
Trust Region Policy Optimization 
& The Natural Policy Gradient 

 
Lucas Janson and Sham Kakade 
CS/Stat 184: Introduction to Reinforcement Learning  

Fall 2023

1

Today

• Recap

• The Performance Difference Lemma

• Algorithms:

• Conservative Policy Iteration (CPI)

• Trust Region Policy Optimization (TRPO)

• The Natural Policy Gradient (NPG)

• Proximal Policy Optimization (PPO)

2

~Ethics Lecture Mon !

-

Recap++

3

Optimization Objective

4

•Consider a parameterize class of policies: 
	  
(why do we make it stochastic?)  

•Objective , where 

	  

•Policy Gradient Descent: 
	

{πθ(a |s) |θ ∈ ℝd}

max
θ

J(θ)

J(θ) := Es0∼μ [Vπθ(s0)] = Eτ∼ρπθ [
H−1

∑
h=0

r(sh, ah)]
θk+1 = θk + η∇J(θk)

REINFORCE: A Policy Gradient Algorithm

5

•Let be the probability of a trajectory , i.e. 
	  

•Let be the cumulative reward on trajectory , i.e.

•Our objective function is: 
	

•The REINFORCE Policy Gradient expression: 

	

ρθ(τ) τ = {s0, a0, s1, a1, …, sH−1, aH−1}
ρθ(τ) = μ(s0)πθ(a0 |s0)P(s1 |s0, a0)…P(sH−1 |sH−2, aH−2)πθ(aH−1 |sH−1)

R(τ) τ R(τ) :=
H−1

∑
h=0

r(sh, ah)

J(θ) = Eτ∼ρθ[R(τ)]

∇θJ(θ) := &τ∼ρθ (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)

Proof

6

•From the likelihood ratio method, we have:  
	  

•We have: 

 
 

 

∇θJ(θ) := &τ∼ρθ [∇θln ρθ(τ) R(τ)]

∇θln ρθ(τ) = ∇θ(ln μ(s0) + ln πθ(a0 |s0) + ln P(s1 |s0, a0) + …)
= ∇θ(ln πθ(a0 |s0) + ln πθ(a1 |s1)…)

= (
H−1

∑
h=0

∇θln πθ(ah |sh))

PG with REINFORCE:

1. Initialize , parameters:

2. For k = 0, … :

1. Obtain a trajectory  

Set  

2. Update:

θ0 η1, η2, …

τ ∼ ρθk

∇̃ θJ(θk) =
H−1

∑
h=0

∇ln πθk(ah |sh)R(τ)

θk+1 = θk + ηk ∇̃ θJ(θk)

7

Other PG formulas  
(that are lower variance for sampling)

∇J(θ) = &τ∼ρθ (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)

= &τ∼ρθ

H−1

∑
h=0 (∇θln πθ(ah |sh)

H−1

∑
t=h

rt)
= &τ∼ρθ [

H−1

∑
h=0

∇θln πθ(ah |sh)Qπθ
h (sh, ah)]

Intuition: Change action distribution at only affects rewards later on…h
HW: You will show these simplified version are also valid PG expressions

8

With a “baseline” function:

∇J(θ) = &τ∼ρθ [
H−1

∑
h=0

∇θln πθ(ah |sh)(Qπθ
h (sh, ah) − bh(sh))]

= &τ∼ρθ

H−1

∑
h=0

∇θln πθ(ah |sh)(
H−1

∑
t=h

rt − bh(sh))

For any function only of the state, , we have:bh : S → R

9

This is (basically) the method of control variates.

• For the proof, it was helpful to note: 
&x∼Pθ [∇log Pθ(x)c] = 0

O
I
se

2V [Pf()
X

11

-EPI
f

-Po(x)lPa(x)XP(X)
↑ (d-M ~=2 IPOLX

The Advantage Function (finite horizon)

Vπ
h (s) = & [

H−1

∑
τ=h

r(sτ, aτ) sh = s] Qπ
h (s, a) = & [

H−1

∑
τ=h

r(sτ, aτ) (sh, ah) = (s, a)]

10

The Advantage Function (finite horizon)

Vπ
h (s) = & [

H−1

∑
τ=h

r(sτ, aτ) sh = s] Qπ
h (s, a) = & [

H−1

∑
τ=h

r(sτ, aτ) (sh, ah) = (s, a)]
• The Advantage function is defined as: 
	 Aπ

h (s, a) = Qπ
h (s, a) − Vπ

h (s)

10

The Advantage Function (finite horizon)

Vπ
h (s) = & [

H−1

∑
τ=h

r(sτ, aτ) sh = s] Qπ
h (s, a) = & [

H−1

∑
τ=h

r(sτ, aτ) (sh, ah) = (s, a)]
• The Advantage function is defined as: 
	 Aπ

h (s, a) = Qπ
h (s, a) − Vπ

h (s)
• We have that: 
	 Ea∼π(⋅|s)[Aπ

h (s, a) s, h] = ∑
a

π(a |s)Aπ
h (s, a) = ??

10

O

The Advantage Function (finite horizon)

Vπ
h (s) = & [

H−1

∑
τ=h

r(sτ, aτ) sh = s] Qπ
h (s, a) = & [

H−1

∑
τ=h

r(sτ, aτ) (sh, ah) = (s, a)]
• The Advantage function is defined as: 
	 Aπ

h (s, a) = Qπ
h (s, a) − Vπ

h (s)
• We have that: 
	 Ea∼π(⋅|s)[Aπ

h (s, a) s, h] = ∑
a

π(a |s)Aπ
h (s, a) = ??

• What do we know about ? Aπ⋆
h (s, a)

10

Y
,

a

A
* (S

,

a) = 0

ift it is optimal
.

The Advantage Function (finite horizon)

Vπ
h (s) = & [

H−1

∑
τ=h

r(sτ, aτ) sh = s] Qπ
h (s, a) = & [

H−1

∑
τ=h

r(sτ, aτ) (sh, ah) = (s, a)]
• The Advantage function is defined as: 
	 Aπ

h (s, a) = Qπ
h (s, a) − Vπ

h (s)
• We have that: 
	 Ea∼π(⋅|s)[Aπ

h (s, a) s, h] = ∑
a

π(a |s)Aπ
h (s, a) = ??

• What do we know about ? Aπ⋆
h (s, a)

• For the discounted case, Aπ(s, a) = Qπ(s, a) − Vπ(s)
10

The Advantage-based PG:

∇J(θ) = &τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)(Qπθ
h (sh, ah) − bh(sh))]

11

The Advantage-based PG:

= &τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)Aπθ
h (sh, ah)]

∇J(θ) = &τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)(Qπθ
h (sh, ah) − bh(sh))]

11

The Advantage-based PG:

• The second step follows by choosing .bh(s) = Vπ
h (s)

= &τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)Aπθ
h (sh, ah)]

∇J(θ) = &τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)(Qπθ
h (sh, ah) − bh(sh))]

11

The Advantage-based PG:

• The second step follows by choosing .bh(s) = Vπ
h (s)

• In practice, the most common approach is to use as an estimate of .bh(s) Vπ
h (s)

= &τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)Aπθ
h (sh, ah)]

∇J(θ) = &τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)(Qπθ
h (sh, ah) − bh(sh))]

11

(M=1) PG with a Learned Baseline:

12

(M=1) PG with a Learned Baseline:

1. Initialize , parameters: θ0 η1, η2, …

12

(M=1) PG with a Learned Baseline:

1. Initialize , parameters: θ0 η1, η2, …
2. For k = 0, … :

12

(M=1) PG with a Learned Baseline:

1. Initialize , parameters: θ0 η1, η2, …
2. For k = 0, … :

1. Sup. Learning: Using trajectories sampled under , estimate a baseline  N πθk b̃h
b̃(s) ≈ Vθk

h (s)

12

(M=1) PG with a Learned Baseline:

1. Initialize , parameters: θ0 η1, η2, …
2. For k = 0, … :

1. Sup. Learning: Using trajectories sampled under , estimate a baseline  N πθk b̃h
b̃(s) ≈ Vθk

h (s)
2. Obtain a trajectory  

Set  

τ ∼ ρθk

∇̃ θJ(θk) =
H−1

∑
h=0

∇ln πθk(ah |sh)(Rh(τ) − b̃(sh))

12

(M=1) PG with a Learned Baseline:

1. Initialize , parameters: θ0 η1, η2, …
2. For k = 0, … :

1. Sup. Learning: Using trajectories sampled under , estimate a baseline  N πθk b̃h
b̃(s) ≈ Vθk

h (s)
2. Obtain a trajectory  

Set  

τ ∼ ρθk

∇̃ θJ(θk) =
H−1

∑
h=0

∇ln πθk(ah |sh)(Rh(τ) − b̃(sh))
3. Update: θk+1 = θk + ηk ∇̃ θJ(θk)

12

(M=1) PG with a Learned Baseline:

1. Initialize , parameters: θ0 η1, η2, …
2. For k = 0, … :

1. Sup. Learning: Using trajectories sampled under , estimate a baseline  N πθk b̃h
b̃(s) ≈ Vθk

h (s)
2. Obtain a trajectory  

Set  

τ ∼ ρθk

∇̃ θJ(θk) =
H−1

∑
h=0

∇ln πθk(ah |sh)(Rh(τ) − b̃(sh))
3. Update: θk+1 = θk + ηk ∇̃ θJ(θk)

12

Note that regardless of our choice of , we still get unbiased gradient estimates.b̃h(s)

(minibatch) PG with a Learned Baseline:

13

(minibatch) PG with a Learned Baseline:

1. Initialize , parameters: θ0 η1, η2, …
2. For k = 0, … :

1. Sup. Learning: Using trajectories sampled under , estimate a baseline  N πθk b̃h
b̃(s) ≈ Vθk

h (s)

13

(minibatch) PG with a Learned Baseline:

1. Initialize , parameters: θ0 η1, η2, …
2. For k = 0, … :

1. Sup. Learning: Using trajectories sampled under , estimate a baseline  N πθk b̃h
b̃(s) ≈ Vθk

h (s)
2. Obtain M trajectories  

Set  

τ1, …τM ∼ ρθk

∇̃ θJ(θk) = 1
M

M

∑
m=1

H−1

∑
h=0

∇ln πθk(am
h |sm

h)(Rh(τm) − b̃(sh))

13

(minibatch) PG with a Learned Baseline:

1. Initialize , parameters: θ0 η1, η2, …
2. For k = 0, … :

1. Sup. Learning: Using trajectories sampled under , estimate a baseline  N πθk b̃h
b̃(s) ≈ Vθk

h (s)
2. Obtain M trajectories  

Set  

τ1, …τM ∼ ρθk

∇̃ θJ(θk) = 1
M

M

∑
m=1

H−1

∑
h=0

∇ln πθk(am
h |sm

h)(Rh(τm) − b̃(sh))
3. Update: θk+1 = θk + ηk ∇̃ θJ(θk)

13

w
-

An(Sn
, Un)

Today:

14

Today

15

• Recap++

• Softmax Example

• The Performance Difference Lemma

• Algorithms:

• Trust Region Policy Optimization (TRPO)

• The Natural Policy Gradient (NPG)

• Proximal Policy Optimization (PPO)

Policy Parameterizations

1. Softmax linear Policy

Feature vector , and
parameter

ϕ(s, a) ∈ ℝd

θ ∈ ℝd

πθ(a |s) = exp(θ⊤ϕ(s, a))
∑a′

exp(θ⊤ϕ(s, a′))

2. Neural Policy:

Neural network
fθ : S × A ↦ ℝ

πθ(a |s) = exp(fθ(s, a))
∑a′

exp(fθ(s, a′))

Recall that we consider parameterized policy πθ(⋅ |s) ∈ Δ(A), ∀s

16

Softmax Policy Properties

πθ(a |s) = exp(θ⊤ϕ(s, a))
∑a′

exp(θ⊤ϕ(s, a′))

17

Softmax Policy Properties

πθ(a |s) = exp(θ⊤ϕ(s, a))
∑a′

exp(θ⊤ϕ(s, a′))

17

Two properties (see HW):

Softmax Policy Properties

πθ(a |s) = exp(θ⊤ϕ(s, a))
∑a′

exp(θ⊤ϕ(s, a′))

17

Two properties (see HW):
• More probable actions have features which align with .  
Precisely,  

 if and only if  

θ

πθ(a |s) ≥ πθ(a′ |s) θ⊤ϕ(s, a) ≥ θ⊤ϕ(s, a′)

Softmax Policy Properties

πθ(a |s) = exp(θ⊤ϕ(s, a))
∑a′

exp(θ⊤ϕ(s, a′))

17

Two properties (see HW):
• More probable actions have features which align with .  
Precisely,  

 if and only if  

θ

πθ(a |s) ≥ πθ(a′ |s) θ⊤ϕ(s, a) ≥ θ⊤ϕ(s, a′)

•The gradient of the log policy is: 
∇θlog(πθ(a |s)) = ϕ(s, a) − &a′ ∼πθ(⋅|s)[ϕ(s, a′)]
- ->

Softmax Policy Properties

πθ(a |s) = exp(θ⊤ϕ(s, a))
∑a′

exp(θ⊤ϕ(s, a′))

17

Two properties (see HW):
• More probable actions have features which align with .  
Precisely,  

 if and only if  

θ

πθ(a |s) ≥ πθ(a′ |s) θ⊤ϕ(s, a) ≥ θ⊤ϕ(s, a′)

•The gradient of the log policy is: 
∇θlog(πθ(a |s)) = ϕ(s, a) − &a′ ∼πθ(⋅|s)[ϕ(s, a′)]

• We have: 

	  

 

	

∇J(θ) = &τ∼ρθ [
H−1

∑
h=0

Qπθ
h (sh, ah)(ϕ(sh, ah) − &a′ ∼πθ(⋅|sh)[ϕ(sh, a′)])]

= &τ∼ρθ [
H−1

∑
h=0

Aπθ
h (sh, ah)ϕ(sh, ah)]

An
** (Su

,
au)

-
->

Today

18

• Recap++

• Softmax Example

• The Performance Difference Lemma

• Algorithms:

• Trust Region Policy Optimization (TRPO)

• The Natural Policy Gradient (NPG)

• Proximal Policy Optimization (PPO)

Fitted Policy Iteration:

19

• Initialization: choose a policy and a sample size

• For

1. Fitted Policy Evaluation: Using sampled trajectories
, obtain approximation

2. Policy Improvement: set

π0 : S ↦ A N
k = 0,1,…

N
τ1, …τN ∼ ρπk Q̂πk ≈ Qπk

πk+1
h (s) := arg max

a
Q̂πk(s, a, h)

Fitted Policy Iteration: Advantage Version

20

• Initialization: choose a policy and a sample size

• For

1. Fitted Policy Evaluation: Using sampled trajectories
, obtain approximation

2. Policy Improvement: set

π0 : S ↦ A N
k = 0,1,…

N
τ1, …τN ∼ ρπk ̂Aπk ≈ Aπk

πk+1
h (s) := arg max

a
̂Aπk(s, a, h)

The Performance Difference Lemma (PDL)

21

The Performance Difference Lemma (PDL)

21

•Let be the distribution of trajectories from starting state acting under .  
(we are making the starting distribution explicit now).

ρπ̃,s s π

Py(z)
S
S

-

The Performance Difference Lemma (PDL)

21

•Let be the distribution of trajectories from starting state acting under .  
(we are making the starting distribution explicit now).

ρπ̃,s s π

•For any two policies and and any state , 

	  

 

π π̃ s

Vπ̃(s) − Vπ(s) = H ⋅ &τ∼ρπ̃,s [
H−1

∑
h=0

Aπ
h (sh, ah)]

The Performance Difference Lemma (PDL)

21

•Let be the distribution of trajectories from starting state acting under .  
(we are making the starting distribution explicit now).

ρπ̃,s s π

•For any two policies and and any state , 

	  

 

π π̃ s

Vπ̃(s) − Vπ(s) = H ⋅ &τ∼ρπ̃,s [
H−1

∑
h=0

Aπ
h (sh, ah)]

Comments:

⑧

The Performance Difference Lemma (PDL)

21

•Let be the distribution of trajectories from starting state acting under .  
(we are making the starting distribution explicit now).

ρπ̃,s s π

•For any two policies and and any state , 

	  

 

π π̃ s

Vπ̃(s) − Vπ(s) = H ⋅ &τ∼ρπ̃,s [
H−1

∑
h=0

Aπ
h (sh, ah)]

Comments:
•Helps us think about error analysis, instabilities of fitted PI, and sub-optimality.

The Performance Difference Lemma (PDL)

21

•Let be the distribution of trajectories from starting state acting under .  
(we are making the starting distribution explicit now).

ρπ̃,s s π

•For any two policies and and any state , 

	  

 

π π̃ s

Vπ̃(s) − Vπ(s) = H ⋅ &τ∼ρπ̃,s [
H−1

∑
h=0

Aπ
h (sh, ah)]

Comments:
•Helps us think about error analysis, instabilities of fitted PI, and sub-optimality.
•Helps to understand algorithm design (TRPO, NPG, PPO)

The Performance Difference Lemma (PDL)

21

•Let be the distribution of trajectories from starting state acting under .  
(we are making the starting distribution explicit now).

ρπ̃,s s π

•For any two policies and and any state , 

	  

 

π π̃ s

Vπ̃(s) − Vπ(s) = H ⋅ &τ∼ρπ̃,s [
H−1

∑
h=0

Aπ
h (sh, ah)]

Comments:
•Helps us think about error analysis, instabilities of fitted PI, and sub-optimality.
•Helps to understand algorithm design (TRPO, NPG, PPO)
•This also motivates the use of “local” methods (e.g. policy gradient descent)

Back to Approximate Policy Iteration (API)

22

Back to Approximate Policy Iteration (API)

22

•Suppose gets updated to . How much worse could be?πk πk+1 πk+1

Back to Approximate Policy Iteration (API)

22

•Suppose gets updated to . How much worse could be?πk πk+1 πk+1

•Suppose at some state , choose an action which has a negative advantage for .s πk+1 πk

Back to Approximate Policy Iteration (API)

22

•Suppose gets updated to . How much worse could be?πk πk+1 πk+1

•Suppose at some state , choose an action which has a negative advantage for .s πk+1 πk

•Since , we expect some error.Ã k(s, a, h) ≈ Aπk

h (s, a, h)

Back to Approximate Policy Iteration (API)

22

•Suppose gets updated to . How much worse could be?πk πk+1 πk+1

•Suppose at some state , choose an action which has a negative advantage for .s πk+1 πk

•Since , we expect some error.Ã k(s, a, h) ≈ Aπk

h (s, a, h)
• In the worst case, let us consider the most negative advantage:  

 Δ∞ := min
s∈S

Aπk

h (s, πk+1(s))

Back to Approximate Policy Iteration (API)

22

•Suppose gets updated to . How much worse could be?πk πk+1 πk+1

•Suppose at some state , choose an action which has a negative advantage for .s πk+1 πk

•Since , we expect some error.Ã k(s, a, h) ≈ Aπk

h (s, a, h)
• In the worst case, let us consider the most negative advantage:  

 Δ∞ := min
s∈S

Aπk

h (s, πk+1(s))

•Here, if , it is possible that degradation may occur:Δ∞ < 0

Back to Approximate Policy Iteration (API)

22

•Suppose gets updated to . How much worse could be?πk πk+1 πk+1

•Suppose at some state , choose an action which has a negative advantage for .s πk+1 πk

•Since , we expect some error.Ã k(s, a, h) ≈ Aπk

h (s, a, h)
• In the worst case, let us consider the most negative advantage:  

 Δ∞ := min
s∈S

Aπk

h (s, πk+1(s))

•Here, if , it is possible that degradation may occur:Δ∞ < 0
	 	 Vπk+1(s0) ≥ Vπk(s0)−H ⋅ |Δ∞ |

Back to Approximate Policy Iteration (API)

22

•Suppose gets updated to . How much worse could be?πk πk+1 πk+1

•Suppose at some state , choose an action which has a negative advantage for .s πk+1 πk

•Since , we expect some error.Ã k(s, a, h) ≈ Aπk

h (s, a, h)
• In the worst case, let us consider the most negative advantage:  

 Δ∞ := min
s∈S

Aπk

h (s, πk+1(s))

•Here, if , it is possible that degradation may occur:Δ∞ < 0
	 	 Vπk+1(s0) ≥ Vπk(s0)−H ⋅ |Δ∞ |
 
Proof sketch:

Back to Approximate Policy Iteration (API)

22

•Suppose gets updated to . How much worse could be?πk πk+1 πk+1

•Suppose at some state , choose an action which has a negative advantage for .s πk+1 πk

•Since , we expect some error.Ã k(s, a, h) ≈ Aπk

h (s, a, h)
• In the worst case, let us consider the most negative advantage:  

 Δ∞ := min
s∈S

Aπk

h (s, πk+1(s))

•Here, if , it is possible that degradation may occur:Δ∞ < 0
	 	 Vπk+1(s0) ≥ Vπk(s0)−H ⋅ |Δ∞ |
 
Proof sketch:
•Fitted PI does not enforce that the trajectory distributions, and , be close to each other.ρπk ρπk+1

Back to Approximate Policy Iteration (API)

22

•Suppose gets updated to . How much worse could be?πk πk+1 πk+1

•Suppose at some state , choose an action which has a negative advantage for .s πk+1 πk

•Since , we expect some error.Ã k(s, a, h) ≈ Aπk

h (s, a, h)
• In the worst case, let us consider the most negative advantage:  

 Δ∞ := min
s∈S

Aπk

h (s, πk+1(s))

•Here, if , it is possible that degradation may occur:Δ∞ < 0
	 	 Vπk+1(s0) ≥ Vπk(s0)−H ⋅ |Δ∞ |
 
Proof sketch:
•Fitted PI does not enforce that the trajectory distributions, and , be close to each other.ρπk ρπk+1

•Suppose the has full support on these worst case states  
(i.e. we get trapped at this state where we made a bad choice).

ρπk+1 s

Today

23

• Recap++

• Softmax Example

• The Performance Difference Lemma

• Algorithms:

• Trust Region Policy Optimization (TRPO)

• The Natural Policy Gradient (NPG)

• Proximal Policy Optimization (PPO)

24

A trust region formulation for policy update:

24

• What’s bad about fitted PI? 
even if we pick better actions “on average”, the trajectory updates are unstable

A trust region formulation for policy update:

24

• What’s bad about fitted PI? 
even if we pick better actions “on average”, the trajectory updates are unstable

• Can we fix this? 
Let’s look at an incremental policy updating approach.

A trust region formulation for policy update:

24

• What’s bad about fitted PI? 
even if we pick better actions “on average”, the trajectory updates are unstable

• Can we fix this? 
Let’s look at an incremental policy updating approach.

A trust region formulation for policy update:

1. Init

2. For :  

try to approximately solve: 

	  

	 s.t. is “close” to

3. Return

π0
k = 0,…K

θk+1 = arg max
θ

&s0,…sH−1∼ρπk [
H−1

∑
h=0

&ah∼πθ(sh)A
πk(sh, ah)]

ρθ ρθk

πK

24

• What’s bad about fitted PI? 
even if we pick better actions “on average”, the trajectory updates are unstable

• Can we fix this? 
Let’s look at an incremental policy updating approach.

A trust region formulation for policy update:

•How should we define “close”?

1. Init

2. For :  

try to approximately solve: 

	  

	 s.t. is “close” to

3. Return

π0
k = 0,…K

θk+1 = arg max
θ

&s0,…sH−1∼ρπk [
H−1

∑
h=0

&ah∼πθ(sh)A
πk(sh, ah)]

ρθ ρθk

πK

KL-divergence: measures the distance between two distributions

Given two distributions , where ,

KL Divergence is defined as:

P & Q P ∈ Δ(X), Q ∈ Δ(X)

KL(P |Q) = &x∼P [ln P(x)
Q(x)]

25

KL-divergence: measures the distance between two distributions

Given two distributions , where ,

KL Divergence is defined as:

P & Q P ∈ Δ(X), Q ∈ Δ(X)

KL(P |Q) = &x∼P [ln P(x)
Q(x)]

Examples:

If , then Q = P KL(P |Q) = KL(Q |P) = 0

25

KL-divergence: measures the distance between two distributions

Given two distributions , where ,

KL Divergence is defined as:

P & Q P ∈ Δ(X), Q ∈ Δ(X)

KL(P |Q) = &x∼P [ln P(x)
Q(x)]

Examples:

If , then Q = P KL(P |Q) = KL(Q |P) = 0

If , then P = 5(μ1, σ2I), Q = 5(μ2, σ2I) KL(P |Q) = 1
2σ2 ∥μ1 − μ2∥2

25

KL-divergence: measures the distance between two distributions

Given two distributions , where ,

KL Divergence is defined as:

P & Q P ∈ Δ(X), Q ∈ Δ(X)

KL(P |Q) = &x∼P [ln P(x)
Q(x)]

Examples:

If , then Q = P KL(P |Q) = KL(Q |P) = 0

If , then P = 5(μ1, σ2I), Q = 5(μ2, σ2I) KL(P |Q) = 1
2σ2 ∥μ1 − μ2∥2

Fact:
, and being if and only if KL(P |Q) ≥ 0 0 P = Q

25

1. Init

2. For :  

	  

	 	 s.t.

3. Return

π0
k = 0,…K

θk+1 = arg max
θ

&s0,…sH−1∼ρπk [
H−1

∑
h=0

&ah∼πθ(sh)A
πk(sh, ah)]

KL (ρπk |ρπθ) ≤ δ
πK

26

• We want to maximize local advantage against ,  
but we want the new policy to be close to (in the KL sense)

• How do we implement this with sampled trajectories?)

πθk

πθk

Trust Region Policy Optimization (TRPO)

How do we implement TRPO with samples?

1. Initialize staring policy , samples size M

2. For :

1. [A-Evaluation Subroutine]  
Using M sampled trajectories, ,  

2. Solve the following optimization problem to obtain : 

 

 

s.t.

π0
k = 0,…K

τ1, …τM ∼ ρπk

Ã k(s, a) ≈ Aπk
h (s, a)

πk+1

max
θ

M

∑
m=1

H−1

∑
h=0

&a∼πθ(sm
h) Ã k(sm

h , a)

M

∑
m=1

H−1

∑
h=0

ln
πθk

(am
h |sm

h)
πθ(am

h |sm
h) ≤ δ

27

Today

28

• Recap++

• Softmax Example

• The Performance Difference Lemma

• Algorithms:

• Trust Region Policy Optimization (TRPO)

• The Natural Policy Gradient (NPG)

• Proximal Policy Optimization (PPO)

TRPO is locally equivalent to the NPG

max
θ

&s0,…sH−1∼ρπk [
H−1

∑
h=0

&ah∼πθ(sh)A
πk(sh, ah)]

s.t. KL (ρπk |ρπθ) ≤ δ

Intuition: maximize local adv subject
to being incremental (in KL);

TRPO at iteration k:

29

TRPO is locally equivalent to the NPG

max
θ

&s0,…sH−1∼ρπk [
H−1

∑
h=0

&ah∼πθ(sh)A
πk(sh, ah)]

s.t. KL (ρπk |ρπθ) ≤ δ

First-order Taylor expansion at θk

second-order Taylor expansion at θk

Intuition: maximize local adv subject
to being incremental (in KL);

TRPO at iteration k:

29

TRPO is locally equivalent to the NPG

max
θ

&s0,…sH−1∼ρπk [
H−1

∑
h=0

&ah∼πθ(sh)A
πk(sh, ah)]

s.t. KL (ρπk |ρπθ) ≤ δ

First-order Taylor expansion at θk

second-order Taylor expansion at θk

Intuition: maximize local adv subject
to being incremental (in KL);

TRPO at iteration k:

29

TRPO is locally equivalent to the NPG

max
θ

&s0,…sH−1∼ρπk [
H−1

∑
h=0

&ah∼πθ(sh)A
πk(sh, ah)]

s.t. KL (ρπk |ρπθ) ≤ δ

First-order Taylor expansion at θk

second-order Taylor expansion at θk

max
θ

∇θJ(πθk)⊤(θ − θk)Intuition: maximize local adv subject
to being incremental (in KL);

TRPO at iteration k:

29

TRPO is locally equivalent to the NPG

max
θ

&s0,…sH−1∼ρπk [
H−1

∑
h=0

&ah∼πθ(sh)A
πk(sh, ah)]

s.t. KL (ρπk |ρπθ) ≤ δ

First-order Taylor expansion at θk

second-order Taylor expansion at θk

max
θ

∇θJ(πθk)⊤(θ − θk)
s.t. (θ − θk)⊤Fθk(θ − θk) ≤ δ

Intuition: maximize local adv subject
to being incremental (in KL);

TRPO at iteration k:

29

TRPO is locally equivalent to the NPG

max
θ

!s0,…sH−1∼ρπk [
H−1

∑
h=0

!ah∼πθ(sh)A
πk(sh, ah)]

s.t. KL (ρπk |ρπθ) ≤ δ

First-order Taylor expansion at θk

second-order Taylor expansion at θk

max
θ

∇θJ(πθk)⊤(θ − θk)
s.t. (θ − θk)⊤Fθk(θ − θk) ≤ δ

(Where is the “Fisher Information Matrix”)Fθk

Intuition: maximize local adv subject
to being incremental (in KL);

TRPO at iteration k:

29

1. Init

2. For :  

	  

	 s.t.

3. Return

π0
k = 0,…K

θk+1 = arg max
θ

∇θJ(πθk)⊤(θ − θk)
(θ − θk)⊤Fθk(θ − θk) ≤ δ

πK

30

NPG: A “leading order” equivalent program to TRPO:

1. Init

2. For :  

	  

	 s.t.

3. Return

π0
k = 0,…K

θk+1 = arg max
θ

∇θJ(πθk)⊤(θ − θk)
(θ − θk)⊤Fθk(θ − θk) ≤ δ

πK

30

NPG: A “leading order” equivalent program to TRPO:

• Where is the gradient at and

• is (basically) the Fisher information matrix at , defined as:  
	  
 

 	

∇θJ(πθk) θk

Fθ θ ∈ ℝd

Fθ := !τ∼ρθ [∇θln ρθ(τ)(∇θln ρθ(τ))⊤] ∈ ℝd×d

= !τ∼ρθ [
H−1

∑
h=0

∇θln πθ(ah |sh)(∇θln πθ(ah |sh))⊤]

There is a closed form update:

31

1. Init

2. For :  

	  

	 s.t.

3. Return

π0
k = 0,…K

θk+1 = arg max
θ

∇θJ(πθk)⊤(θ − θk)
(θ − θk)⊤Fθk(θ − θk) ≤ δ

πK

There is a closed form update:

Linear objective and quadratic convex constraint, we can solve it optimally!

31

1. Init

2. For :  

	  

	 s.t.

3. Return

π0
k = 0,…K

θk+1 = arg max
θ

∇θJ(πθk)⊤(θ − θk)
(θ − θk)⊤Fθk(θ − θk) ≤ δ

πK

There is a closed form update:

Linear objective and quadratic convex constraint, we can solve it optimally!
Indeed this gives us:

θk+1 = θk + ηF−1
θk ∇θJ(πθk)

31

1. Init

2. For :  

	  

	 s.t.

3. Return

π0
k = 0,…K

θk+1 = arg max
θ

∇θJ(πθk)⊤(θ − θk)
(θ − θk)⊤Fθk(θ − θk) ≤ δ

πK

There is a closed form update:

Linear objective and quadratic convex constraint, we can solve it optimally!
Indeed this gives us:

θk+1 = θk + ηF−1
θk ∇θJ(πθk)

Where η = δ
∇θJ(πθk)⊤F−1

θk ∇θJ(πθk)
31

1. Init

2. For :  

	  

	 s.t.

3. Return

π0
k = 0,…K

θk+1 = arg max
θ

∇θJ(πθk)⊤(θ − θk)
(θ − θk)⊤Fθk(θ − θk) ≤ δ

πK

Summary:

Feedback:

bit.ly/3RHtlxy

32

Attendance: 
bit.ly/3RcTC9T

1. Variance Reduction: with baselines

2. Perf. Diff Lemma/ TRPO/ NPG

KL divergence

1. Init

2. For :

• Estimate PG

• Estimate Fisher info-matrix:

• Natural Gradient Ascent:

3. Return

π0
k = 0,…K

∇θJ(πθk)

Fθk = !τ∼ρθk [
H−1

∑
h=0

∇ln πθk(ah |sh)(∇ln πθk(ah |sh))⊤]
θk+1 = θk + η ̂Fθk

−1 ̂∇θJ(πθk)
πK

33

An Implementation: Sample Based NPG

1. Init

2. For :

• Estimate PG

• Estimate Fisher info-matrix:

• Natural Gradient Ascent:

3. Return

π0
k = 0,…K

∇θJ(πθk)

Fθk = !τ∼ρθk [
H−1

∑
h=0

∇ln πθk(ah |sh)(∇ln πθk(ah |sh))⊤]
θk+1 = θk + η ̂Fθk

−1 ̂∇θJ(πθk)
πK

33

An Implementation: Sample Based NPG

(We will implement it in HW4 on Cartpole)

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

34

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

34

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Every possible policy is a
point on the line segment,
parameterized by .θ

34

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Every possible policy is a
point on the line segment,
parameterized by .θ

34

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Gradient: J′ (θ) = 99 exp(θ)
(1 + exp(θ))2

Every possible policy is a
point on the line segment,
parameterized by .θ

34

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆
Exact PG: θk+1 = θk + η

99 exp(θk)
(1 + exp(θk))2

Gradient: J′ (θ) = 99 exp(θ)
(1 + exp(θ))2

Every possible policy is a
point on the line segment,
parameterized by .θ

34

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆
Exact PG: θk+1 = θk + η

99 exp(θk)
(1 + exp(θk))2

Gradient: J′ (θ) = 99 exp(θ)
(1 + exp(θ))2

i.e., vanilla GA moves to with smaller
and smaller steps, since as

θ = ∞
J′ (θ) → 0 θ → ∞

Every possible policy is a
point on the line segment,
parameterized by .θ

34

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Fisher information scalar: Fθ = exp(θ)
(1 + exp(θ))2

Exact PG: θk+1 = θk + η
99 exp(θk)

(1 + exp(θk))2

Gradient: J′ (θ) = 99 exp(θ)
(1 + exp(θ))2

i.e., vanilla GA moves to with smaller
and smaller steps, since as

θ = ∞
J′ (θ) → 0 θ → ∞

Every possible policy is a
point on the line segment,
parameterized by .θ

34

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Fisher information scalar: Fθ = exp(θ)
(1 + exp(θ))2

NPG: θk+1 = θk + η
J′ (θk)
Fθk

Exact PG: θk+1 = θk + η
99 exp(θk)

(1 + exp(θk))2

Gradient: J′ (θ) = 99 exp(θ)
(1 + exp(θ))2

i.e., vanilla GA moves to with smaller
and smaller steps, since as

θ = ∞
J′ (θ) → 0 θ → ∞

Every possible policy is a
point on the line segment,
parameterized by .θ

34

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Fisher information scalar: Fθ = exp(θ)
(1 + exp(θ))2

NPG: θk+1 = θk + η
J′ (θk)
Fθk

Exact PG: θk+1 = θk + η
99 exp(θk)

(1 + exp(θk))2

Gradient: J′ (θ) = 99 exp(θ)
(1 + exp(θ))2

i.e., vanilla GA moves to with smaller
and smaller steps, since as

θ = ∞
J′ (θ) → 0 θ → ∞

Every possible policy is a
point on the line segment,
parameterized by .θ

= θt + η ⋅ 99

34

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

NPG moves to much more quickly  
(for a fixed)

θ = ∞
η

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ) , 1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Fisher information scalar: Fθ = exp(θ)
(1 + exp(θ))2

NPG: θk+1 = θk + η
J′ (θk)
Fθk

Exact PG: θk+1 = θk + η
99 exp(θk)

(1 + exp(θk))2

Gradient: J′ (θ) = 99 exp(θ)
(1 + exp(θ))2

i.e., vanilla GA moves to with smaller
and smaller steps, since as

θ = ∞
J′ (θ) → 0 θ → ∞

Every possible policy is a
point on the line segment,
parameterized by .θ

= θt + η ⋅ 99

34

