expansion at θk

max
θ

∇θJ(πθk)⊤(θ − θk)
s.t. (θ − θk)⊤Fθk(θ − θk) ≤ δ

(Where  is the “Fisher Information Matrix”)Fθk

Intuition: maximize local adv subject 
to being incremental (in KL);

TRPO at iteration k:
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1. Init 

2. For  :  

	  

	  s.t. 

3. Return 

π0
k = 0,…K

θk+1 = arg max
θ

∇θJ(πθk)⊤(θ − θk)
(θ − θk)⊤Fθk(θ − θk) ≤ δ

πK

30

NPG: A “leading order” equivalent program to TRPO:



1. Init 

2. For  :  

	  

	  s.t. 

3. Return 

π0
k = 0,…K

θk+1 = arg max
θ

∇θJ(πθk)⊤(θ − θk)
(θ − θk)⊤Fθk(θ − θk) ≤ δ

πK
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NPG: A “leading order” equivalent program to TRPO:

• Where  is the gradient at  and 

•  is (basically) the Fisher information matrix at , defined as:  
	  
 

 	     

∇θJ(πθk) θk

Fθ θ ∈ ℝd

Fθ := !τ∼ρθ [∇θln ρθ(τ)(∇θln ρθ(τ))⊤] ∈ ℝd×d

= !τ∼ρθ [
H−1

∑
h=0

∇θln πθ(ah |sh)(∇θln πθ(ah |sh))⊤]



There is a closed form update:
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There is a closed form update:

Linear objective and quadratic convex constraint, we can solve it optimally!
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There is a closed form update:

Linear objective and quadratic convex constraint, we can solve it optimally!
Indeed this gives us:

θk+1 = θk + ηF−1
θk ∇θJ(πθk)
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2. For  :  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There is a closed form update:

Linear objective and quadratic convex constraint, we can solve it optimally!
Indeed this gives us:

θk+1 = θk + ηF−1
θk ∇θJ(πθk)

Where η = δ
∇θJ(πθk)⊤F−1

θk ∇θJ(πθk)
31

1. Init 

2. For  :  

	  

	  s.t. 

3. Return 

π0
k = 0,…K

θk+1 = arg max
θ
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Summary:

Feedback: 

bit.ly/3RHtlxy
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Attendance: 
bit.ly/3RcTC9T

1. Variance Reduction: with baselines

2. Perf. Diff Lemma/ TRPO/ NPG

KL divergence



1. Init 

2. For  : 

• Estimate PG 


• Estimate Fisher info-matrix: 


• Natural Gradient Ascent:   

3. Return 

π0
k = 0,…K

∇θJ(πθk)

Fθk = !τ∼ρθk [
H−1

∑
h=0

∇ln πθk(ah |sh)(∇ln πθk(ah |sh))⊤]
θk+1 = θk + η ̂Fθk

−1 ̂∇θJ(πθk)
πK
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An Implementation: Sample Based NPG



1. Init 

2. For  : 

• Estimate PG 


• Estimate Fisher info-matrix: 


• Natural Gradient Ascent:   

3. Return 

π0
k = 0,…K

∇θJ(πθk)

Fθk = !τ∼ρθk [
H−1

∑
h=0

∇ln πθk(ah |sh)(∇ln πθk(ah |sh))⊤]
θk+1 = θk + η ̂Fθk

−1 ̂∇θJ(πθk)
πK

33

An Implementation: Sample Based NPG

(We will implement it in HW4 on Cartpole)



Example of Natural Gradient on 1-d problem: 2 actions, 1 state

(πθ[1], πθ[2]) := ( exp(θ)
1 + exp(θ) , 1

1 + exp(θ) )
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]
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