Trust Region Policy Optimization \& The Natural Policy Gradient

Lucas Janson and Sham Kakade

CS/Stat 184: Introduction to Reinforcement Learning Fall 2023

Today

Ethics Lecture Mon!

- Recap
- The Performance Difference Lemma
- Algorithms:
- Conservative Policy Iteration (CPI)
- Trust Region Policy Optimization (TRPO)
- The Natural Policy Gradient (NPG)
- Proximal Policy Optimization (PPO)

Recap++

Optimization Objective

- Consider a parameterize class of policies:

$$
\left\{\pi_{\theta}(a \mid s) \mid \theta \in \mathbb{R}^{d}\right\}
$$

(why do we make it stochastic?)
. Objective $\max J(\theta)$, where

$$
J(\theta):=E_{s_{0} \sim \mu}\left[V^{\pi_{\theta}}\left(s_{0}\right)\right]=E_{\tau \sim \rho_{\pi_{\theta}}}\left[\sum_{h=0}^{H-1} r\left(s_{h}, a_{h}\right)\right]
$$

-Policy Gradient Descent:

$$
\theta^{k+1}=\theta^{k}+\eta \nabla J\left(\theta^{k}\right)
$$

REINFORCE: A Policy Gradient Algorithm

- Let $\rho_{\theta}(\tau)$ be the probability of a trajectory $\tau=\left\{s_{0}, a_{0}, s_{1}, a_{1}, \ldots, s_{H-1}, a_{H-1}\right\}$, i.e.

$$
\rho_{\theta}(\tau)=\mu\left(s_{0}\right) \pi_{\theta}\left(a_{0} \mid s_{0}\right) P\left(s_{1} \mid s_{0}, a_{0}\right) \ldots P\left(s_{H-1} \mid s_{H-2}, a_{H-2}\right) \pi_{\theta}\left(a_{H-1} \mid s_{H-1}\right)
$$

. Let $R(\tau)$ be the cumulative reward on trajectory τ, i.e. $R(\tau):=\sum_{h=0}^{H-1} r\left(s_{h}, a_{h}\right)$

- Our objective function is:

$$
J(\theta)=E_{\tau \sim \rho_{\theta}}[R(\tau)]
$$

-The REINFORCE Policy Gradient expression:

$$
\nabla_{\theta} J(\theta):=\mathbb{E}_{\tau \sim \rho_{\theta}}\left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\right) R(\tau)\right]
$$

Proof

-From the likelihood ratio method, we have:

$$
\nabla_{\theta} J(\theta):=\mathbb{E}_{\tau \sim \rho_{\theta}}\left[\nabla_{\theta} \ln \rho_{\theta}(\tau) R(\tau)\right]
$$

-We have:

$$
\begin{aligned}
\nabla_{\theta} \ln \rho_{\theta}(\tau) & =\nabla_{\theta}\left(\ln \mu\left(s_{0}\right)+\ln \pi_{\theta}\left(a_{0} \mid s_{0}\right)+\ln P\left(s_{1} \mid s_{0}, a_{0}\right)+\ldots\right) \\
& =\nabla_{\theta}\left(\ln \pi_{\theta}\left(a_{0} \mid s_{0}\right)+\ln \pi_{\theta}\left(a_{1} \mid s_{1}\right) \ldots\right) \\
& =\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\right)
\end{aligned}
$$

PG with REINFORCE:

1. Initialize θ_{0}, parameters: $\eta^{1}, \eta^{2}, \ldots$
2. For $\mathrm{k}=0, \ldots$:
3. Obtain a trajectory $\tau \sim \rho_{\theta^{k}}$

$$
\text { Set } \widetilde{\nabla}_{\theta} J\left(\theta^{k}\right)=\sum_{h=0}^{H-1} \nabla \ln \pi_{\theta^{k}}\left(a_{h} \mid s_{h}\right) R(\tau)
$$

2. Update: $\theta^{k+1}=\theta^{k}+\eta^{k} \widetilde{\nabla}_{\theta} J\left(\theta^{k}\right)$

Other PG formulas

(that are lower variance for sampling)

$$
\begin{aligned}
\nabla J(\theta) & =\mathbb{E}_{\tau \sim \rho_{\theta}}\left[\left(\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\right) R(\tau)\right] \\
& =\mathbb{E}_{\tau \sim \rho_{\theta}}\left[\sum_{h=0}^{H-1}\left(\nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right) \sum_{t=h}^{H-1} r_{t}\right)\right] \\
& =\mathbb{E}_{\tau \sim \rho_{\theta}}\left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right) Q_{h}^{\pi_{\theta}}\left(s_{h}, a_{h}\right)\right]
\end{aligned}
$$

Intuition: Change action distribution at h only affects rewards later on...
HW: You will show these simplified version are also valid PG expressions

With a "baseline" function:
For any function only of the state, $b_{h}: S \rightarrow R$, we have:

$$
\begin{aligned}
\nabla J(\theta) & =\mathbb{E}_{\tau \sim \rho_{\theta}}\left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\left(Q_{h}^{\pi_{\theta}}\left(s_{h}, a_{h}\right)-b_{h}\left(s_{h}\right)\right)\right] \\
& =\mathbb{E}_{\tau \sim \rho_{\theta}}\left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\left(\sum_{t=h}^{H-1} r_{t}-b_{h}\left(s_{h}\right)\right)\right]
\end{aligned}
$$

This is (basically) the method of control variates.

- For the proof, it was helpful to note: $\simeq C \sum_{x} P_{\theta}(x) V$ leg $P_{\theta}(x)$

$$
\mathbb{E}_{x \sim P_{\theta}}\left[\nabla \log P_{\theta}(x) c\right]=0
$$

The Advantage Function (finite horizon)

$$
V_{h}^{\pi}(s)=\mathbb{E}\left[\sum_{\tau=h}^{H-1} r\left(s_{\tau}, a_{\tau}\right) \mid s_{h}=s\right] \quad Q_{h}^{\pi}(s, a)=\mathbb{E}\left[\sum_{\tau=h}^{H-1} r\left(s_{\tau}, a_{\tau}\right) \mid\left(s_{h}, a_{h}\right)=(s, a)\right]
$$

The Advantage Function (finite horizon)

$$
V_{h}^{\pi}(s)=\mathbb{E}\left[\sum_{\tau=h}^{H-1} r\left(s_{\tau}, a_{\tau}\right) \mid s_{h}=s\right] \quad Q_{h}^{\pi}(s, a)=\mathbb{E}\left[\sum_{\tau=h}^{H-1} r\left(s_{\tau}, a_{\tau}\right) \mid\left(s_{h}, a_{h}\right)=(s, a)\right]
$$

- The Advantage function is defined as:

$$
A_{h}^{\pi}(s, a)=Q_{h}^{\pi}(s, a)-V_{h}^{\pi}(s)
$$

The Advantage Function (finite horizon)

$$
V_{h}^{\pi}(s)=\mathbb{E}\left[\sum_{\tau=h}^{H-1} r\left(s_{\tau}, a_{\tau}\right) \mid s_{h}=s\right] \quad Q_{h}^{\pi}(s, a)=\mathbb{E}\left[\sum_{\tau=h}^{H-1} r\left(s_{\tau}, a_{\tau}\right) \mid\left(s_{h}, a_{h}\right)=(s, a)\right]
$$

- The Advantage function is defined as:

$$
A_{h}^{\pi}(s, a)=Q_{h}^{\pi}(s, a)-V_{h}^{\pi}(s)
$$

- We have that:

$$
E_{a \sim \pi(\cdot \mid s)}\left[A_{h}^{\pi}(s, a) \mid s, h\right]=\sum_{a} \pi(a \mid s) A_{h}^{\pi}(s, a)=? ?
$$

The Advantage Function (finite horizon)

$$
V_{h}^{\pi}(s)=\mathbb{E}\left[\sum_{\tau=h}^{H-1} r\left(s_{\tau}, a_{\tau}\right) \mid s_{h}=s\right] \quad Q_{h}^{\pi}(s, a)=\mathbb{E}\left[\sum_{\tau=h}^{H-1} r\left(s_{\tau}, a_{\tau}\right) \mid\left(s_{h}, a_{h}\right)=(s, a)\right]
$$

- The Advantage function is defined as:

$$
A_{h}^{\pi}(s, a)=Q_{h}^{\pi}(s, a)-V_{h}^{\pi}(s)
$$

- We have that:

$$
E_{a \sim \pi(\cdot \mid s)}\left[A_{h}^{\pi}(s, a) \mid s, h\right]=\sum_{a} \pi(a \mid s) A_{h}^{\pi}(s, a)=? ?
$$

$$
\forall \leq a
$$

- What do we know about $A_{h}^{\pi^{\star}}(s, a)$?
 $\leqslant 0$

$$
\text { iff } \pi \text { is optimal. }
$$

The Advantage Function (finite horizon)

$$
V_{h}^{\pi}(s)=\mathbb{E}\left[\sum_{\tau=h}^{H-1} r\left(s_{\tau}, a_{\tau}\right) \mid s_{h}=s\right] \quad Q_{h}^{\pi}(s, a)=\mathbb{E}\left[\sum_{\tau=h}^{H-1} r\left(s_{\tau}, a_{\tau}\right) \mid\left(s_{h}, a_{h}\right)=(s, a)\right]
$$

- The Advantage function is defined as:

$$
A_{h}^{\pi}(s, a)=Q_{h}^{\pi}(s, a)-V_{h}^{\pi}(s)
$$

- We have that:

$$
E_{a \sim \pi(\cdot \mid s)}\left[A_{h}^{\pi}(s, a) \mid s, h\right]=\sum_{a} \pi(a \mid s) A_{h}^{\pi}(s, a)=? ?
$$

- What do we know about $A_{h}^{\pi^{\star}}(s, a)$?
- For the discounted case, $A^{\pi}(s, a)=Q^{\pi}(s, a)-V^{\pi}(s)$

The Advantage-based PG:

$$
\nabla J(\theta)=\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\left(Q_{h}^{\pi_{\theta}}\left(s_{h}, a_{h}\right)-b_{h}\left(s_{h}\right)\right)\right]
$$

The Advantage-based PG:

$$
\begin{aligned}
\nabla J(\theta) & =\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\left(Q_{h}^{\pi_{\theta}}\left(s_{h}, a_{h}\right)-b_{h}\left(s_{h}\right)\right)\right] \\
& =\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right) A_{h}^{\pi_{\theta}}\left(s_{h}, a_{h}\right)\right]
\end{aligned}
$$

The Advantage-based PG:

$$
\begin{aligned}
\nabla J(\theta) & =\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\left(Q_{h}^{\pi_{\theta}}\left(s_{h}, a_{h}\right)-b_{h}\left(s_{h}\right)\right)\right] \\
& =\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right) A_{h}^{\pi_{\theta}}\left(s_{h}, a_{h}\right)\right]
\end{aligned}
$$

- The second step follows by choosing $b_{h}(s)=V_{h}^{\pi}(s)$.

The Advantage-based PG:

$$
\begin{aligned}
\nabla J(\theta) & =\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\left(Q_{h}^{\pi_{\theta}}\left(s_{h}, a_{h}\right)-b_{h}\left(s_{h}\right)\right)\right] \\
& =\mathbb{E}_{\tau \sim \rho_{\theta}(\tau)}\left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right) A_{h}^{\pi_{\theta}}\left(s_{h}, a_{h}\right)\right]
\end{aligned}
$$

- The second step follows by choosing $b_{h}(s)=V_{h}^{\pi}(s)$.
- In practice, the most common approach is to use $b_{h}(s)$ as an estimate of $V_{h}^{\pi}(s)$.

(M=1) PG with a Learned Baseline:

(M=1) PG with a Learned Baseline:

1. Initialize θ_{0}, parameters: $\eta_{1}, \eta_{2}, \ldots$

(M=1) PG with a Learned Baseline:

1. Initialize θ_{0}, parameters: $\eta_{1}, \eta_{2}, \ldots$
2. For $k=0, \ldots$:

(M=1) PG with a Learned Baseline:

1. Initialize θ_{0}, parameters: $\eta_{1}, \eta_{2}, \ldots$
2. For $\mathrm{k}=0, \ldots$:
3. Sup. Learning: Using N trajectories sampled under $\pi_{\theta^{k}}$, estimate a baseline \widetilde{b}_{h} $\widetilde{b}(s) \approx V_{h}^{\theta^{k}}(s)$

(M=1) PG with a Learned Baseline:

1. Initialize θ_{0}, parameters: $\eta_{1}, \eta_{2}, \ldots$
2. For $\mathrm{k}=0, \ldots$:
3. Sup. Learning: Using N trajectories sampled under $\pi_{\theta^{k}}$, estimate a baseline \widetilde{b}_{h} $\widetilde{b}(s) \approx V_{h}^{\theta^{k}}(s)$
4. Obtain a trajectory $\tau \sim \rho_{\theta^{k}}$

$$
\text { Set } \widetilde{\nabla}_{\theta} J\left(\theta^{k}\right)=\sum_{h=0}^{\dot{H}-1} \nabla \ln \pi_{\theta^{k}}\left(a_{h} \mid s_{h}\right)\left(R_{h}(\tau)-\widetilde{b}\left(s_{h}\right)\right)
$$

(M=1) PG with a Learned Baseline:

1. Initialize θ_{0}, parameters: $\eta_{1}, \eta_{2}, \ldots$
2. For $\mathrm{k}=0, \ldots$:
3. Sup. Learning: Using N trajectories sampled under $\pi_{\theta^{k}}$, estimate a baseline \widetilde{b}_{h} $\widetilde{b}(s) \approx V_{h}^{\theta^{k}}(s)$
4. Obtain a trajectory $\tau \sim \rho_{\theta^{k}}$

$$
\text { Set } \widetilde{\nabla}_{\theta} J\left(\theta^{k}\right)=\sum_{h=0}^{\dot{H-1}} \nabla \ln \pi_{\theta^{k}}\left(a_{h} \mid s_{h}\right)\left(R_{h}(\tau)-\widetilde{b}\left(s_{h}\right)\right)
$$

3. Update: $\theta^{k+1}=\theta^{k}+\eta^{k} \widetilde{\nabla}_{\theta} J\left(\theta^{k}\right)$

(M=1) PG with a Learned Baseline:

1. Initialize θ_{0}, parameters: $\eta_{1}, \eta_{2}, \ldots$
2. For $\mathrm{k}=0, \ldots$:
3. Sup. Learning: Using N trajectories sampled under $\pi_{\theta^{k}}$, estimate a baseline \widetilde{b}_{h} $\widetilde{b}(s) \approx V_{h}^{\theta^{k}}(s)$
4. Obtain a trajectory $\tau \sim \rho_{\theta^{k}}$

$$
\text { Set } \widetilde{\nabla}_{\theta} J\left(\theta^{k}\right)=\sum_{h=0}^{H-1} \nabla \ln \pi_{\theta^{k}}\left(a_{h} \mid s_{h}\right)\left(R_{h}(\tau)-\widetilde{b}\left(s_{h}\right)\right)
$$

3. Update: $\theta^{k+1}=\theta^{k}+\eta^{k} \widetilde{\nabla}_{\theta} J\left(\theta^{k}\right)$

Note that regardless of our choice of $\widetilde{b}_{h}(s)$, we still get unbiased gradient estimates.

(minibatch) PG with a Learned Baseline:

(minibatch) PG with a Learned Baseline:

1. Initialize θ_{0}, parameters: $\eta_{1}, \eta_{2}, \ldots$
2. For $\mathrm{k}=0, \ldots$:
3. Sup. Learning: Using N trajectories sampled under $\pi_{\theta^{k}}$, estimate a baseline \widetilde{b}_{h} $\widetilde{b}(s) \approx V_{h}^{\theta^{k}}(s)$

(minibatch) PG with a Learned Baseline:

1. Initialize θ_{0}, parameters: $\eta_{1}, \eta_{2}, \ldots$
2. For $\mathrm{k}=0, \ldots$:
3. Sup. Learning: Using N trajectories sampled under $\pi_{\theta^{k}}$, estimate a baseline \widetilde{b}_{h} $\widetilde{b}(s) \approx V_{h}^{\theta^{k}}(s)$
4. Obtain M trajectories $\tau_{1}, \ldots \tau_{M} \sim \rho_{\theta^{k}}$

$$
\text { Set } \widetilde{\nabla}_{\theta} J\left(\theta^{k}\right)=\frac{1}{M} \sum_{m=1}^{M} \sum_{h=0}^{H-1} \nabla \ln \pi_{\theta^{k}}\left(a_{h}^{m} \mid s_{h}^{m}\right)\left(R_{h}\left(\tau^{m}\right)-\widetilde{b}\left(s_{h}\right)\right)
$$

(minibatch) PG with a Learned Baseline:

1. Initialize θ_{0}, parameters: $\eta_{1}, \eta_{2}, \ldots$
2. For $\mathrm{k}=0, \ldots$:
3. Sup. Learning: Using N trajectories sampled under $\pi_{\theta^{k}}$, estimate a baseline \widetilde{b}_{h} $\widetilde{b}(s) \approx V_{h}^{\theta^{k}}(s)$
4. Obtain M trajectories $\tau_{1}, \ldots \tau_{M} \sim \rho_{\theta^{k}}$

Set $\widetilde{\nabla}_{\theta} J\left(\theta^{k}\right)=\frac{1}{M} \sum_{m=1}^{M} \sum_{h=0}^{H-1} \nabla \ln \pi_{\theta^{k}}\left(a_{h}^{m} \mid s_{h}^{m}\right)\left(R_{h}\left(\tau^{m}\right)-\widetilde{b}\left(s_{h}\right)\right)$
3. Update: $\theta^{k+1}=\theta^{k}+\eta^{k} \widetilde{\nabla}_{\theta} J\left(\theta^{k}\right)$

Today:

Today

- Recap++
- Softmax Example
- The Performance Difference Lemma
- Algorithms:
- Trust Region Policy Optimization (TRPO)
- The Natural Policy Gradient (NPG)
- Proximal Policy Optimization (PPO)

Policy Parameterizations

Recall that we consider parameterized policy $\pi_{\theta}(\cdot \mid s) \in \Delta(A), \forall s$

$$
\begin{array}{c|c}
\text { 1. Softmax linear Policy } & \text { 2. Neural Policy: } \\
\text { Feature vector } \phi(s, a) \in \mathbb{R}^{d} \text {, and } & \text { Neural network } \\
\text { parameter } \theta \in \mathbb{R}^{d} & f_{\theta}: S \times A \mapsto \mathbb{R} \\
\pi_{\theta}(a \mid s)=\frac{\exp \left(\theta^{\top} \phi(s, a)\right)}{\sum_{a^{\prime}} \exp \left(\theta^{\top} \phi\left(s, a^{\prime}\right)\right)} & \pi_{\theta}(a \mid s)=\frac{\exp \left(f_{\theta}(s, a)\right)}{\sum_{a^{\prime}} \exp \left(f_{\theta}\left(s, a^{\prime}\right)\right)}
\end{array}
$$

Softmax Policy Properties

$$
\pi_{\theta}(a \mid s)=\frac{\exp \left(\theta^{\top} \phi(s, a)\right)}{\sum_{a^{\prime}} \exp \left(\theta^{\top} \phi\left(s, a^{\prime}\right)\right)}
$$

Softmax Policy Properties

$$
\pi_{\theta}(a \mid s)=\frac{\exp \left(\theta^{\top} \phi(s, a)\right)}{\sum_{a^{\prime}} \exp \left(\theta^{\top} \phi\left(s, a^{\prime}\right)\right)}
$$

Two properties (see HW):

Softmax Policy Properties

$$
\pi_{\theta}(a \mid s)=\frac{\exp \left(\theta^{\top} \phi(s, a)\right)}{\sum_{a^{\prime}} \exp \left(\theta^{\top} \phi\left(s, a^{\prime}\right)\right)}
$$

Two properties (see HW):

- More probable actions have features which align with θ. Precisely,
$\pi_{\theta}(a \mid s) \geq \pi_{\theta}\left(a^{\prime} \mid s\right)$ if and only if $\theta^{\top} \phi(s, a) \geq \theta^{\top} \phi\left(s, a^{\prime}\right)$

Softmax Policy Properties

$$
\pi_{\theta}(a \mid s)=\frac{\exp \left(\theta^{\top} \phi(s, a)\right)}{\sum_{a^{\prime}} \exp \left(\theta^{\top} \phi\left(s, a^{\prime}\right)\right)}
$$

Two properties (see HW):

- More probable actions have features which align with θ. Precisely,
$\pi_{\theta}(a \mid s) \geq \pi_{\theta}\left(a^{\prime} \mid s\right)$ if and only if $\theta^{\top} \phi(s, a) \geq \theta^{\top} \phi\left(s, a^{\prime}\right)$
-The gradient of the log policy is:
$\nabla_{\theta} \log \left(\pi_{\theta}(a \mid s)\right)=\overrightarrow{\phi(s, a)-\mathbb{E}_{a^{\prime} \sim \pi_{\theta}(\cdot \mid s)}\left[\overrightarrow{\phi\left(s, a^{\prime}\right)}\right]}$

Softmax Policy Properties

$$
\pi_{\theta}(a \mid s)=\frac{\exp \left(\theta^{\top} \phi(s, a)\right)}{\sum_{a^{\prime}} \exp \left(\theta^{\top} \phi\left(s, a^{\prime}\right)\right)}
$$

Two properties (see HW):

- More probable actions have features which align with θ. Precisely,

$$
\pi_{\theta}(a \mid s) \geq \pi_{\theta}\left(a^{\prime} \mid s\right) \text { if and only if } \theta^{\top} \phi(s, a) \geq \theta^{\top} \phi\left(s, a^{\prime}\right)
$$

-The gradient of the log policy is:
$\nabla_{\theta} \log \left(\pi_{\theta}(a \mid s)\right)=\phi(s, a)-\mathbb{E}_{a^{\prime} \sim \pi_{\theta}(\cdot \mid s)}\left[\phi\left(s, a^{\prime}\right)\right]$

- We have:

$$
\begin{aligned}
\nabla J(\theta) & =\mathbb{E}_{\tau \sim \rho_{\theta}}\left[\sum_{h=0}^{H-1} Q_{h}^{\pi_{\theta}}\left(\delta_{h}, a_{h}\right)\left(\phi\left(s_{h}, a_{h}\right)-\mathbb{E}_{a^{\prime} \sim \pi_{\theta}\left(\cdot \mid s_{h}\right)}\left[\phi\left(s_{h}, a^{\prime}\right)\right]\right)\right] \\
& =\mathbb{E}_{\tau \sim \rho_{\theta}}\left[\sum_{h=0}^{H-1} A_{h}^{\pi_{\theta}}\left(s_{h}, a_{h}\right) \phi\left(s_{h}, a_{h}\right)\right]
\end{aligned}
$$

Today

- Recap++
- Softmax Example
- The Performance Difference Lemma
- Algorithms:
- Trust Region Policy Optimization (TRPO)
- The Natural Policy Gradient (NPG)
- Proximal Policy Optimization (PPO)

Fitted Policy Iteration:

- Initialization: choose a policy $\pi^{0}: S \mapsto A$ and a sample size N
- For $k=0,1, \ldots$

1. Fitted Policy Evaluation: Using N sampled trajectories
$\tau_{1}, \ldots \tau_{N} \sim \rho_{\pi^{k}}$, obtain approximation $\hat{Q}^{\pi^{k}} \approx Q^{\pi^{k}}$
2. Policy Improvement: set $\pi_{h}^{k+1}(s):=\arg \max \hat{Q}^{\pi^{k}}(s, a, h)$

Fitted Policy Iteration: Advantage Version

- Initialization: choose a policy $\pi^{0}: S \mapsto A$ and a sample size N
- For $k=0,1, \ldots$

1. Fitted Policy Evaluation: Using N sampled trajectories
$\tau_{1}, \ldots \tau_{N} \sim \rho_{\pi^{k}}$, obtain approximation $\hat{A}^{\pi^{k}} \approx A^{\pi^{k}}$
2. Policy Improvement: set $\pi_{h}^{k+1}(s):=\arg \max \hat{A}^{\pi^{k}}(s, a, h)$

The Performance Difference Lemma (PDL)

The Performance Difference Lemma (PDL)

- Let $\rho \frac{*}{\pi, s}$ be the distribution of trajectories from starting state s acting under π. (we are making the starting distribution explicit now).

The Performance Difference Lemma (PDL)

- Let $\rho_{\pi, s}$ be the distribution of trajectories from starting state s acting under π. (we are making the starting distribution explicit now).
- For any two policies π and $\tilde{\pi}$ and any state s,

$$
V^{\tilde{\pi}}(s)-V^{\pi}(s)=H \cdot \mathbb{E}_{\tau \sim \rho_{\tilde{\pi}, s}}\left[\sum_{h=0}^{H-1} A_{h}^{\pi}\left(s_{h}, a_{h}\right)\right]
$$

The Performance Difference Lemma (PDL)

- Let $\rho_{\pi, s}$ be the distribution of trajectories from starting state s acting under π. (we are making the starting distribution explicit now).
- For any two policies π and $\tilde{\pi}$ and any state s,

$$
V^{\tilde{\pi}}(s)-V^{\pi}(s)=\mathbb{E}_{\tau \sim \rho_{\tilde{\pi}, s}}\left[\sum_{h=0}^{H-1} A_{h}^{\pi}\left(s_{h}, a_{h}\right)\right]
$$

Comments:

The Performance Difference Lemma (PDL)

- Let $\rho_{\tilde{\pi}, S}$ be the distribution of trajectories from starting state s acting under π. (we are making the starting distribution explicit now).
- For any two policies π and $\widetilde{\pi}$ and any state s,

$$
V^{\tilde{\pi}}(s)-V^{\pi}(s)=H \cdot \mathbb{E}_{\tau \sim \rho_{\tilde{\pi}, s}}\left[\sum_{h=0}^{H-1} A_{h}^{\pi}\left(s_{h}, a_{h}\right)\right]
$$

Comments:

- Helps us think about error analysis, instabilities of fitted PI, and sub-optimality.

The Performance Difference Lemma (PDL)

- Let $\rho_{\tilde{\pi}, S}$ be the distribution of trajectories from starting state s acting under π. (we are making the starting distribution explicit now).
- For any two policies π and $\widetilde{\pi}$ and any state s,

$$
V^{\tilde{\pi}}(s)-V^{\pi}(s)=H \cdot \mathbb{E}_{\tau \sim \rho_{\tilde{\pi}, s}}\left[\sum_{h=0}^{H-1} A_{h}^{\pi}\left(s_{h}, a_{h}\right)\right]
$$

Comments:

- Helps us think about error analysis, instabilities of fitted PI, and sub-optimality.
- Helps to understand algorithm design (TRPO, NPG, PPO)

The Performance Difference Lemma (PDL)

- Let $\rho_{\widetilde{\pi}, s}$ be the distribution of trajectories from starting state s acting under π. (we are making the starting distribution explicit now).
- For any two policies π and $\tilde{\pi}$ and any state s,

$$
V^{\tilde{\pi}}(s)-V^{\pi}(s)=H \cdot \mathbb{E}_{\tau \sim \rho_{\tilde{\pi}, s}}\left[\sum_{h=0}^{H-1} A_{h}^{\pi}\left(s_{h}, a_{h}\right)\right]
$$

Comments:

- Helps us think about error analysis, instabilities of fitted PI, and sub-optimality.
- Helps to understand algorithm design (TRPO, NPG, PPO)
-This also motivates the use of "local" methods (e.g. policy gradient descent)

Back to Approximate Policy Iteration (API)

Back to Approximate Policy Iteration (API)

-Suppose π^{k} gets updated to π^{k+1}. How much worse could π^{k+1} be?

Back to Approximate Policy Iteration (API)

-Suppose π^{k} gets updated to π^{k+1}. How much worse could π^{k+1} be?

- Suppose at some state s, π^{k+1} choose an action which has a negative advantage for π^{k}.

Back to Approximate Policy Iteration (API)

-Suppose π^{k} gets updated to π^{k+1}. How much worse could π^{k+1} be?

- Suppose at some state s, π^{k+1} choose an action which has a negative advantage for π^{k}.
- Since $\widetilde{A^{k}}(s, a, h) \approx A_{h}^{\pi^{k}}(s, a, h)$, we expect some error.

Back to Approximate Policy Iteration (API)

-Suppose π^{k} gets updated to π^{k+1}. How much worse could π^{k+1} be?

- Suppose at some state s, π^{k+1} choose an action which has a negative advantage for π^{k}.
- Since $\widetilde{A}^{k}(s, a, h) \approx A_{h}^{\pi^{k}}(s, a, h)$, we expect some error.
- In the worst case, let us consider the most negative advantage:

$$
\Delta_{\infty}:=\min _{s \in S} A_{h}^{\pi^{k}}\left(s, \pi^{k+1}(s)\right)
$$

Back to Approximate Policy Iteration (API)

-Suppose π^{k} gets updated to π^{k+1}. How much worse could π^{k+1} be?

- Suppose at some state s, π^{k+1} choose an action which has a negative advantage for π^{k}.
- Since $A^{k}(s, a, h) \approx A_{h}^{\pi^{k}}(s, a, h)$, we expect some error.
\cdot In the worst case, let us consider the most negative advantage:

$$
\Delta_{\infty}:=\min _{s \in S} A_{h}^{\pi^{k}}\left(s, \pi^{k+1}(s)\right)
$$

- Here, if $\Delta_{\infty}<0$, it is possible that degradation may occur:

Back to Approximate Policy Iteration (API)

-Suppose π^{k} gets updated to π^{k+1}. How much worse could π^{k+1} be?

- Suppose at some state s, π^{k+1} choose an action which has a negative advantage for π^{k}.
- Since $A^{k}(s, a, h) \approx A_{h}^{\pi^{k}}(s, a, h)$, we expect some error.
- In the worst case, let us consider the most negative advantage:

$$
\Delta_{\infty}:=\min _{s \in S} A_{h}^{\pi^{k}}\left(s, \pi^{k+1}(s)\right)
$$

- Here, if $\Delta_{\infty}<0$, it is possible that degradation may occur:

$$
V^{\pi^{k+1}}\left(s_{0}\right) \geq V^{\pi^{k}}\left(s_{0}\right)-H \cdot\left|\Delta_{\infty}\right|
$$

Back to Approximate Policy Iteration (API)

-Suppose π^{k} gets updated to π^{k+1}. How much worse could π^{k+1} be?

- Suppose at some state s, π^{k+1} choose an action which has a negative advantage for π^{k}.
- Since $A^{k}(s, a, h) \approx A_{h}^{\pi^{k}}(s, a, h)$, we expect some error.
- In the worst case, let us consider the most negative advantage:

$$
\Delta_{\infty}:=\min _{s \in S} A_{h}^{\pi^{k}}\left(s, \pi^{k+1}(s)\right)
$$

- Here, if $\Delta_{\infty}<0$, it is possible that degradation may occur:

$$
V^{\pi^{k+1}}\left(s_{0}\right) \geq V^{\pi^{k}}\left(s_{0}\right)-H \cdot\left|\Delta_{\infty}\right|
$$

Proof sketch:

Back to Approximate Policy Iteration (API)

-Suppose π^{k} gets updated to π^{k+1}. How much worse could π^{k+1} be?

- Suppose at some state s, π^{k+1} choose an action which has a negative advantage for π^{k}.
- Since $\widetilde{A}^{k}(s, a, h) \approx A_{h}^{\pi^{k}}(s, a, h)$, we expect some error.
- In the worst case, let us consider the most negative advantage:

$$
\Delta_{\infty}:=\min _{s \in S} A_{h}^{\pi^{k}}\left(s, \pi^{k+1}(s)\right)
$$

- Here, if $\Delta_{\infty}<0$, it is possible that degradation may occur:

$$
V^{\pi^{k+1}}\left(s_{0}\right) \geq V^{\pi^{k}}\left(s_{0}\right)-H \cdot\left|\Delta_{\infty}\right|
$$

Proof sketch:
-Fitted PI does not enforce that the trajectory distributions, $\rho_{\pi^{k}}$ and $\rho_{\pi^{k+1}}$, be close to each other.

Back to Approximate Policy Iteration (API)

-Suppose π^{k} gets updated to π^{k+1}. How much worse could π^{k+1} be?

- Suppose at some state s, π^{k+1} choose an action which has a negative advantage for π^{k}.
- Since $\widetilde{A}^{k}(s, a, h) \approx A_{h}^{\pi^{k}}(s, a, h)$, we expect some error.
- In the worst case, let us consider the most negative advantage:

$$
\Delta_{\infty}:=\min _{s \in S} A_{h}^{\pi^{k}}\left(s, \pi^{k+1}(s)\right)
$$

- Here, if $\Delta_{\infty}<0$, it is possible that degradation may occur:

$$
V^{\pi^{k+1}}\left(s_{0}\right) \geq V^{\pi^{k}}\left(s_{0}\right)-H \cdot\left|\Delta_{\infty}\right|
$$

Proof sketch:
-Fitted PI does not enforce that the trajectory distributions, $\rho_{\pi^{k}}$ and $\rho_{\pi^{k+1}}$, be close to each other.

- Suppose the $\rho_{\pi^{k+1}}$ has full support on these worst case states s
(i.e. we get trapped at this state where we made a bad choice).

Today

- Recap++
- Softmax Example
- The Performance Difference Lemma
- Algorithms:
- Trust Region Policy Optimization (TRPO)
- The Natural Policy Gradient (NPG)
- Proximal Policy Optimization (PPO)

A trust region formulation for policy update:

A trust region formulation for policy update:

- What's bad about fitted PI?
even if we pick better actions "on average", the trajectory updates are unstable

A trust region formulation for policy update:

- What's bad about fitted PI?
even if we pick better actions "on average", the trajectory updates are unstable
- Can we fix this?

Let's look at an incremental policy updating approach.

A trust region formulation for policy update:

- What's bad about fitted PI?
even if we pick better actions "on average", the trajectory updates are unstable
- Can we fix this?

Let's look at an incremental policy updating approach.

1. Init π_{0}
2. For $k=0, \ldots K$:
try to approximately solve:

$$
\begin{aligned}
\theta^{k+1}= & \arg \max _{\theta} \mathbb{E}_{s_{0}, \ldots s_{H-1} \sim \rho_{\pi^{k}}}\left[\sum_{h=0}^{H-1} \mathbb{E}_{a_{h} \sim \pi_{\theta}\left(s_{h}\right)} A^{\pi^{k}}\left(s_{h}, a_{h}\right)\right] \\
& \text { s.t. } \rho_{\theta} \text { is "close" to } \rho_{\theta^{k}}
\end{aligned}
$$

3. Return π_{K}

A trust region formulation for policy update:

- What's bad about fitted PI?
even if we pick better actions "on average", the trajectory updates are unstable
- Can we fix this?

Let's look at an incremental policy updating approach.

1. Init π_{0}
2. For $k=0, \ldots K$:
try to approximately solve:

$$
\begin{aligned}
\theta^{k+1}= & \arg \max _{\theta} \mathbb{E}_{s_{0}, \ldots s_{H-1} \sim \rho_{\pi^{k}}}\left[\sum_{h=0}^{H-1} \mathbb{E}_{a_{h} \sim \pi_{\theta}\left(s_{h}\right)} A^{\pi^{k}}\left(s_{h}, a_{h}\right)\right] \\
& \text { s.t. } \rho_{\theta} \text { is "close" to } \rho_{\theta^{k}}
\end{aligned}
$$

3. Return π_{K}
-How should we define "close"?

KL-divergence: measures the distance between two distributions

Given two distributions $P \& Q$, where $P \in \Delta(X), Q \in \Delta(X)$,
KL Divergence is defined as:

$$
K L(P \mid Q)=\mathbb{E}_{x \sim P}\left[\ln \frac{P(x)}{Q(x)}\right]
$$

KL-divergence: measures the distance between two distributions

Given two distributions $P \& Q$, where $P \in \Delta(X), Q \in \Delta(X)$,
KL Divergence is defined as:

$$
K L(P \mid Q)=\mathbb{E}_{x \sim P}\left[\ln \frac{P(x)}{Q(x)}\right]
$$

Examples:

$$
\text { If } Q=P \text {, then } K L(P \mid Q)=K L(Q \mid P)=0
$$

KL-divergence: measures the distance between two distributions

Given two distributions $P \& Q$, where $P \in \Delta(X), Q \in \Delta(X)$,
KL Divergence is defined as:

$$
K L(P \mid Q)=\mathbb{E}_{x \sim P}\left[\ln \frac{P(x)}{Q(x)}\right]
$$

Examples:

$$
\begin{gathered}
\text { If } Q=P \text {, then } K L(P \mid Q)=K L(Q \mid P)=0 \\
\text { If } P=\mathcal{N}\left(\mu_{1}, \sigma^{2} I\right), Q=\mathcal{N}\left(\mu_{2}, \sigma^{2} I\right) \text {, then } K L(P \mid Q)=\frac{1}{2 \sigma^{2}}\left\|\mu_{1}-\mu_{2}\right\|^{2}
\end{gathered}
$$

KL-divergence: measures the distance between two distributions

Given two distributions $P \& Q$, where $P \in \Delta(X), Q \in \Delta(X)$,
KL Divergence is defined as:

$$
K L(P \mid Q)=\mathbb{E}_{x \sim P}\left[\ln \frac{P(x)}{Q(x)}\right]
$$

Examples:

$$
\begin{gathered}
\text { If } Q=P \text {, then } K L(P \mid Q)=K L(Q \mid P)=0 \\
\text { If } P=\mathcal{N}\left(\mu_{1}, \sigma^{2} I\right), Q=\mathcal{N}\left(\mu_{2}, \sigma^{2} I\right) \text {, then } K L(P \mid Q)=\frac{1}{2 \sigma^{2}}\left\|\mu_{1}-\mu_{2}\right\|^{2}
\end{gathered}
$$

Fact:
$K L(P \mid Q) \geq 0$, and being 0 if and only if $P=Q$

Trust Region Policy Optimization (TRPO)

1. Init π_{0}
2. For $k=0, \ldots K$:

$$
\begin{aligned}
\theta^{k+1}= & \arg \max _{\theta} \mathbb{E}_{s_{0}, \ldots s_{H-1} \sim \rho_{\pi^{k}}}\left[\sum_{h=0}^{H-1} \mathbb{E}_{a_{h} \sim \pi_{\theta}\left(s_{h}\right)} A^{\pi^{k}}\left(s_{h}, a_{h}\right)\right] \\
& \text { s.t. } K L\left(\rho_{\pi^{k}} \mid \rho_{\pi_{\theta}}\right) \leq \delta
\end{aligned}
$$

3. Return π_{K}

- We want to maximize local advantage against $\pi_{\theta^{k}}$, but we want the new policy to be close to $\pi_{\theta^{k}}$ (in the KL sense)
- How do we implement this with sampled trajectories?)

How do we implement TRPO with samples?

1. Initialize staring policy π_{0}, samples size M
2. For $k=0, \ldots K$:
3. [A-Evaluation Subroutine]

Using M sampled trajectories, $\tau_{1}, \ldots \tau_{M} \sim \rho_{\pi_{k}}$, $\widetilde{A_{k}}(s, a) \approx A_{h}^{\pi_{k}}(s, a)$
2. Solve the following optimization problem to obtain π_{k+1} :

$$
\max _{\theta} \sum_{m=1}^{M} \sum_{h=0}^{H-1} \mathbb{E}_{a \sim \pi_{\theta}\left(s_{h}^{m}\right)} \widetilde{A}_{k}\left(s_{h}^{m}, a\right)
$$

$$
\text { s.t. } \sum_{m=1}^{M} \sum_{h=0}^{H-1} \ln \frac{\pi_{\theta_{k}}\left(a_{h}^{m} \mid s_{h}^{m}\right)}{\pi_{\theta}\left(a_{h}^{m} \mid s_{h}^{m}\right)} \leq \delta
$$

Today

- Recap++
- Softmax Example
- The Performance Difference Lemma
- Algorithms:
- Trust Region Policy Optimization (TRPO)
- The Natural Policy Gradient (NPG)
- Proximal Policy Optimization (PPO)

TRPO is locally equivalent to the NPG

TRPO at iteration k :

$$
\begin{aligned}
& \max _{\theta} \mathbb{E}_{s_{0}, \ldots s_{H-1} \sim \rho_{\pi^{k}}}\left[\sum_{h=0}^{H-1} \mathbb{E}_{a_{h} \sim \pi_{\theta}\left(s_{h}\right)} A^{\pi^{k}}\left(s_{h}, a_{h}\right)\right] \\
& \quad \text { s.t. } K L\left(\rho_{\pi^{k}} \mid \rho_{\pi_{\theta}}\right) \leq \delta
\end{aligned}
$$

Intuition: maximize local adv subject
to being incremental (in KL);

TRPO is locally equivalent to the NPG

TRPO at iteration k :
$\max _{\theta} \mathbb{E}_{s_{0}, \ldots s_{H-1} \sim \rho_{\pi^{k}}}\left[\sum_{h=0}^{H-1} \mathbb{E}_{a_{h} \sim \pi_{\theta}\left(s_{h}\right)} A^{\pi^{k}}\left(s_{h}, a_{h}\right)\right] \longrightarrow$ First-order Taylor expansion at θ^{k}
S.t. $K L\left(\rho_{\pi^{k}} \mid \rho_{\pi_{\theta}}\right) \leq \delta$
Intuition: maximize local adv subject
to being incremental (in KL);

TRPO is locally equivalent to the NPG

TRPO at iteration k :
$\max _{\theta} \mathbb{E}_{s_{0}, \ldots s_{H-1} \sim \rho_{\pi^{k}}}\left[\sum_{h=0}^{H-1} \mathbb{E}_{a_{h} \sim \pi_{\theta}\left(s_{h}\right)} A^{\pi^{k}}\left(s_{h}, a_{h}\right)\right] \longrightarrow$ First-order Taylor expansion at θ^{k}
S.t. $K L\left(\rho_{\pi^{k}} \mid \rho_{\pi_{\theta}}\right) \leq \delta$
Intuition: maximize local adv subject
to being incremental (in KL);

TRPO is locally equivalent to the NPG

TRPO at iteration k :
$\max _{\theta} \mathbb{E}_{s_{0}, \ldots s_{H-1} \sim \rho_{\pi^{k}}}\left[\sum_{h=0}^{H-1} \mathbb{E}_{a_{h} \sim \pi_{\theta}\left(s_{h}\right)} A^{\pi^{k}}\left(s_{h}, a_{h}\right)\right]$
\longrightarrow First-order Taylor expansion at θ^{k}
s.t. $K L\left(\rho_{\pi^{k}} \mid \rho_{\pi_{\theta}}\right) \leq \delta$ \longrightarrow second-order Taylor expansion at θ^{k}

$$
\max _{\theta} \nabla_{\theta} J\left(\pi_{\theta^{k}}\right)^{\top}\left(\theta-\theta^{k}\right)
$$

TRPO is locally equivalent to the NPG

TRPO at iteration k :
$\max _{\theta} \mathbb{E}_{s_{0}, \ldots s_{H-1} \sim \rho_{\pi^{k}}}\left[\sum_{h=0}^{H-1} \mathbb{E}_{a_{h} \sim \pi_{\theta}\left(s_{h}\right)} A^{\pi^{k}}\left(s_{h}, a_{h}\right)\right]$
\longrightarrow First-order Taylor expansion at θ^{k}
s.t. $K L\left(\rho_{\pi^{k}} \mid \rho_{\pi_{\theta}}\right) \leq \delta$
\longrightarrow second-order Taylor expansion at θ^{k}

$$
\begin{gathered}
\max _{\theta} \nabla_{\theta} J\left(\pi_{\theta^{k}}\right)^{\top}\left(\theta-\theta^{k}\right) \\
\text { s.t. }\left(\theta-\theta^{k}\right)^{\top} F_{\theta^{k}}\left(\theta-\theta^{k}\right) \leq \delta
\end{gathered}
$$

TRPO is locally equivalent to the NPG

TRPO at iteration k :
$\max _{\theta} \mathbb{E}_{s_{0}, \ldots s_{H-1} \sim \rho_{\pi^{k}}}\left[\sum_{h=0}^{H-1} \mathbb{E}_{a_{h} \sim \pi_{\theta}\left(s_{h}\right)} A^{\pi^{k}}\left(s_{h}, a_{h}\right)\right]$
\longrightarrow First-order Taylor expansion at θ^{k}
s.t. $K L\left(\rho_{\pi^{k}} \mid \rho_{\pi_{\theta}}\right) \leq \delta$

Intuition: maximize local adv subject to being incremental (in KL);

$$
\begin{gathered}
\max _{\theta} \nabla_{\theta} J\left(\pi_{\theta^{k}}\right)^{\top}\left(\theta-\theta^{k}\right) \\
\text { s.t. }\left(\theta-\theta^{k}\right)^{\top} F_{\theta^{k}}\left(\theta-\theta^{k}\right) \leq \delta
\end{gathered}
$$

(Where $F_{\theta^{k}}$ is the "Fisher Information Matrix")

NPG: A "leading order" equivalent program to TRPO:

$$
\begin{aligned}
& \text { 1. Init } \pi_{0} \\
& \text { 2. For } k=0, \ldots K \text { : } \\
& \qquad \theta^{k+1}=\arg \max _{\theta} \nabla_{\theta} J\left(\pi_{\theta^{k}}\right)^{\top}\left(\theta-\theta^{k}\right) \\
& \quad \text { s.t. }\left(\theta-\theta^{k}\right)^{\top} F_{\theta^{k}}\left(\theta-\theta^{k}\right) \leq \delta \\
& \text { 3. Return } \pi_{K}
\end{aligned}
$$

NPG: A "leading order" equivalent program to TRPO:

$$
\begin{aligned}
& \text { 1. Init } \pi_{0} \\
& \text { 2. For } k=0, \ldots K \text { : } \\
& \qquad \theta^{k+1}=\arg \max _{\theta} \nabla_{\theta} J\left(\pi_{\theta^{k}}\right)^{\top}\left(\theta-\theta^{k}\right) \\
& \text { s.t. }\left(\theta-\theta^{k}\right)^{\top} F_{\theta^{k}}\left(\theta-\theta^{k}\right) \leq \delta \\
& \text { 3. Return } \pi_{K}
\end{aligned}
$$

- Where $\nabla_{\theta} J\left(\pi_{\theta^{k}}\right)$ is the gradient at θ^{k} and
- F_{θ} is (basically) the Fisher information matrix at $\theta \in \mathbb{R}^{d}$, defined as:

$$
\begin{aligned}
F_{\theta} & :=\mathbb{E}_{\tau \sim \rho_{\theta}}\left[\nabla_{\theta} \ln \rho_{\theta}(\tau)\left(\nabla_{\theta} \ln \rho_{\theta}(\tau)\right)^{\top}\right] \in \mathbb{R}^{d \times d} \\
& =\mathbb{E}_{\tau \sim \rho_{\theta}}\left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\left(\nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\right)^{\top}\right]
\end{aligned}
$$

There is a closed form update:

$$
\begin{aligned}
& \text { 1. Init } \pi_{0} \\
& \text { 2. For } k=0, \ldots K \text { : } \\
& \qquad \theta^{k+1}=\arg \max _{\theta} \nabla_{\theta} J\left(\pi_{\theta^{k}}\right)^{\top}\left(\theta-\theta^{k}\right) \\
& \quad \text { s.t. }\left(\theta-\theta^{k}\right)^{\top} F_{\theta^{k}}\left(\theta-\theta^{k}\right) \leq \delta \\
& \text { 3. Return } \pi_{K}
\end{aligned}
$$

There is a closed form update:

$$
\begin{aligned}
& \text { 1. Init } \pi_{0} \\
& \text { 2. For } k=0, \ldots K \text { : } \\
& \qquad \theta^{k+1}=\arg \max _{\theta} \nabla_{\theta} J\left(\pi_{\theta^{k}}\right)^{\top}\left(\theta-\theta^{k}\right) \\
& \text { s.t. }\left(\theta-\theta^{k}\right)^{\top} F_{\theta^{k}}\left(\theta-\theta^{k}\right) \leq \delta \\
& \text { 3. Return } \pi_{K}
\end{aligned}
$$

Linear objective and quadratic convex constraint, we can solve it optimally!

There is a closed form update:

$$
\begin{aligned}
& \text { 1. Init } \pi_{0} \\
& \text { 2. For } k=0, \ldots K \text { : } \\
& \qquad \theta^{k+1}=\arg \max _{\theta} \nabla_{\theta} J\left(\pi_{\theta^{k}}\right)^{\top}\left(\theta-\theta^{k}\right) \\
& \text { s.t. }\left(\theta-\theta^{k}\right)^{\top} F_{\theta^{k}}\left(\theta-\theta^{k}\right) \leq \delta \\
& \text { 3. Return } \pi_{K}
\end{aligned}
$$

Linear objective and quadratic convex constraint, we can solve it optimally! Indeed this gives us:

$$
\theta^{k+1}=\theta^{k}+\eta F_{\theta^{k}}^{-1} \nabla_{\theta} J\left(\pi_{\theta^{k}}\right)
$$

There is a closed form update:

$$
\begin{aligned}
& \text { 1. Init } \pi_{0} \\
& \text { 2. For } k=0, \ldots K \text { : } \\
& \qquad \theta^{k+1}=\arg \max _{\theta} \nabla_{\theta} J\left(\pi_{\theta^{k}}\right)^{\top}\left(\theta-\theta^{k}\right) \\
& \text { s.t. }\left(\theta-\theta^{k}\right)^{\top} F_{\theta^{k}}\left(\theta-\theta^{k}\right) \leq \delta \\
& \text { 3. Return } \pi_{K}
\end{aligned}
$$

Linear objective and quadratic convex constraint, we can solve it optimally! Indeed this gives us:

$$
\begin{aligned}
\theta^{k+1} & =\theta^{k}+\eta F_{\theta^{k}}^{-1} \nabla_{\theta} J\left(\pi_{\theta^{k}}\right) \\
\text { Where } \eta & =\sqrt{\frac{\delta}{\nabla_{\theta} J\left(\pi_{\theta^{k}}\right)^{\top} F_{\theta^{k}}^{-1} \nabla_{\theta} J\left(\pi_{\theta^{k}}\right)}}
\end{aligned}
$$

Summary:

1. Variance Reduction: with baselines
2. Perf. Diff Lemma/ TRPO/ NPG

Feedback:
bit.ly/3RHtlxy

An Implementation: Sample Based NPG

1. Init π_{0}
2. For $k=0, \ldots K$:

- Estimate PG $\nabla_{\theta} J\left(\pi_{\theta^{k}}\right)$
. Estimate Fisher info-matrix: $F_{\theta^{k}}=\mathbb{E}_{\tau \sim \rho_{\theta^{k}}}\left[\sum_{h=0}^{H-1} \nabla \ln \pi_{\theta^{k}}\left(a_{h} \mid s_{h}\right)\left(\nabla \ln \pi_{\theta^{k}}\left(a_{h} \mid s_{h}\right)^{\top}\right]\right.$
- Natural Gradient Ascent: $\theta^{k+1}=\theta^{k}+\eta{\widehat{F_{\theta^{k}}}}^{-1} \widehat{\nabla_{\theta} J\left(\pi_{\theta^{k}}\right)}$

3. Return π_{K}

An Implementation: Sample Based NPG

1. Init π_{0}
2. For $k=0, \ldots K$:

- Estimate PG $\nabla_{\theta} J\left(\pi_{\theta^{k}}\right)$
. Estimate Fisher info-matrix: $F_{\theta^{k}}=\mathbb{E}_{\tau \sim \rho_{\theta^{k}}}\left[\sum_{h=0}^{H-1} \nabla \ln \pi_{\theta^{k}}\left(a_{h} \mid s_{h}\right)\left(\nabla \ln \pi_{\theta^{k}}\left(a_{h} \mid s_{h}\right)^{\top}\right]\right.$
- Natural Gradient Ascent: $\theta^{k+1}=\theta^{k}+\eta{\widehat{F_{\theta^{k}}}}^{-1} \widehat{\nabla_{\theta} J\left(\pi_{\theta^{k}}\right)}$

3. Return π_{K}
(We will implement it in HW4 on Cartpole)

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

$$
\begin{aligned}
& \left(\pi_{\theta}[1], \pi_{\theta}[2]\right):=\left(\frac{\exp (\theta)}{1+\exp (\theta)}, \frac{1}{1+\exp (\theta)}\right) \\
& J(\theta)=100 \cdot \pi_{\theta}[1]+1 \cdot \pi_{\theta}[2]
\end{aligned}
$$

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

$$
\begin{aligned}
& \left(\pi_{\theta}[1], \pi_{\theta}[2]\right):=\left(\frac{\exp (\theta)}{1+\exp (\theta)}, \frac{1}{1+\exp (\theta)}\right) \\
& J(\theta)=100 \cdot \pi_{\theta}[1]+1 \cdot \pi_{\theta}[2] \\
& -\infty
\end{aligned} \theta^{\star}+\infty
$$

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

$$
\begin{aligned}
& \left(\pi_{\theta}[1], \pi_{\theta}[2]\right):=\left(\frac{\exp (\theta)}{1+\exp (\theta)}, \frac{1}{1+\exp (\theta)}\right) \\
& J(\theta)=100 \cdot \pi_{\theta}[1]+1 \cdot \pi_{\theta}[2]
\end{aligned}
$$

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

$$
\left(\pi_{\theta}[1], \pi_{\theta}[2]\right):=\left(\frac{\exp (\theta)}{1+\exp (\theta)}, \frac{1}{1+\exp (\theta)}\right)
$$

$$
J(\theta)=100 \cdot \pi_{\theta}[1]+1 \cdot \pi_{\theta}[2]
$$

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

$$
\left(\pi_{\theta}[1], \pi_{\theta}[2]\right):=\left(\frac{\exp (\theta)}{1+\exp (\theta)}, \frac{1}{1+\exp (\theta)}\right) \quad \text { Gradient: } J^{\prime}(\theta)=\frac{99 \exp (\theta)}{(1+\exp (\theta))^{2}}
$$

$$
J(\theta)=100 \cdot \pi_{\theta}[1]+1 \cdot \pi_{\theta}[2]
$$

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

$$
\begin{array}{ll}
\left(\pi_{\theta}[1], \pi_{\theta}[2]\right):=\left(\frac{\exp (\theta)}{1+\exp (\theta)}, \frac{1}{1+\exp (\theta)}\right) & \text { Gradient: } J^{\prime}(\theta)=\frac{99 \exp (\theta)}{(1+\exp (\theta))^{2}} \\
J(\theta)=100 \cdot \pi_{\theta}[1]+1 \cdot \pi_{\theta}[2] &
\end{array}
$$

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

$$
\left(\pi_{\theta}[1], \pi_{\theta}[2]\right):=\left(\frac{\exp (\theta)}{1+\exp (\theta)}, \frac{1}{1+\exp (\theta)}\right)
$$

$$
J(\theta)=100 \cdot \pi_{\theta}[1]+1 \cdot \pi_{\theta}[2]
$$

Gradient: $J^{\prime}(\theta)=\frac{99 \exp (\theta)}{(1+\exp (\theta))^{2}}$
Exact PG: $\theta^{k+1}=\theta^{k}+\eta \frac{99 \exp \left(\theta^{k}\right)}{\left(1+\exp \left(\theta^{k}\right)\right)^{2}}$
i.e., vanilla GA moves to $\theta=\infty$ with smaller and smaller steps, since $J^{\prime}(\theta) \rightarrow 0$ as $\theta \rightarrow \infty$

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

$$
\left(\pi_{\theta}[1], \pi_{\theta}[2]\right):=\left(\frac{\exp (\theta)}{1+\exp (\theta)}, \frac{1}{1+\exp (\theta)}\right)
$$

$$
J(\theta)=100 \cdot \pi_{\theta}[1]+1 \cdot \pi_{\theta}[2]
$$

Gradient: $J^{\prime}(\theta)=\frac{99 \exp (\theta)}{(1+\exp (\theta))^{2}}$
Exact PG: $\theta^{k+1}=\theta^{k}+\eta \frac{99 \exp \left(\theta^{k}\right)}{\left(1+\exp \left(\theta^{k}\right)\right)^{2}}$
i.e., vanilla GA moves to $\theta=\infty$ with smaller and smaller steps, since $J^{\prime}(\theta) \rightarrow 0$ as $\theta \rightarrow \infty$

Fisher information scalar: $F_{\theta}=\frac{\exp (\theta)}{(1+\exp (\theta))^{2}}$

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

$$
\begin{aligned}
& \left(\pi_{\theta}[1], \pi_{\theta}[2]\right):=\left(\frac{\exp (\theta)}{1+\exp (\theta)}, \frac{1}{1+\exp (\theta)}\right) \\
& J(\theta)=100 \cdot \pi_{\theta}[1]+1 \cdot \pi_{\theta}[2]
\end{aligned}
$$

Gradient: $J^{\prime}(\theta)=\frac{99 \exp (\theta)}{(1+\exp (\theta))^{2}}$
Exact PG: $\theta^{k+1}=\theta^{k}+\eta \frac{99 \exp \left(\theta^{k}\right)}{\left(1+\exp \left(\theta^{k}\right)\right)^{2}}$
i.e., vanilla GA moves to $\theta=\infty$ with smaller and smaller steps, since $J^{\prime}(\theta) \rightarrow 0$ as $\theta \rightarrow \infty$

Fisher information scalar: $F_{\theta}=\frac{\exp (\theta)}{(1+\exp (\theta))^{2}}$

$$
\text { NPG: } \theta^{k+1}=\theta^{k}+\eta \frac{J^{\prime}\left(\theta^{k}\right)}{F_{\theta^{k}}}
$$

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

$$
\begin{aligned}
& \left(\pi_{\theta}[1], \pi_{\theta}[2]\right):=\left(\frac{\exp (\theta)}{1+\exp (\theta)}, \frac{1}{1+\exp (\theta)}\right) \\
& J(\theta)=100 \cdot \pi_{\theta}[1]+1 \cdot \pi_{\theta}[2]
\end{aligned}
$$

Gradient: $J^{\prime}(\theta)=\frac{99 \exp (\theta)}{(1+\exp (\theta))^{2}}$
Exact PG: $\theta^{k+1}=\theta^{k}+\eta \frac{99 \exp \left(\theta^{k}\right)}{\left(1+\exp \left(\theta^{k}\right)\right)^{2}}$
i.e., vanilla GA moves to $\theta=\infty$ with smaller and smaller steps, since $J^{\prime}(\theta) \rightarrow 0$ as $\theta \rightarrow \infty$

Fisher information scalar: $F_{\theta}=\frac{\exp (\theta)}{(1+\exp (\theta))^{2}}$

$$
\text { NPG: } \theta^{k+1}=\theta^{k}+\eta \frac{J^{\prime}\left(\theta^{k}\right)}{F_{\theta^{k}}}=\theta_{t}+\eta \cdot 99
$$

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

$$
\begin{aligned}
& \left(\pi_{\theta}[1], \pi_{\theta}[2]\right):=\left(\frac{\exp (\theta)}{1+\exp (\theta)}, \frac{1}{1+\exp (\theta)}\right) \\
& J(\theta)=100 \cdot \pi_{\theta}[1]+1 \cdot \pi_{\theta}[2]
\end{aligned}
$$

Gradient: $J^{\prime}(\theta)=\frac{99 \exp (\theta)}{(1+\exp (\theta))^{2}}$
Exact PG: $\theta^{k+1}=\theta^{k}+\eta \frac{99 \exp \left(\theta^{k}\right)}{\left(1+\exp \left(\theta^{k}\right)\right)^{2}}$
i.e., vanilla GA moves to $\theta=\infty$ with smaller and smaller steps, since $J^{\prime}(\theta) \rightarrow 0$ as $\theta \rightarrow \infty$

Fisher information scalar: $F_{\theta}=\frac{\exp (\theta)}{(1+\exp (\theta))^{2}}$
NPG: $\theta^{k+1}=\theta^{k}+\eta \frac{J^{\prime}\left(\theta^{k}\right)}{F_{\theta^{k}}}=\theta_{t}+\eta \cdot 99$
NPG moves to $\theta=\infty$ much more quickly (for a fixed η)

