
Trust Region Policy Optimization 
& The Natural Policy Gradient 

 
Lucas Janson and Sham Kakade 
CS/Stat 184: Introduction to Reinforcement Learning 

Fall 2023

1

Today

2

• Recap++

• Softmax Example

• The Performance Difference Lemma

• Algorithms:

• Trust Region Policy Optimization (TRPO)

• The Natural Policy Gradient (NPG)

• Proximal Policy Optimization (PPO)

Recap++

3

Optimization Objective

4

•Consider a parameterize class of policies: 
	  
(why do we make it stochastic?) 

•Objective , where 

	  

•Policy Gradient Descent: 
	

{πθ(a |s) |θ ∈ ℝd}

max
θ

J(θ)

J(θ) := Es0∼μ [Vπθ(s0)] = Eτ∼ρπθ [
H−1

∑
h=0

r(sh, ah)]
θk+1 = θk + η∇J(θk)

REINFORCE: A Policy Gradient Algorithm

5

•Let be the probability of a trajectory , i.e. 
	  

•Let be the cumulative reward on trajectory , i.e.

•Our objective function is: 
	

•The REINFORCE Policy Gradient expression: 

	

ρθ(τ) τ = {s0, a0, s1, a1, …, sH−1, aH−1}
ρθ(τ) = μ(s0)πθ(a0 |s0)P(s1 |s0, a0)…P(sH−1 |sH−2, aH−2)πθ(aH−1 |sH−1)

R(τ) τ R(τ) :=
H−1

∑
h=0

r(sh, ah)

J(θ) = Eτ∼ρθ[R(τ)]

∇θJ(θ) := 𝔼τ∼ρθ (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)

Proof

6

•From the likelihood ratio method, we have: 
	  

•We have: 

 
 

 

∇θJ(θ) := 𝔼τ∼ρθ [∇θln ρθ(τ) R(τ)]

∇θln ρθ(τ) = ∇θ(ln μ(s0) + ln πθ(a0 |s0) + ln P(s1 |s0, a0) + …)
= ∇θ(ln πθ(a0 |s0) + ln πθ(a1 |s1)…)

= (
H−1

∑
h=0

∇θln πθ(ah |sh))

PG with REINFORCE:

1. Initialize , parameters:

2. For k = 0, … :

1. Obtain a trajectory  

Set  

2. Update:

θ0 η1, η2, …

τ ∼ ρθk

∇̃ θJ(θk) =
H−1

∑
h=0

∇ln πθk(ah |sh)R(τ)

θk+1 = θk + ηk ∇̃ θJ(θk)

7

Other PG formulas  
(that are lower variance for sampling)

∇J(θ) = 𝔼τ∼ρθ (
H−1

∑
h=0

∇θln πθ(ah |sh)) R(τ)

= 𝔼τ∼ρθ

H−1

∑
h=0 (∇θln πθ(ah |sh)

H−1

∑
t=h

rt)
= 𝔼τ∼ρθ [

H−1

∑
h=0

∇θln πθ(ah |sh)Q
πθ
h (sh, ah)]

Intuition: Change action distribution at only affects rewards later on…h
HW: You will show these simplified version are also valid PG expressions

8

With a “baseline” function:

∇J(θ) = 𝔼τ∼ρθ [
H−1

∑
h=0

∇θln πθ(ah |sh)(Qπθ
h (sh, ah) − bh(sh))]

= 𝔼τ∼ρθ

H−1

∑
h=0

∇θln πθ(ah |sh)(
H−1

∑
t=h

rt − bh(sh))

For any function only of the state, , we have:bh : S → R

9

This is (basically) the method of control variates.

• For the proof, it was helpful to note: 
𝔼x∼Pθ [∇log Pθ(x)c] = 0

The Advantage Function (finite horizon)

Vπ
h (s) = 𝔼 [

H−1

∑
τ=h

r(sτ, aτ) sh = s] Qπ
h (s, a) = 𝔼 [

H−1

∑
τ=h

r(sτ, aτ) (sh, ah) = (s, a)]
• The Advantage function is defined as: 
	

• We have that: 

	

• What do we know about ? 

• For the discounted case,

Aπ
h (s, a) = Qπ

h (s, a) − Vπ
h (s)

Ea∼π(⋅|s)[Aπ
h (s, a) s, h] = ∑

a

π(a |s)Aπ
h (s, a) = ??

Aπ⋆

h (s, a)

Aπ(s, a) = Qπ(s, a) − Vπ(s)
10

The Advantage-based PG:

• The second step follows by choosing .

• In practice, the most common approach is to use as an estimate of . 

bh(s) = Vπ
h (s)

bh(s) Vπ
h (s)

= 𝔼τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)A
πθ
h (sh, ah)]

∇J(θ) = 𝔼τ∼ρθ(τ) [
H−1

∑
h=0

∇θln πθ(ah |sh)(Qπθ
h (sh, ah) − bh(sh))]

11

(M=1) PG with a Learned Baseline:

1. Initialize , parameters:

2. For k = 0, … :

1. Sup. Learning: Using trajectories sampled under , estimate a baseline  

2. Obtain a trajectory  

Set  

3. Update:

θ0 η1, η2, …

N πθk b̃h
b̃(s) ≈ Vθk

h (s)
τ ∼ ρθk

∇̃ θJ(θk) =
H−1

∑
h=0

∇ln πθk(ah |sh)(Rh(τ) − b̃(sh))
θk+1 = θk + ηk ∇̃ θJ(θk)

12

Note that regardless of our choice of , we still get unbiased gradient estimates.b̃h(s)

(minibatch) PG with a Learned Baseline:

1. Initialize , parameters:

2. For k = 0, … :

1. Sup. Learning: Using trajectories sampled under , estimate a baseline  

2. Obtain M trajectories  

Set  

3. Update:

θ0 η1, η2, …

N πθk b̃h
b̃(s) ≈ Vθk

h (s)
τ1, …τM ∼ ρθk

∇̃ θJ(θk) =
1
M

M

∑
m=1

H−1

∑
h=0

∇ln πθk(am
h |sm

h)(Rh(τm) − b̃(sh))
θk+1 = θk + ηk ∇̃ θJ(θk)

13

Today:

14

Today

15

• Recap++

• Softmax Example

• The Performance Difference Lemma

• Algorithms:

• Trust Region Policy Optimization (TRPO)

• The Natural Policy Gradient (NPG)

• Proximal Policy Optimization (PPO)

Policy Parameterizations

1. Softmax linear Policy

Feature vector , and
parameter

ϕ(s, a) ∈ ℝd

θ ∈ ℝd

πθ(a |s) =
exp(θ⊤ϕ(s, a))

∑a′
exp(θ⊤ϕ(s, a′))

2. Neural Policy:

Neural network
fθ : S × A ↦ ℝ

πθ(a |s) =
exp(fθ(s, a))

∑a′
exp(fθ(s, a′))

Recall that we consider parameterized policy πθ(⋅ |s) ∈ Δ(A), ∀s

16

Softmax Policy Properties

πθ(a |s) =
exp(θ⊤ϕ(s, a))

∑a′
exp(θ⊤ϕ(s, a′))

17

Two properties (see HW):

• More probable actions have features which align with . 
Precisely, 

 if and only if  

•The gradient of the log policy is: 

θ

πθ(a |s) ≥ πθ(a′ |s) θ⊤ϕ(s, a) ≥ θ⊤ϕ(s, a′)

∇θlog(πθ(a |s)) = ϕ(s, a) − 𝔼a′ ∼πθ(⋅|s)[ϕ(s, a′)]

• We have: 

	  

 

	  

∇J(θ) = 𝔼τ∼ρθ [
H−1

∑
h=0

Qπθ
h (sh, ah)(ϕ(sh, ah) − 𝔼a′ ∼πθ(⋅|sh)[ϕ(sh, a′)])]

= 𝔼τ∼ρθ [
H−1

∑
h=0

Aπθ
h (sh, ah)ϕ(sh, ah)]

Today

18

• Recap++

• Softmax Example

• The Performance Difference Lemma

• Algorithms:

• Trust Region Policy Optimization (TRPO)

• The Natural Policy Gradient (NPG)

• Proximal Policy Optimization (PPO)

Fitted Policy Iteration:

19

• Initialization: choose a policy and a sample size

• For

1. Fitted Policy Evaluation: Using sampled trajectories
, obtain approximation

2. Policy Improvement: set

π0 : S ↦ A N
k = 0,1,…

N
τ1, …τN ∼ ρπk Q̂πk ≈ Qπk

πk+1
h (s) := arg max

a
Q̂πk(s, a, h)

Fitted Policy Iteration: Advantage Version

20

• Initialization: choose a policy and a sample size

• For

1. Fitted Policy Evaluation: Using sampled trajectories
, obtain approximation

2. Policy Improvement: set

π0 : S ↦ A N
k = 0,1,…

N
τ1, …τN ∼ ρπk ̂Aπk ≈ Aπk

πk+1
h (s) := arg max

a
̂Aπk(s, a, h)

The Performance Difference Lemma (PDL)

21

•Let be the distribution of trajectories from starting state acting under .  
(we are making the starting distribution explicit now).

•For any two policies and and any state , 

	  

 

Comments:

•Helps us think about error analysis, instabilities of fitted PI, and sub-optimality.

•Helps to understand algorithm design (TRPO, NPG, PPO)

•This also motivates the use of “local” methods (e.g. policy gradient descent)

ρπ̃,s s π

π π̃ s

Vπ̃(s) − Vπ(s) = 𝔼τ∼ρπ̃,s [
H−1

∑
h=0

Aπ
h (sh, ah)]

Back to Approximate Policy Iteration (API)

22

•Suppose gets updated to . How much worse could be?

•Suppose at some state , choose an action which has a negative advantage for .

•Since , we expect some error.

• In the worst case, let us consider the most negative advantage: 

 

•Here, if , it is possible that degradation may occur:

	 	

 
Proof sketch:

•Fitted PI does not enforce that the trajectory distributions, and , be close to each other.

•Suppose the has full support on these worst case states  
(i.e. we get trapped at this state where we made a bad choice). 

πk πk+1 πk+1

s πk+1 πk

Ã k(s, a, h) ≈ Aπk

h (s, a, h)

Δ∞ := min
s∈S

Aπk

h (s, πk+1(s))

Δ∞ < 0
Vπk+1(s0) ≥ Vπk(s0)−H ⋅ |Δ∞ |

ρπk ρπk+1

ρπk+1 s

Today

23

• Recap++

• Softmax Example

• The Performance Difference Lemma

• Algorithms:

• Trust Region Policy Optimization (TRPO)

• The Natural Policy Gradient (NPG)

• Proximal Policy Optimization (PPO)

24

• What’s bad about fitted PI? 
even if we pick better actions “on average”, the trajectory updates are unstable

• Can we fix this? 
Let’s look at an incremental policy updating approach.

A trust region formulation for policy update:

•How should we define “close”?

1. Init

2. For :  

try to approximately solve: 

	  

	 s.t. is “close” to

3. Return

π0
k = 0,…K

θk+1 = arg max
θ

𝔼s0,…sH−1∼ρπk [
H−1

∑
h=0

𝔼ah∼πθ(sh)A
πk(sh, ah)]

ρθ ρθk

πK

KL-divergence: measures the distance between two distributions

Given two distributions , where ,

KL Divergence is defined as:

P & Q P ∈ Δ(X), Q ∈ Δ(X)

KL(P |Q) = 𝔼x∼P [ln
P(x)
Q(x)]

Examples:

If , then Q = P KL(P |Q) = KL(Q |P) = 0

If , then P = 𝒩(μ1, σ2I), Q = 𝒩(μ2, σ2I) KL(P |Q) =
1

2σ2
∥μ1 − μ2∥2

Fact:

, and being if and only if KL(P |Q) ≥ 0 0 P = Q

25

1. Init

2. For :  

	  

	 	 s.t.

3. Return

π0
k = 0,…K

θk+1 = arg max
θ

𝔼s0,…sH−1∼ρπk [
H−1

∑
h=0

𝔼ah∼πθ(sh)A
πk(sh, ah)]

KL (ρπk |ρπθ) ≤ δ

πK

26

• We want to maximize local advantage against ,  
but we want the new policy to be close to (in the KL sense)

• How do we implement this with sampled trajectories?)

πθk

πθk

Trust Region Policy Optimization (TRPO)

How do we implement TRPO with samples?

1. Initialize staring policy , samples size M

2. For :

1. [A-Evaluation Subroutine] 
Using M sampled trajectories, ,  

2. Solve the following optimization problem to obtain : 

 

 

s.t.

π0
k = 0,…K

τ1, …τM ∼ ρπk

Ã k(s, a) ≈ Aπk
h (s, a)

πk+1

max
θ

M

∑
m=1

H−1

∑
h=0

𝔼a∼πθ(sm
h) Ã k(sm

h , a)

M

∑
m=1

H−1

∑
h=0

ln
πθk

(am
h |sm

h)
πθ(am

h |sm
h)

≤ δ

27

Today

28

• Recap++

• Softmax Example

• The Performance Difference Lemma

• Algorithms:

• Trust Region Policy Optimization (TRPO)

• The Natural Policy Gradient (NPG)

• Proximal Policy Optimization (PPO)

TRPO is locally equivalent to the NPG

max
θ

𝔼s0,…sH−1∼ρπk [
H−1

∑
h=0

𝔼ah∼πθ(sh)A
πk(sh, ah)]

s.t. KL (ρπk |ρπθ) ≤ δ

First-order Taylor expansion at θk

second-order Taylor expansion at θk

max
θ

∇θJ(πθk)⊤(θ − θk)
s.t. (θ − θk)⊤Fθk(θ − θk) ≤ δ

(Where is the “Fisher Information Matrix”)Fθk

Intuition: maximize local adv subject
to being incremental (in KL);

TRPO at iteration k:

29

1. Init

2. For :  

	  

	 s.t.

3. Return

π0
k = 0,…K

θk+1 = arg max
θ

∇θJ(πθk)⊤(θ − θk)

(θ − θk)⊤Fθk(θ − θk) ≤ δ
πK

30

NPG: A “leading order” equivalent program to TRPO:

• Where is the gradient at and

• is (basically) the Fisher information matrix at , defined as: 

	  

 

 	

∇θJ(πθk) θk

Fθ θ ∈ ℝd

Fθ := 𝔼τ∼ρθ [∇θln ρθ(τ)(∇θln ρθ(τ))⊤] ∈ ℝd×d

= 𝔼τ∼ρθ [
H−1

∑
h=0

∇θln πθ(ah |sh)(∇θln πθ(ah |sh))⊤]

There is a closed form update:

Linear objective and quadratic convex constraint, we can solve it optimally!
Indeed this gives us:

θk+1 = θk + ηF−1
θk ∇θJ(πθk)

Where η =
δ

∇θJ(πθk)⊤F−1
θk ∇θJ(πθk)

31

1. Init

2. For :  

	  

	 s.t.

3. Return

π0
k = 0,…K

θk+1 = arg max
θ

∇θJ(πθk)⊤(θ − θk)

(θ − θk)⊤Fθk(θ − θk) ≤ δ
πK

1. Init

2. For :

• Estimate PG

• Estimate Fisher info-matrix:

• Natural Gradient Ascent:

3. Return

π0

k = 0,…K
∇θJ(πθk)

Fθk = 𝔼τ∼ρθk [
H−1

∑
h=0

∇ln πθk(ah |sh)(∇ln πθk(ah |sh))⊤]
θk+1 = θk + η ̂Fθk

−1 ̂∇θJ(πθk)
πK

32

An Implementation: Sample Based NPG

(We will implement it in HW4 on Cartpole)

Summary:

Feedback:

bit.ly/3RHtlxy

33

Attendance: 
bit.ly/3RcTC9T

1. Variance Reduction: with baselines

2. Perf. Diff Lemma/ TRPO/ NPG

http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

NPG moves to much more quickly 
(for a fixed)

θ = ∞
η

(πθ[1], πθ[2]) := (exp(θ)
1 + exp(θ)

,
1

1 + exp(θ))
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Fisher information scalar: Fθ =
exp(θ)

(1 + exp(θ))2

NPG: θk+1 = θk + η
J′ (θk)
Fθk

Exact PG: θk+1 = θk + η
99 exp(θk)

(1 + exp(θk))2

Gradient: J′ (θ) =
99 exp(θ)

(1 + exp(θ))2

i.e., vanilla GA moves to with smaller
and smaller steps, since as

θ = ∞
J′ (θ) → 0 θ → ∞

Every possible policy is a
point on the line segment,
parameterized by .θ

= θt + η ⋅ 99

34

