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(M=1) PG with a Learned Baseline:

1. Initialize , parameters: 

2. For k = 0, … : 


1. Sup. Learning: Using  trajectories sampled under , estimate a baseline  



2. Obtain a trajectory  

Set  

3. Update: 

θ0 η1, η2, …

N πθk b̃h
b̃(s) ≈ Vθk

h (s)
τ ∼ ρθk

∇̃ θJ(θk) =
H−1

∑
h=0

∇ln πθk(ah |sh)(Rh(τ) − b̃(sh))
θk+1 = θk + ηk ∇̃ θJ(θk)
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Note that regardless of our choice of , we still get unbiased gradient estimates.b̃h(s)

El ~ Chistory) = An in
, unle



The Performance Difference Lemma (PDL)
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•Let  be the distribution of trajectories from starting state  acting under .  
(we are making the starting distribution explicit now).

•For any two policies  and  and any state , 

	  

 

Comments:

•Helps us think about error analysis, instabilities of fitted PI, and sub-optimality.

•Helps to understand algorithm design (TRPO, NPG, PPO)

•This also motivates the use of “local” methods (e.g. policy gradient descent)

ρπ̃,s s π

π π̃ s

Vπ̃(s) − Vπ(s) = %τ∼ρπ̃,s [
H−1

∑
h=0

Aπ
h (sh, ah)]



Back to Approximate Policy Iteration (API)
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•Suppose  gets updated to .  How much worse could  be?

•Suppose at some state ,  choose an action which has a negative advantage for .

•Since , we expect some error.

• In the worst case, let us consider the most negative advantage:  

 

•Here, if , it is possible that degradation may occur:

	 	 

 
Proof sketch:

•Fitted PI does not enforce that the trajectory distributions,  and , be close to each other.

•Suppose the  has full support on these worst case states   
(i.e. we get trapped at this state where we made a bad choice).  

πk πk+1 πk+1

s πk+1 πk

Ã k(s, a, h) ≈ Aπk

h (s, a, h)

Δ∞ := min
s∈S

Aπk

h (s, πk+1(s))

Δ∞ < 0
Vπk+1(s0) ≥ Vπk(s0)−H ⋅ |Δ∞ |

ρπk ρπk+1

ρπk+1 s



1. Init 

2. For  :  

	  

	 	 s.t. 


3. Return 

π0
k = 0,…K

θk+1 = arg max
θ

%s0,…sH−1∼ρπk [
H−1

∑
h=0

%ah∼πθ(sh)A
πk(sh, ah)]

KL (ρπk |ρπθ) ≤ δ
πK
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• We want to maximize local advantage against ,  
but we want the new policy to be close to  (in the KL sense) 

• How do we implement this with sampled trajectories?

πθk

πθk

Trust Region Policy Optimization (TRPO)



KL-divergence: measures the distance between two distributions

Given two distributions , where , 

KL Divergence is defined as:

P & Q P ∈ Δ(X), Q ∈ Δ(X)

KL(P |Q) = %x∼P [ln P(x)
Q(x) ]

Examples: 

If , then Q = P KL(P |Q) = KL(Q |P) = 0

If , then P = ,(μ1, σ2I), Q = ,(μ2, σ2I) KL(P |Q) = 1
2σ2 ∥μ1 − μ2∥2

Fact: 
, and being  if and only if KL(P |Q) ≥ 0 0 P = Q

8



Estimating TRPO: optional slide  
(see PPO & Importance sampling for derivation)

1. Initialize staring policy , samples size M

2. For  : 


1. Using  trajectories sampled under  to learn a  



2. Obtain M NEW trajectories  
Solve the following optimization problem to obtain : 

 

 

s.t. 


π0
k = 0,…K

N ρk b̃h
b̃(s, h) ≈ Vπk

h (s)
τ1, …τM ∼ ρk

πk+1

max
θ

1
M

M

∑
m=1

H−1

∑
h=0

πθ(sh)
πk(sh) (Rh(τm) − b̃(sh, h))

M

∑
m=1

H−1

∑
h=0

ln
πθk

(am
h |sm

h )
πθ(am

h |sm
h ) ≤ δ
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Today:
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• Recap

• Algorithms:

• Trust Region Policy Optimization (TRPO)

• The Natural Policy Gradient (NPG)

• Proximal Policy Optimization (PPO)



TRPO is locally equivalent to the NPG

max
θ

%s0,…sH−1∼ρπk [
H−1

∑
h=0

%ah∼πθ(sh)A
πk(sh, ah)]

s.t. KL (ρπk |ρπθ) ≤ δ

Intuition: maximize local adv subject 
to being incremental (in KL);

TRPO at iteration k:

12
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TRPO is locally equivalent to the NPG

max
θ

%s0,…sH−1∼ρπk [
H−1

∑
h=0

%ah∼πθ(sh)A
πk(sh, ah)]

s.t. KL (ρπk |ρπθ) ≤ δ

First-order Taylor expansion at θk

second-order Taylor expansion at θk

max
θ

∇θJ(πθk)⊤(θ − θk)
s.t. (θ − θk)⊤Fθk(θ − θk) ≤ δ

(Where  is the “Fisher Information Matrix”)Fθk

Intuition: maximize local adv subject 
to being incremental (in KL);

TRPO at iteration k:

12



1. Init 

2. For  :  

	  

	  s.t. 

3. Return 

π0
k = 0,…K

θk+1 = arg max
θ

∇θJ(πθk)⊤(θ − θk)
(θ − θk)⊤Fθk(θ − θk) ≤ δ

πK
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NPG: A “leading order” equivalent program to TRPO:



1. Init 

2. For  :  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NPG: A “leading order” equivalent program to TRPO:

• Where  is the gradient at  and 

•  is (basically) the Fisher information matrix at , defined as:  

	  
 

 	     

∇θJ(πθk) θk

Fθ θ ∈ ℝd

Fθ := %τ∼ρθ [∇θln ρθ(τ)(∇θln ρθ(τ))⊤] ∈ ℝd×d

= %τ∼ρθ [
H−1

∑
h=0

∇θln πθ(ah |sh)(∇θln πθ(ah |sh))⊤]

F
=

- -ep(0lyp(]



There is a closed form update:
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There is a closed form update:
Linear objective and quadratic convex constraint, we can solve it optimally!
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There is a closed form update:
Linear objective and quadratic convex constraint, we can solve it optimally!

Indeed this gives us:

θk+1 = θk + ηF−1
θk ∇θJ(πθk)
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There is a closed form update:
Linear objective and quadratic convex constraint, we can solve it optimally!

Indeed this gives us:

θk+1 = θk + ηF−1
θk ∇θJ(πθk)

Where η = δ
∇θJ(πθk)⊤F−1

θk ∇θJ(πθk)

14

>

-

solve Lag .

AX
->

TBxmax
max Ax - XX

X

sit . xBx = S e



1. Init 

2. For  : 

• Estimate PG 


• Estimate Fisher info-matrix: 


• Natural Gradient Ascent:   

3. Return 

π0
k = 0,…K

∇θJ(πθk)

Fθk = %τ∼ρθk [
H−1

∑
h=0

∇ln πθk(ah |sh)(∇ln πθk(ah |sh))⊤]
θk+1 = θk + η ̂Fθk

−1 ̂∇θJ(πθk)
πK
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An Implementation: Sample Based NPG

-

1



1. Init 

2. For  : 

• Estimate PG 


• Estimate Fisher info-matrix: 


• Natural Gradient Ascent:   

3. Return 

π0
k = 0,…K

∇θJ(πθk)

Fθk = %τ∼ρθk [
H−1

∑
h=0

∇ln πθk(ah |sh)(∇ln πθk(ah |sh))⊤]
θk+1 = θk + η ̂Fθk

−1 ̂∇θJ(πθk)
πK

15

An Implementation: Sample Based NPG

(We will implement it in HW4 on Cartpole)

-

(Fox + XI)- -j



NPG Derivation
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First Order Expansion on the Objective Function

max
θ

%s0,…sH−1∼ρθk [
H−1

∑
h=0

%a∼πθ(s)A
πθk(s, a)]
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First Order Expansion on the Objective Function

max
θ

%s0,…sH−1∼ρθk [
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∑
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Let’s look at a first order Taylor expansion around :θ = θk
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First Order Expansion on the Objective Function

max
θ

%s0,…sH−1∼ρθk [
H−1

∑
h=0

%a∼πθ(s)A
πθk(s, a)]

Let’s look at a first order Taylor expansion around :θ = θk

%s0,…sH−1∼ρθk [
H−1

∑
h=0

%a∼πθ(s)A
πθk(s, a)] ≈ %s0,…sH−1∼ρθk [

H−1

∑
h=0

%a∼πθk(s)A
πθk(s, a)]

+%s0,…sH−1∼ρθk [
H−1

∑
h=0

%a∼πθk(s) ∇θln πθk
(a |s)Aπθk(s, a)]

∇θJ(πθk)

⋅ (θ − θk)

17

F(x)
E
e F(x) + rF(x) - (x-x) + 0(1x -x)2)



First Order Expansion on the Objective Function

max
θ

%s0,…sH−1∼ρθk [
H−1

∑
h=0

%a∼πθ(s)A
πθk(s, a)]

Let’s look at a first order Taylor expansion around :θ = θk

%s0,…sH−1∼ρθk [
H−1

∑
h=0

%a∼πθ(s)A
πθk(s, a)] ≈ %s0,…sH−1∼ρθk [

H−1

∑
h=0

%a∼πθk(s)A
πθk(s, a)]

+%s0,…sH−1∼ρθk [
H−1

∑
h=0

%a∼πθk(s) ∇θln πθk
(a |s)Aπθk(s, a)]

∇θJ(πθk)

⋅ (θ − θk)

= "constant" + ∇θJ(πθk
)⊤(θ − θk)
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Taylor Expansion on the Constraint  
(we need it to be second-order. Why?)
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Taylor Expansion on the Constraint  
(we need it to be second-order. Why?)

ℓ(θ) := KL(ρθ̃ |ρθ)

ℓ(θ) ≈ ℓ(θ̃) + ∇ℓ(θ̃)⊤(θ − θ̃) + 1
2 (θ − θ̃)⊤ ∇2

θℓ(θ̃)(θ − θ̃)

ℓ(θ̃) = KL(ρθ̃ |ρθ̃) = 0

We will show that  and  has the claimed form!∇θℓ(θ̃) = 0, ∇2ℓ(θ̃)
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The gradient of the KL-divergence is zero at  θk

Change from trajectory distribution to state-action distribution:

19

ℓ(θ) := KL (ρθ̃ |ρθ) = %τ∼ρθ̃ [ln
ρθ̃(τ)
ρθ(τ) ]



The gradient of the KL-divergence is zero at  θk

∇θℓ(θ)
θ=θ̃

= %τ∼ρθ̃ [∇θln ρθ̃(τ)]

Change from trajectory distribution to state-action distribution:

19

ℓ(θ) := KL (ρθ̃ |ρθ) = %τ∼ρθ̃ [ln
ρθ̃(τ)
ρθ(τ) ]

S

-

⑤ I
② =
v

⑦



The gradient of the KL-divergence is zero at  θk

∇θℓ(θ)
θ=θ̃

= %τ∼ρθ̃ [∇θln ρθ̃(τ)]

= ∑
τ

ρθ̃(τ)
∇θ ρθ̃(τ)

ρθ̃(τ)

Change from trajectory distribution to state-action distribution:

19

ℓ(θ) := KL (ρθ̃ |ρθ) = %τ∼ρθ̃ [ln
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The gradient of the KL-divergence is zero at  θk

∇θℓ(θ)
θ=θ̃

= %τ∼ρθ̃ [∇θln ρθ̃(τ)]

= ∑
τ

ρθ̃(τ)
∇θ ρθ̃(τ)

ρθ̃(τ)

= 0

Change from trajectory distribution to state-action distribution:

19

ℓ(θ) := KL (ρθ̃ |ρθ) = %τ∼ρθ̃ [ln
ρθ̃(τ)
ρθ(τ) ]

-



Let’s compute the Hessian of the KL-divergence at θk
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ℓ(θ) := KL (ρπθk |ρπθ) = %τ∼ρπθk [ln
ρπθk(τ)
ρπθ

(τ) ]



Let’s compute the Hessian of the KL-divergence at θk

20

ℓ(θ) := KL (ρπθk |ρπθ) = %τ∼ρπθk [ln
ρπθk(τ)
ρπθ

(τ) ]
∇2

θℓ(θ)
θ=θ̃

= %τ∼ρθ̃ [∇2
θln ρθ̃(τ)]

-



Let’s compute the Hessian of the KL-divergence at θk

= − ∑
τ

ρθ̃(τ)(
∇2

θ ρθ̃(τ)
ρθ̃(τ) −

∇θ ρθ̃(τ)∇θ ρθ̃(τ)⊤

(ρθ̃(τ))2 )

20

ℓ(θ) := KL (ρπθk |ρπθ) = %τ∼ρπθk [ln
ρπθk(τ)
ρπθ

(τ) ]
∇2

θℓ(θ)
θ=θ̃

= %τ∼ρθ̃ [∇2
θln ρθ̃(τ)] ↓ (f(x) = *

O f(x)

- 52(yf(x) = 15055-> * -

((xI
- -

2



Let’s compute the Hessian of the KL-divergence at θk

= − ∑
τ

ρθ̃(τ)(
∇2

θ ρθ̃(τ)
ρθ̃(τ) −

∇θ ρθ̃(τ)∇θ ρθ̃(τ)⊤

(ρθ̃(τ))2 )

= %τ∼ρθ̃ [∇ln ρθ̃(τ)(∇θln ρθ̃(τ))⊤] ∈ ℝd×d

20

ℓ(θ) := KL (ρπθk |ρπθ) = %τ∼ρπθk [ln
ρπθk(τ)
ρπθ

(τ) ]
∇2

θℓ(θ)
θ=θ̃

= %τ∼ρθ̃ [∇2
θln ρθ̃(τ)]

%O
I



Let’s compute the Hessian of the KL-divergence at θk

= − ∑
τ

ρθ̃(τ)(
∇2

θ ρθ̃(τ)
ρθ̃(τ) −

∇θ ρθ̃(τ)∇θ ρθ̃(τ)⊤

(ρθ̃(τ))2 )

= %τ∼ρθ̃ [∇ln ρθ̃(τ)(∇θln ρθ̃(τ))⊤] ∈ ℝd×d

It’s called the Fisher Information Matrix!

20

ℓ(θ) := KL (ρπθk |ρπθ) = %τ∼ρπθk [ln
ρπθk(τ)
ρπθ

(τ) ]
∇2

θℓ(θ)
θ=θ̃

= %τ∼ρθ̃ [∇2
θln ρθ̃(τ)]
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1. Init 

2. For  :  

	  

	 	 s.t. 


3. Return 

π0
k = 0,…K

θk+1 = arg max
θ

%s0,…sH−1∼ρπk [
H−1

∑
h=0

%ah∼πθ(sh)A
πk(sh, ah)]

KL (ρπk |ρπθ) ≤ δ
πK

22

• The difficulty with TRPO and NPG is that they could be computationally costly.  
Need to solve constrained optimization  or matrix inversion (“second order”) problems. 


• Can we use a method which only uses gradients?  

Let’s try to use a “Lagrangian relaxation” of TRPO

Back to TRPO/NPG



1. Init , choose 

2. For  :  




3. Return 

π0 λ
k = 0,…K

θk+1 = arg max
θ

%s0,…sH−1∼ρπk [
H−1

∑
h=0

%ah∼πθ(sh)A
πk(sh, ah)]−λKL (ρπk |ρπθ)

regularization
πK

23

Proximal Policy Optimization (PPO)

X
-
- approxargmay

⑦



The regularization term is:

24

KL (ρπθk |ρπθ) = %τ∼ρπθk [ln
ρπθk(τ)
ρπθ

(τ) ]



The regularization term is:

24

KL (ρπθk |ρπθ) = %τ∼ρπθk [ln
ρπθk(τ)
ρπθ

(τ) ]

ρθ(τ) = μ(s0)πθ(a0 |s0)P(s1 |s0, a0)…P(sH−1 |sH−2, aH−2)πθ(aH−1 |sH−1)



The regularization term is:

24

KL (ρπθk |ρπθ) = %τ∼ρπθk [ln
ρπθk(τ)
ρπθ

(τ) ]

ρθ(τ) = μ(s0)πθ(a0 |s0)P(s1 |s0, a0)…P(sH−1 |sH−2, aH−2)πθ(aH−1 |sH−1)

= %τ∼ρπθk [
H−1

∑
h=0

ln πθk(ah |sh)
πθ(ah |sh) ]



The regularization term is:

= %τ∼ρπθk [
H−1

∑
h=0

ln 1
πθ(ah |sh) ] + [term not a function of θ]

24

KL (ρπθk |ρπθ) = %τ∼ρπθk [ln
ρπθk(τ)
ρπθ

(τ) ]

ρθ(τ) = μ(s0)πθ(a0 |s0)P(s1 |s0, a0)…P(sH−1 |sH−2, aH−2)πθ(aH−1 |sH−1)

= %τ∼ρπθk [
H−1

∑
h=0

ln πθk(ah |sh)
πθ(ah |sh) ]



Proximal Policy Optimization (PPO)
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1. Init , choose 

2. For  :  

use SGD to optimize:  
 

where: 




3. Return 

π0 λ
k = 0,…K

θk+1 ≈ arg max
θ

ℓk(θ)

ℓk(θ) := %s0,…sH−1∼ρπk [
H−1

∑
h=0

%ah∼πθ(sh)A
πk(sh, ah)] − λ%τ∼ρπk [

H−1

∑
h=0

ln 1
πθ(ah |sh) ]

πK

How do we estimate this objective?



Back to Estimating ℓk(θ)
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Back to Estimating ℓk(θ)

26

We want to estimate,  

 %s0,…sH−1∼ρπk [
H−1

∑
h=0

%ah∼πθ(sh)A
πk(sh, ah)]



Back to Estimating ℓk(θ)

26

We want to estimate,  

 %s0,…sH−1∼ρπk [
H−1

∑
h=0

%ah∼πθ(sh)A
πk(sh, ah)]

We will use importance sampling: 
 

        = %s0,…sH−1∼ρπk [
H−1

∑
h=0

%ah∼πk(sh) [ πθ(sh)
πk(sh)

Aπk(sh, ah)]]



Back to Estimating ℓk(θ)
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We want to estimate,  

 %s0,…sH−1∼ρπk [
H−1

∑
h=0

%ah∼πθ(sh)A
πk(sh, ah)]

We will use importance sampling: 
 

        = %s0,…sH−1∼ρπk [
H−1

∑
h=0

%ah∼πk(sh) [ πθ(sh)
πk(sh)

Aπk(sh, ah)]]
            = %τ∼ρπk [

H−1

∑
h=0

πθ(sh)
πk(sh)

Aπk(sh, ah)]



Estimating ℓk(θ)
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Estimating ℓk(θ)
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1. Using  trajectories sampled under  to learn a  N ρk b̃h
b̃(s, h) ≈ Vπk

h (s)



Estimating ℓk(θ)

27

1. Using  trajectories sampled under  to learn a  N ρk b̃h
b̃(s, h) ≈ Vπk

h (s)
2. Obtain M NEW trajectories  

Set 

τ1, …τM ∼ ρk

̂ℓ k(θ) = 1
M

M

∑
m=1

H−1

∑
h=0 ( πθ(sh)

πk(sh) (Rh(τm) − b̃(sh, h)) − λ ln 1
πθ(ah |sh) )



Summary:

Feedback: 

bit.ly/3RHtlxy

28

Attendance: 
bit.ly/3RcTC9T

1. NPG: a simpler way to do TRPO, a “pre-conditioned” gradient method.

2. PPO: “first order” approx to TRPO
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