Trust Region Policy Optimization & The Natural Policy Gradient

Lucas Janson and Sham Kakade CS/Stat 184: Introduction to Reinforcement Learning Fall 2023

- Algorithms:
 - Trust Region Policy Optimization (TRPO)
 - The Natural Policy Gradient (NPG)
 - Proximal Policy Optimization (PPO)

timization (TRPO) dient (NPG) zation (PPO)

Recap

(M=1) PG with a Learned Baseline:

- 1. Initialize θ_0 , parameters: η_1, η_2, \ldots
- 2. For k = 0, ...:

1. Sup. Learning: Using N trajectories sampled under $\pi_{\theta k}$, estimate a baseline b_h $\widetilde{b}(s) \approx V_h^{\theta^k}(s)$ 2. Obtain a trajectory $\tau \sim \rho_{\theta^k}$ $\widetilde{\nabla}_{\theta} J(\theta^k) = \sum_{h=1}^{H-1} \nabla \ln \pi_{\theta^k}(a_h | s_h) \left(R_h(\tau) - \widetilde{b}(s_h) \right)$ h=0

3. Update: $\theta^{k+1} = \theta^k + \eta^k \widetilde{\nabla}_{\rho} J(\theta^k)$

Note that regardless of our choice of $b_h(s)$, we still get unbiased gradient estimates.

The Performance Difference Lemma (PDL)

- (we are making the starting distribution explicit now).
- For any two policies π and $\widetilde{\pi}$ and any state s,

Comments:

- •Helps to understand algorithm design (TRPO, NPG, PPO)

• Let $\rho_{\tilde{\pi},s}$ be the distribution of trajectories from starting state s acting under π .

 $V^{\widetilde{\pi}}(s) - V^{\pi}(s) = \mathbb{E}_{\tau \sim \rho_{\widetilde{\pi},s}} \left[\sum_{h=0}^{H-1} A_h^{\pi}(s_h, a_h) \right]$

• Helps us think about error analysis, instabilities of fitted PI, and sub-optimality. • This also motivates the use of "local" methods (e.g. policy gradient descent)

Back to Approximate Policy Iteration (API)

- Suppose π^k gets updated to π^{k+1} . How much worse could π^{k+1} be?
- Suppose at some state s, π^{k+1} choose an action which has a negative advantage for π^k .
 - •Since $\overline{A^{k}(s, a, h)} \approx A_{h}^{\pi^{k}}(s, a, h)$, we expect some error.
 - In the worst case, let us consider the most negative advantage: $\Delta_{\infty} := \min_{\alpha} A_h^{\pi^k}(s, \pi^{k+1}(s))$ seS
 - •Here, if $\Delta_{\infty} < 0$, it is possible that degradation may occur: $V^{\pi^{k+1}}(s_0) \geq V^{\pi^k}(s_0) - H \cdot |\Delta_{\infty}|$

Proof sketch:

- (i.e. we get trapped at this state where we made a bad choice).
- Fitted PI does not enforce that the trajectory distributions, ρ_{π^k} and $\rho_{\pi^{k+1}}$, be close to each other. • Suppose the $ho_{\pi^{k+1}}$ has full support on these worst case states s

Trust Region Policy Optimization (TRPO)

1. Init
$$\pi_0$$

2. For $k = 0, ..., K$:
 $\theta^{k+1} = \arg \max_{\theta} \mathbb{E}_{s_0, ..., s_{H-1} \sim \rho_{\pi^k}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(s_h)} A^{\pi^k}(s_h, a_h) \right]$
s.t. $KL\left(\rho_{\pi^k} \mid \rho_{\pi_{\theta}}\right) \leq \delta$
3. Return π_K

- We want to maximize local advantage against π_{θ^k} ,

but we want the new policy to be close to π_{θ^k} (in the KL sense)

How do we implement this with sampled trajectories?

KL-divergence: measures the distance between two distributions

 $KL(P \mid Q) =$

If Q = P, then KL

If $P = \mathcal{N}(\mu_1, \sigma^2 I), Q = \mathcal{N}(\mu_2, \sigma^2 I)$

 $KL(P \mid Q) \ge 0$, and being 0 if and only if P = Q

Given two distributions P & Q, where $P \in \Delta(X), Q \in \Delta(X)$, KL Divergence is defined as:

$$= \mathbb{E}_{x \sim P} \left[\ln \frac{P(x)}{Q(x)} \right]$$

Examples:

$$(P | Q) = KL(Q | P) = 0$$

 $\sigma^2 I$, then $KL(P | Q) = \frac{1}{2\sigma^2} ||\mu_1 - \mu_2||^2$

Fact:

Estimating TRPO: optional slide (see PPO & Importance sampling for derivation)

1. Initialize staring policy π_0 , samples size M

2. For
$$k = 0, ..., K$$
:

- $\widetilde{b}(s,h) \approx V_h^{\pi^k}(s)$

2. Obtain M NEW trajectories $\tau_1, \ldots \tau_M \sim \rho^k$ Solve the following optimization problem to obtain π_{k+1} : $\max_{\theta} \frac{1}{M} \sum_{k=1}^{M} \sum_{k=1}^{H-1} \frac{\pi_{\theta}(s_h)}{\pi^k(s_h)} \left(R_h(\tau^m) - \widetilde{b}(s_h, h) \right)$

s.t.	M H-1	$\pi_{\theta_k}(a_h^m)$
	$\sum_{m=1}^{m} \sum_{h=0}^{m}$	$\pi_{\theta}(a_h^m)$

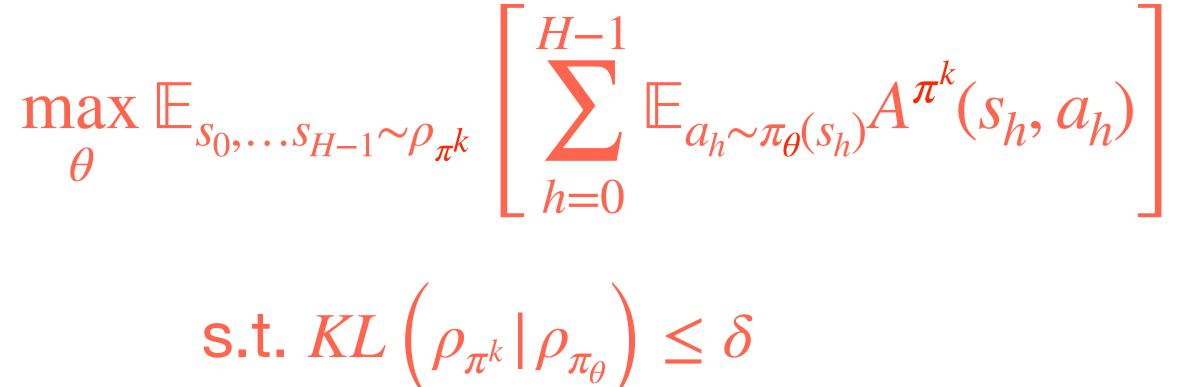
1. Using N trajectories sampled under ρ^k to learn a b_h

$$\frac{s_h^m}{s_h^m} \le \delta$$

Today:

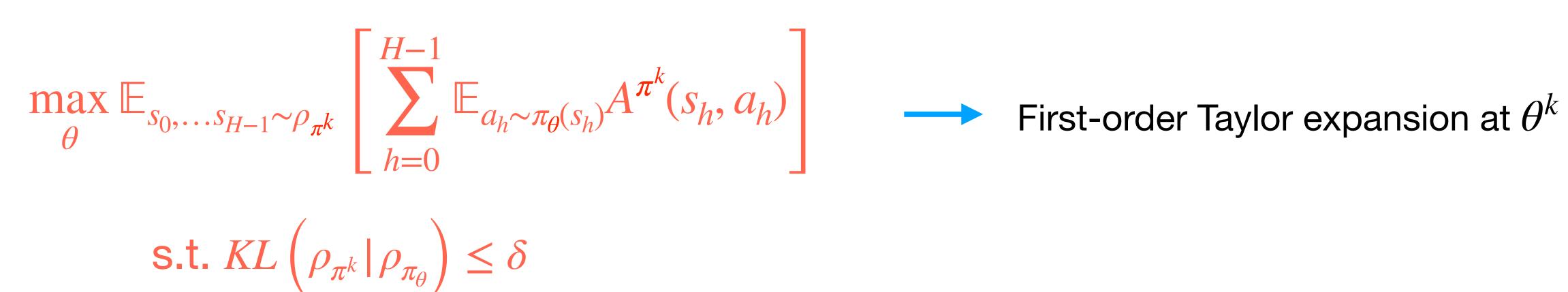
- Recap
- Algorithms:
 - Trust Region Policy Optimization (TRPO)
- The Natural Policy Gradient (NPG)
 - Proximal Policy Optimization (PPO)

TRPO at iteration k:



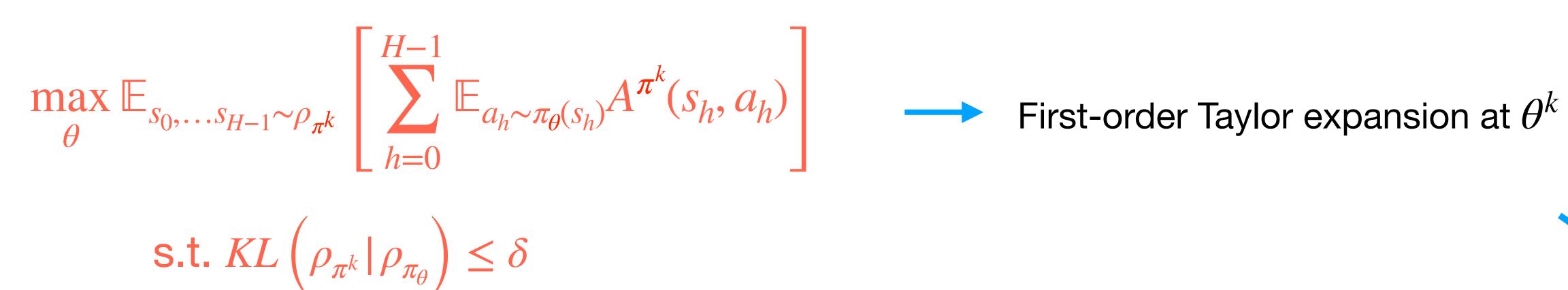
Intuition: maximize local adv subject to being incremental (in KL);

TRPO at iteration k:



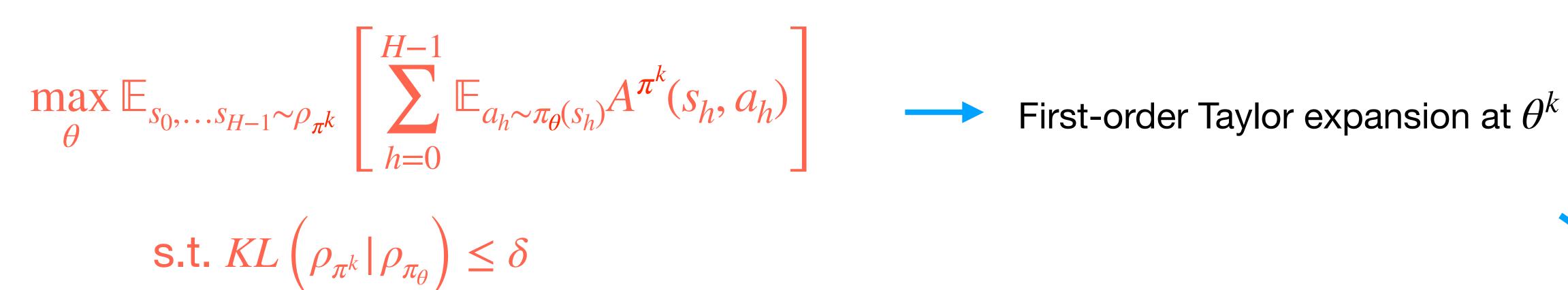
Intuition: maximize local adv subject to being incremental (in KL);

TRPO at iteration k:



Intuition: maximize local adv subject to being incremental (in KL);

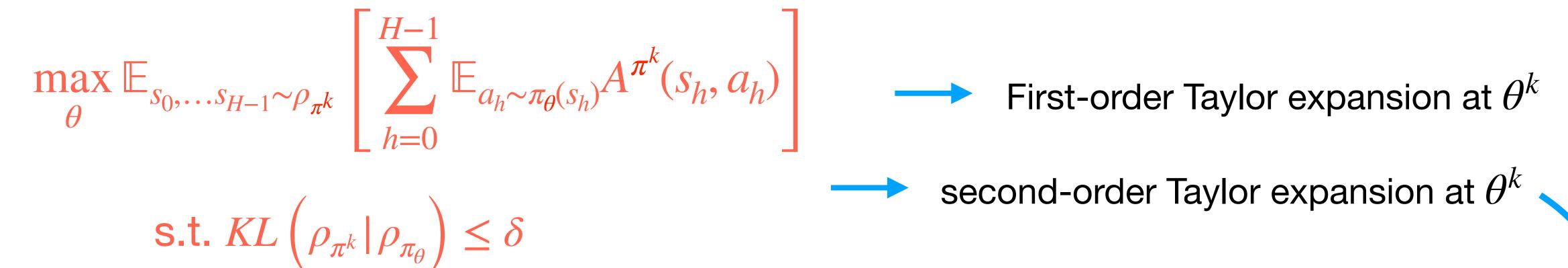
TRPO at iteration k:



Intuition: maximize local adv subject to being incremental (in KL);

$\max_{\theta} \nabla_{\theta} J(\pi_{\theta^k})^{\mathsf{T}}(\theta - \theta^k)$

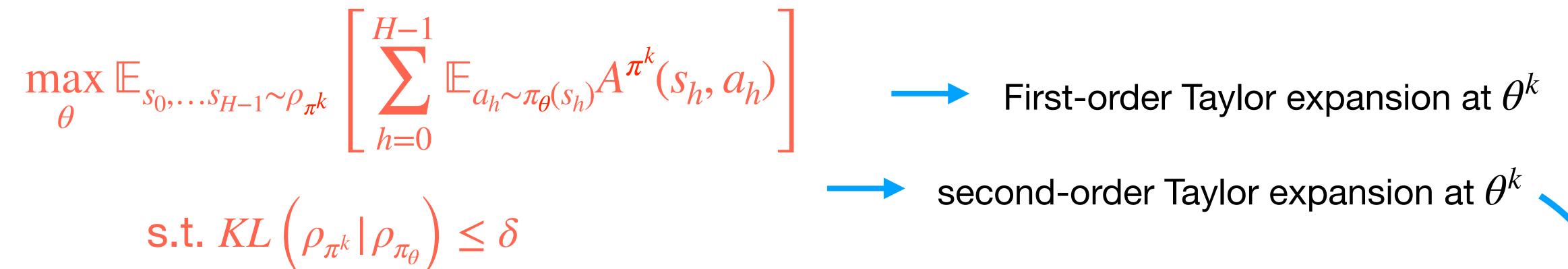
TRPO at iteration k:



Intuition: maximize local adv subject to being incremental (in KL);

$\max_{\theta} \nabla_{\theta} J(\pi_{\theta^k})^{\mathsf{T}}(\theta - \theta^k)$

TRPO at iteration k:

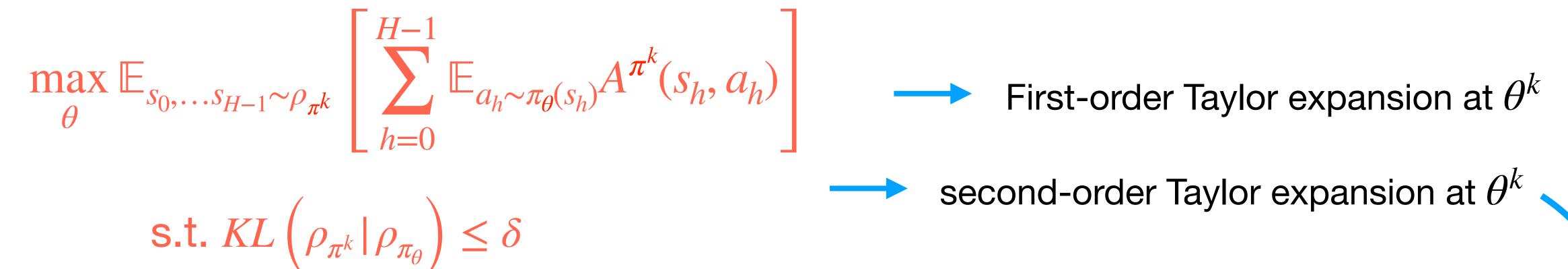


Intuition: maximize local adv subject to being incremental (in KL);

$$\max_{\theta} \nabla_{\theta} J(\pi_{\theta^{k}})^{\mathsf{T}} (\theta - \theta^{k})$$

s.t. $(\theta - \theta^{k})^{\mathsf{T}} F_{\theta^{k}} (\theta - \theta^{k}) \leq \delta$

TRPO at iteration k:



Intuition: maximize local adv subject to being incremental (in KL);

$$\max_{\theta} \nabla_{\theta} J(\pi_{\theta^{k}})^{\mathsf{T}}(\theta - \theta^{k})$$

s.t. $(\theta - \theta^{k})^{\mathsf{T}} F_{\theta^{k}}(\theta - \theta^{k}) \leq \delta$

(Where F_{θ^k} is the "Fisher Information Matrix")

NPG: A "leading order" equivalent program to TRPO:

1. Init
$$\pi_0$$

2. For $k = 0, \dots K$:
 $\theta^{k+1} = \arg \theta^{k+1}$
s.t. $(\theta - \theta)$
3. Return π_K

 $\operatorname{rg\,max}_{\theta} \nabla_{\theta} J(\pi_{\theta^{k}})^{\mathsf{T}}(\theta - \theta^{k}) \\ \theta^{k})^{\mathsf{T}} F_{\theta^{k}}(\theta - \theta^{k}) \leq \delta$

NPG: A "leading order" equivalent program to TRPO:

1. Init
$$\pi_0$$

2. For $k = 0, ..., K$:
 $\theta^{k+1} = \arg \max_{\theta} \nabla_{\theta} J(\pi_{\theta^k})^{\mathsf{T}}(\theta - \theta^k)$
s.t. $(\theta - \theta^k)^{\mathsf{T}} F_{\theta^k}(\theta - \theta^k) \leq \delta$
3. Return π_K

- Where $\nabla_{\theta} J(\pi_{\theta^k})$ is the gradient at θ^k and
- F_{θ} is (basic

Linear objective and quadratic convex constraint, we can solve it optimally!

Linear objective and quadratic convex constraint, we can solve it optimally! Indeed this gives us:

 $\theta^{k+1} = \theta^k + \eta F_{\theta^k}^{-1} \nabla_{\theta} J(\pi_{\theta^k})$

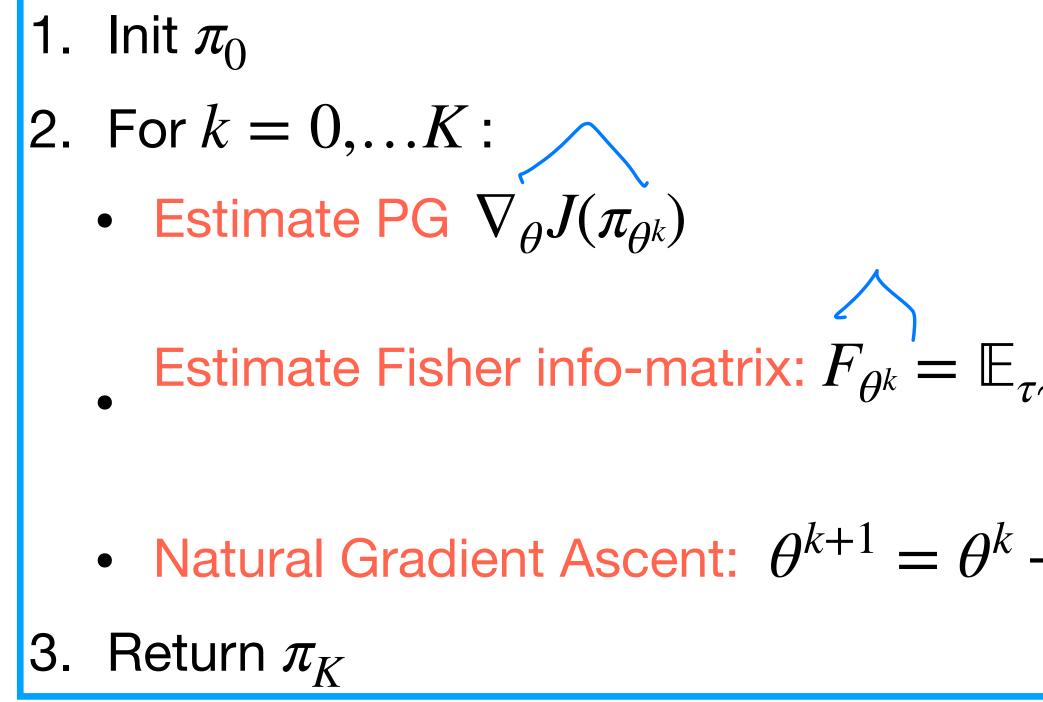
- - Indeed this gives us:

$$\theta^{k+1} = \theta^k + \eta F_{\theta^k}^{-1} \nabla$$
Where $\eta = \sqrt{\frac{\nabla_{\theta} J(\pi_{\theta^k})}{\nabla_{\theta} J(\pi_{\theta^k})}}$

Linear objective and quadratic convex constraint, we can solve it optimally!

 $\mathcal{T}_{\theta} J(\pi_{\theta^k})$ δ $| ^{\mathsf{T}} F_{\theta^k}^{-1} \nabla_{\theta} J(\pi_{\theta^k})$ Lag

An Implementation: Sample Based NPG



$$\pi \sim \rho_{\theta^{k}} \left[\sum_{h=0}^{H-1} \nabla \ln \pi_{\theta^{k}}(a_{h} | s_{h}) \left(\nabla \ln \pi_{\theta^{k}}(a_{h} | s_{h}) \right)^{\mathsf{T}} \right] + \eta \widehat{F_{\theta^{k}}}^{-1} \widehat{\nabla_{\theta} J(\pi_{\theta^{k}})}$$

An Implementation: Sample Based NPG

1. Init π_0

2. For
$$k = 0, ..., K$$
:

• Estimate PG $\nabla_{\theta} J(\pi_{\theta^k})$

Estimate Fisher info-matrix: $F_{\theta^k} = \mathbb{E}_{\tau}$

• Natural Gradient Ascent: $\theta^{k+1} = \theta^k$

3. Return π_K

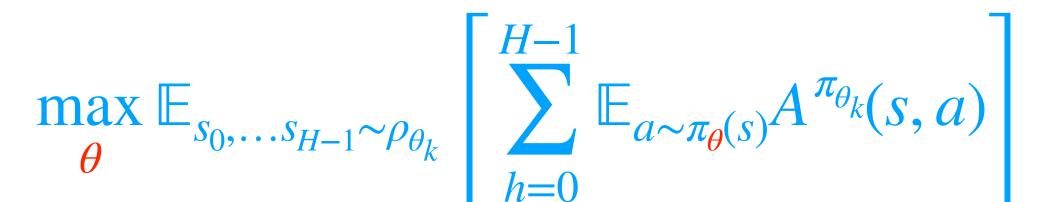
$$\pi \sim \rho_{\theta^{k}} \left[\sum_{h=0}^{H-1} \nabla \ln \pi_{\theta^{k}}(a_{h} | s_{h}) \left(\nabla \ln \pi_{\theta^{k}}(a_{h} | s_{h}) \right)^{\mathsf{T}} \right]$$

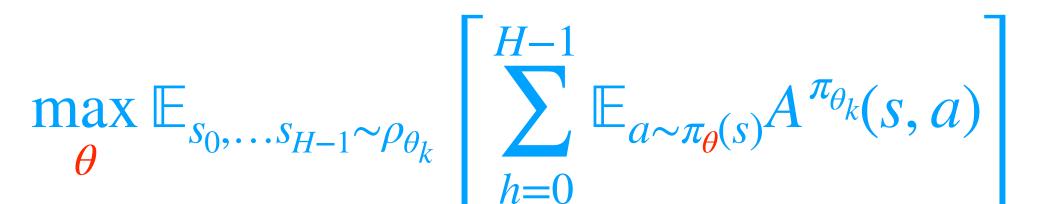
$$+ \eta \widehat{F_{\theta^{k}}}^{-1} \widehat{\nabla_{\theta} J(\pi_{\theta^{k}})}$$

$$\left(\widehat{F_{\theta^{k}}} \xrightarrow{-1} \nabla_{\theta} \widehat{J(\pi_{\theta^{k}})} \right)^{\mathsf{T}} \left(\widehat{F_{\theta^{k}}} \xrightarrow{-1} \nabla_{\theta} \widehat{J(\pi_{\theta^{k}})} \right)^{\mathsf{T}} \left(\widehat{F_{\theta^{k}}} \xrightarrow{-1} \nabla_{\theta} \widehat{J(\pi_{\theta^{k}})} \right)^{\mathsf{T}} \left(\widehat{F_{\theta^{k}}} \xrightarrow{-1} \nabla_{\theta} \widehat{J(\pi_{\theta^{k}})} \right)^{\mathsf{T}} \right]$$

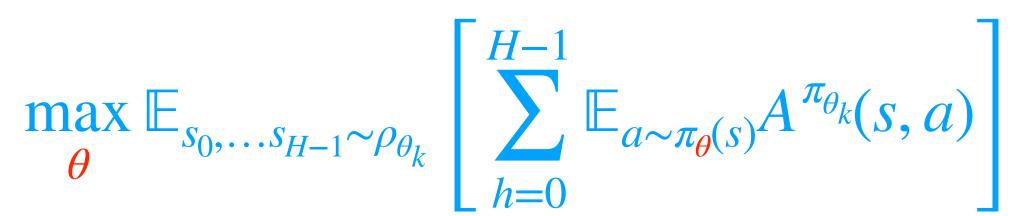
(We will implement it in HW4 on Cartpole)

NPG Derivation





Let's look at a first order Taylor expansion around $\theta = \theta^k$:



Let's look at a first order Taylor expansion around $\theta = \theta^k$:

 $\mathbb{E}_{s_0,\ldots,s_{H-1}\sim\rho_{\theta_k}} \left| \sum_{k=0}^{H-1} \mathbb{E}_{a\sim\pi_{\theta}(s)} A^{\pi_{\theta_k}}(s,a) \right| \approx \mathbb{E}_{s_0,\ldots,s_{H-1}\sim\mu_{\theta_k}}$

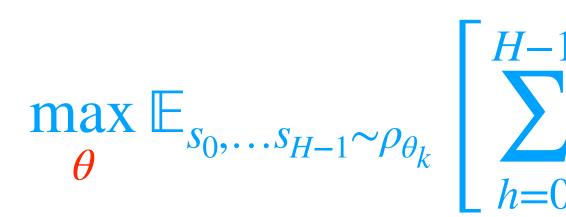
 $\mathcal{A} \vdash (x) + \nabla \vdash (x) \cdot (x - 1)$

$$\sum_{k=0}^{I-1} \mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_k}}(s, a)$$

$$\sum_{s_{0},\ldots,s_{H-1}\sim\rho_{\theta_{k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a\sim\pi_{\theta_{k}}(s)} A^{\pi_{\theta_{k}}}(s,a) \right]$$

$$+ \mathbb{E}_{s_{0},\ldots,s_{H-1}\sim\rho_{\theta_{k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a\sim\pi_{\theta_{k}}(s)} \nabla_{\theta} \ln \pi_{\theta_{k}}(a \mid s) A^{\pi_{\theta_{k}}}(s,a) \right] \cdot (\theta - \theta)$$

$$(\chi - \chi) + O^{\nabla_{\theta} J(\pi_{\theta_{k}})} + O^{$$



Let's look at a first order Taylor expansion around $\theta = \theta^k$:

$$\mathbb{E}_{s_0,\ldots,s_{H-1}\sim\rho_{\theta_k}}\left[\sum_{h=0}^{H-1}\mathbb{E}_{a\sim\pi_{\theta}(s)}A^{\pi_{\theta_k}}(s,a)\right] \approx \mathbb{E}_{s_0,\ldots,s_{H-1}\sim\rho_{\theta_k}}\left[\sum_{h=0}^{H-1}\mathbb{E}_{a\sim\pi_{\theta_k}(s)}A^{\pi_{\theta_k}}(s,a)\right] + \mathbb{E}_{s_0,\ldots,s_{H-1}\sim\rho_{\theta_k}}\left[\sum_{h=0}^{H-1}\mathbb{E}_{a\sim\pi_{\theta_k}(s)}\nabla_{\theta}\ln\pi_{\theta_k}(a\mid s)A^{\pi_{\theta_k}}(s,a)\right] \cdot (\theta - \theta)$$

= "constant" + $\nabla_{\theta} J(\pi_{\theta_{k}})^{\mathsf{T}}(\theta - \theta_{k})$

$$\sum_{k=0}^{I-1} \mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_k}(s, a)}$$

$$\nabla_{\theta} J(\pi_{\theta_k})$$

 $\ell(\theta) := KL(\rho_{\tilde{\theta}} | \rho_{\theta})$

 $\ell(\theta) := KL(\rho_{\widetilde{\theta}} | \rho_{\theta})$

 $\ell(\theta) \approx \ell(\widetilde{\theta}) + \nabla \ell(\widetilde{\theta})^{\mathsf{T}}(\theta - \widetilde{\theta}) + \frac{1}{2}(\theta - \widetilde{\theta})^{\mathsf{T}} \nabla_{\theta}^{2} \ell(\widetilde{\theta})(\theta - \widetilde{\theta})$

 $\ell(\theta) :=$

$\ell(\theta) \approx \ell(\widetilde{\theta}) + \nabla \ell(\widetilde{\theta})^{\mathsf{T}} (\theta -$

$$= KL(\rho_{\widetilde{\theta}} | \rho_{\theta})$$

$$-\widetilde{\theta}) + \frac{1}{2}(\theta - \widetilde{\theta})^{\mathsf{T}} \nabla_{\theta}^{2} \mathscr{E}(\widetilde{\theta})(\theta - \widetilde{\theta})$$

 $\ell(\widetilde{\theta}) = KL(\rho_{\widetilde{\theta}} | \rho_{\widetilde{\theta}}) = 0$

 $\ell(\theta) :=$

$\ell(\theta) \approx \ell(\widetilde{\theta}) + \nabla \ell(\widetilde{\theta})^{\mathsf{T}} (\theta -$

 $\ell(\widetilde{\theta}) = K$

$$= KL(\rho_{\widetilde{\theta}} | \rho_{\theta})$$

$$-\widetilde{\theta}) + \frac{1}{2}(\theta - \widetilde{\theta})^{\mathsf{T}} \nabla_{\theta}^{2} \ell(\widetilde{\theta})(\theta - \widetilde{\theta})$$

$$KL(\rho_{\widetilde{\theta}} | \rho_{\widetilde{\theta}}) = 0$$

We will show that $\nabla_{\theta} \mathscr{E}(\widetilde{\theta}) = 0$, and $\nabla^2 \mathscr{E}(\widetilde{\theta})$ has the claimed form!

Change from trajectory distribution to state-action distribution:

 $\mathscr{E}(\theta) := KL\left(\rho_{\widetilde{\theta}} | \rho_{\theta}\right)$

$$\rho_{\theta} = \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\ln \frac{\rho_{\widetilde{\theta}}(\tau)}{\rho_{\theta}(\tau)} \right]$$

Change from trajectory distribution to state-action distribution:

 $\ell(\theta) := KL\left(\rho_{\widetilde{\theta}} | \rho_{\theta}\right)$

 $\nabla_{\theta} \mathscr{E}(\theta) \Big|_{\theta = \widetilde{\theta}} = \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\nabla_{\theta} \ln \rho_{\widetilde{\theta}}(\tau) \right] \Big|_{\mathfrak{G}} = \widetilde{\mathcal{G}}$

$$p_{\theta} = \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\ln \frac{\rho_{\widetilde{\theta}}(\tau)}{\rho_{\theta}(\tau)} \right]$$

Change from trajectory distribution to state-action distribution:

 $\ell(\theta) := KL\left(\rho_{\widetilde{\theta}} | \rho_{\theta}\right)$

 $\nabla_{\theta} \mathscr{E}(\theta) \Big|_{\boldsymbol{\rho} = \widetilde{\boldsymbol{\rho}}} = \mathbb{E}_{\tau \sim \boldsymbol{\rho}_{\widetilde{\theta}}} \left[\nabla_{\theta} \ln \boldsymbol{\rho}_{\widetilde{\theta}}(\tau) \right]$ $= \sum_{\tau} \rho_{\widetilde{\theta}}(\tau) \frac{\nabla_{\theta} \rho_{\widetilde{\theta}}(\tau)}{\rho_{\widetilde{\theta}}(\tau)}$

$$p_{\theta} = \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\ln \frac{\rho_{\widetilde{\theta}}(\tau)}{\rho_{\theta}(\tau)} \right]$$

Change from trajectory distribution to state-action distribution:

 $\mathscr{E}(\theta) := KL\left(\rho_{\widetilde{\theta}} | \rho_{\theta}\right)$

 $\nabla_{\theta} \mathscr{E}(\theta) \Big|_{\theta = \widetilde{\theta}} = \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\nabla_{\theta} \ln \rho_{\widetilde{\theta}}(\tau) \right]$ $= \sum_{\tau} \rho_{\tilde{\theta}}(\tau) \frac{V_{\theta} \rho_{\tilde{\theta}}(\tau)}{\rho_{\tilde{\theta}}(\tau)}$

$$p_{\theta}) = \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\ln \frac{\rho_{\widetilde{\theta}}(\tau)}{\rho_{\theta}(\tau)} \right]$$

Let's compute the Hessian of the KL-divergence at θ^k

 $\mathscr{E}(\theta) := KL\left(\rho_{\pi_{\theta^k}} | \rho_{\pi_{\theta}}\right) = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^k}}} \left| \ln \frac{\rho_{\pi_{\theta^k}}(\tau)}{\rho_{\pi_{\theta}}(\tau)} \right|$

Let's compute the Hessian of the KL-divergence at θ^k

 $\mathscr{E}(\theta) := KL\left(\rho_{\pi_{\theta^k}} | \rho_{\pi_{\theta}}\right) = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^k}}} \left| \ln \frac{\rho_{\pi_{\theta^k}}(\tau)}{\rho_{\pi_{\theta}}(\tau)} \right|$

$\nabla^{2}_{\theta} \mathscr{E}(\theta) \Big|_{\theta = \widetilde{\theta}} = \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\nabla^{2}_{\theta} \ln \rho_{\widetilde{\theta}}(\tau) \right]$

Let's compute the Hessian of the KL-divergence at θ^{κ}

 $\mathscr{E}(\theta) := KL\left(\rho_{\pi_{\theta^k}} | \rho_{\pi_{\theta}}\right) = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^k}}} \left| \ln \frac{\rho_{\pi_{\theta^k}}(\tau)}{\rho_{\pi_{\theta}}(\tau)} \right|$

 $\nabla^{2}_{\theta} \mathscr{E}(\theta) \Big|_{\theta = \widetilde{\theta}} = \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\nabla^{2}_{\theta} \ln \rho_{\widetilde{\theta}}(\tau) \right]$

 $\left| \mathcal{L}(\theta) \right|_{\theta = \widetilde{\theta}} = \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\nabla_{\theta}^{2} \ln \rho_{\widetilde{\theta}}(\tau) \right]$ $= -\sum_{\tau} \overline{\rho_{\widetilde{\theta}}(\tau)} \left(\frac{\nabla_{\theta}^{2} \rho_{\widetilde{\theta}}(\tau)}{\rho_{\widetilde{\theta}}(\tau)} - \frac{\nabla_{\theta} \rho_{\widetilde{\theta}}(\tau) \nabla_{\theta} \rho_{\widetilde{\theta}}(\tau)^{\mathsf{T}}}{(\rho_{\widetilde{\theta}}(\tau))^{2}} \right)$ $T^{2} \left| \mathcal{L}_{\mathcal{G}} \mathcal{L}(\tau) = \frac{\nabla_{\mathcal{G}} \mathcal{L}(\tau)}{\mathcal{L}_{\mathcal{G}}(\tau)} - \frac{\nabla_{\theta} \rho_{\widetilde{\theta}}(\tau) \nabla_{\theta} \rho_{\widetilde{\theta}}(\tau)^{\mathsf{T}}}{(\rho_{\widetilde{\theta}}(\tau))^{2}} \right)$ $T^{2} \left| \mathcal{L}_{\mathcal{G}} \mathcal{L}(\tau) = \frac{\nabla_{\mathcal{G}} \mathcal{L}(\tau)}{\mathcal{L}_{\mathcal{G}}(\tau)} - \frac{\nabla_{\theta} \rho_{\widetilde{\theta}}(\tau) \nabla_{\theta} \rho_{\widetilde{\theta}}(\tau)^{\mathsf{T}}}{(\rho_{\widetilde{\theta}}(\tau))^{2}} \right)$ $T^{2} \left| \mathcal{L}_{\mathcal{G}} \mathcal{L}(\tau) = \frac{\nabla_{\mathcal{G}} \mathcal{L}(\tau)}{\mathcal{L}_{\mathcal{G}}(\tau)} - \frac{\nabla_{\mathcal{G}} \mathcal{L}(\tau)}{(\mathcal{L}_{\mathcal{G}}(\tau))^{2}} \right)$

Let's compute the Hessian of the KL-divergence at θ^{κ}

 $\mathscr{E}(\theta) := KL\left(\rho_{\pi_{\theta^k}} | \rho_{\pi_{\theta}}\right) = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^k}}} \left| \ln \frac{\rho_{\pi_{\theta^k}}(\tau)}{\rho_{\pi_{\theta}}(\tau)} \right|$

 $\nabla^{2}_{\theta} \mathscr{E}(\theta) \Big|_{\theta = \widetilde{\theta}} = \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\nabla^{2}_{\theta} \ln \rho_{\widetilde{\theta}}(\tau) \right]$ $= -\sum_{\tau} \rho_{\widetilde{\theta}}(\tau) \left(\frac{\nabla_{\theta}^{2} \rho_{\widetilde{\theta}}(\tau)}{\rho_{\widetilde{\theta}}(\tau)} - \frac{\nabla_{\theta} \rho_{\widetilde{\theta}}(\tau) \nabla_{\theta} \rho_{\widetilde{\theta}}(\tau)^{\mathsf{T}}}{(\rho_{\widetilde{\theta}}(\tau))^{2}} \right)$ $= \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\nabla \ln \rho_{\widetilde{\theta}}(\tau) \left(\nabla_{\theta} \ln \rho_{\widetilde{\theta}}(\tau) \right)^{\mathsf{T}} \right] \in \mathbb{R}^{d \times d}$

Let's compute the Hessian of the KL-divergence at θ^k

$$\mathscr{E}(\theta) := KL\left(\rho_{\pi_{\theta^k}}\right) \rho$$

$$\nabla^{2}_{\theta} \mathscr{E}(\theta) \Big|_{\theta = \widetilde{\theta}} = \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\nabla^{2}_{\theta} \ln \rho_{\widetilde{\theta}}(\tau) \right]$$

$$= -\sum_{\tau} \rho_{\widetilde{\theta}}(\tau) \left(\frac{\nabla_{\theta}^{2} \rho_{\widetilde{\theta}}(\tau)}{\rho_{\widetilde{\theta}}(\tau)} - \frac{\nabla_{\theta} \rho_{\widetilde{\theta}}(\tau) \nabla_{\theta} \rho_{\widetilde{\theta}}(\tau)^{\top}}{\left(\rho_{\widetilde{\theta}}(\tau)\right)^{2}} \right)$$

$$= \mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}} \left[\nabla \ln \rho_{\widetilde{\theta}}(\tau) \left(\nabla_{\theta} \ln \rho_{\widetilde{\theta}}(\tau) \right) \right]$$

It's called the Fisher Information Matrix!

 $|\rho_{\pi_{\theta}}) = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^k}}} \left| \ln \frac{\rho_{\pi_{\theta^k}}(\tau)}{\rho_{\pi_{\theta}}(\tau)} \right|$

- Recap
- Algorithms:
 - Trust Region Policy Optimization (TRPO)
 - The Natural Policy Gradient (NPG)

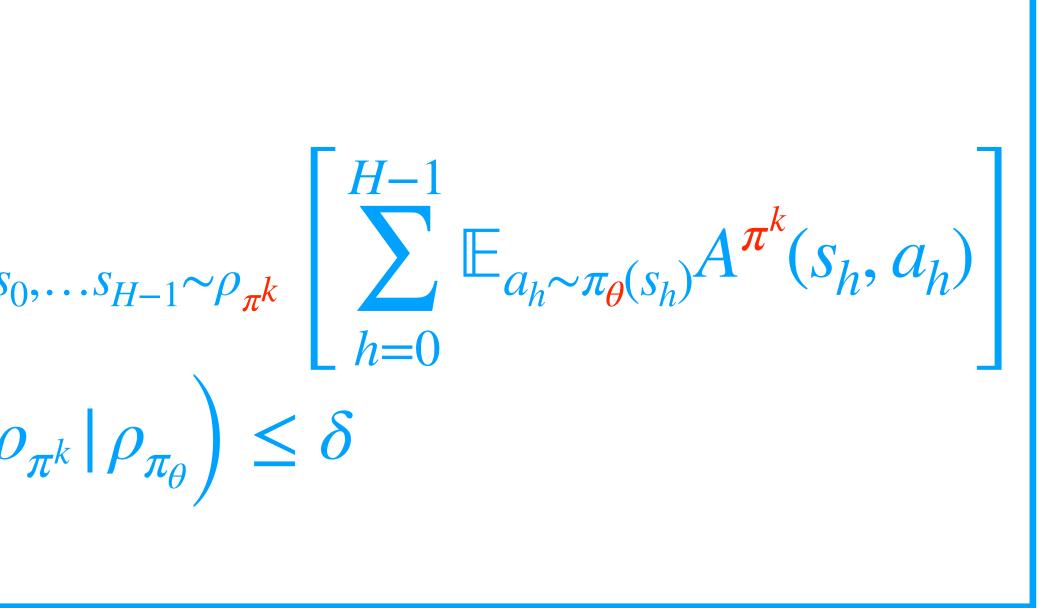
Back to TRPO/NPG

1. Init
$$\pi_0$$

2. For $k = 0, ..., K$:
 $\theta^{k+1} = \arg \max_{\theta} \mathbb{E}_{s_0, ...}$
s.t. $KL\left(\rho_{\pi}\right)$
3. Return π_K

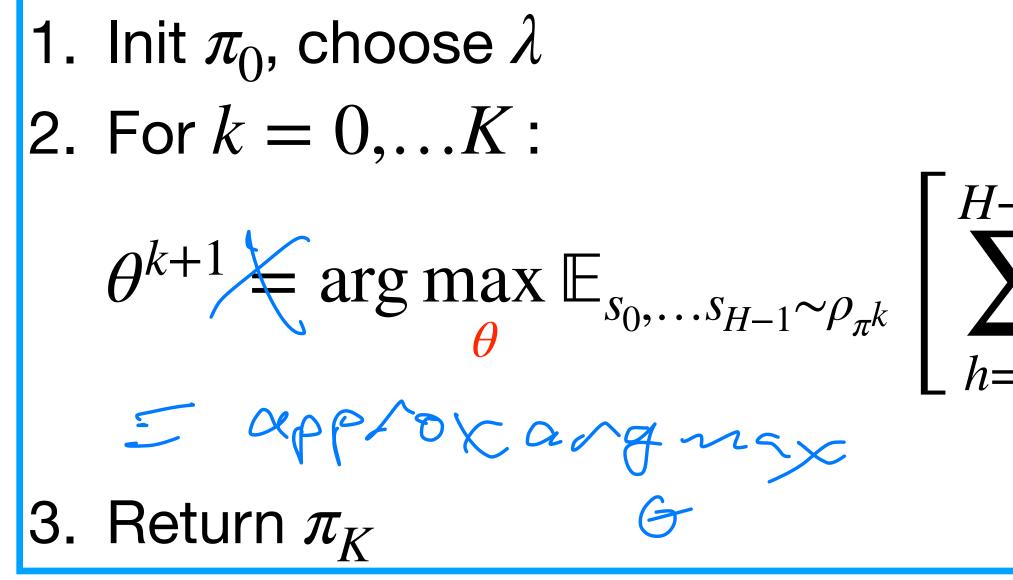
- \bullet
- Can we use a method which only uses gradients? \bullet

Let's try to use a "Lagrangian relaxation" of TRPO



The difficulty with TRPO and NPG is that they could be computationally costly. Need to solve constrained optimization or matrix inversion ("second order") problems.

Proximal Policy Optimization (PPO)



$$\sum_{k=0}^{I-1} \mathbb{E}_{a_{h} \sim \pi_{\theta}(s_{h})} A^{\pi^{k}}(s_{h}, a_{h}) \Bigg] - \frac{\lambda KL\left(\rho_{\pi^{k}} \mid \rho_{\pi_{\theta}}\right)}{\text{regularization}}$$

 $KL\left(\rho_{\pi_{\theta^{k}}}|\rho_{\pi_{\theta}}\right) = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^{k}}}}\left[\ln\frac{\rho_{\pi_{\theta^{k}}}(\tau)}{\rho_{\pi_{\theta}}(\tau)}\right]$

 $KL\left(\rho_{\pi_{\theta^{k}}}|\rho_{\pi_{\theta}}\right) = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^{k}}}}\left[\ln\frac{\rho_{\pi_{\theta^{k}}}(\tau)}{\rho_{\pi_{\theta}}(\tau)}\right]$

 $\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0 | s_0)P(s_1 | s_0, a_0)\dots P(s_{H-1} | s_{H-2}, a_{H-2})\pi_{\theta}(a_{H-1} | s_{H-1})$

$$KL\left(\rho_{\pi_{\theta^{k}}}|\rho_{\pi_{\theta}}\right) = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^{k}}}}\left[\ln\frac{\rho_{\pi_{\theta^{k}}}(\tau)}{\rho_{\pi_{\theta}}(\tau)}\right]$$
$$= \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^{k}}}}\left[\sum_{h=0}^{H-1}\ln\frac{\pi_{\mu^{k}}}{\pi_{\mu^{k}}}\right]$$

 $\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0 \mid s_0)P(s_1 \mid s_0, a_0)\dots P(s_{H-1} \mid s_{H-2}, a_{H-2})\pi_{\theta}(a_{H-1} \mid s_{H-1})$

 $\frac{\pi_{\theta^k}(a_h \,|\, s_h)}{\pi_{\theta}(a_h \,|\, s_h)}$

$$\begin{split} KL\left(\rho_{\pi_{\theta^{k}}}|\rho_{\pi_{\theta}}\right) &= \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^{k}}}}\left[\ln\frac{\rho_{\pi_{\theta^{k}}}(\tau)}{\rho_{\pi_{\theta}}(\tau)}\right] \\ &= \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^{k}}}}\left[\sum_{h=0}^{H-1}\ln\frac{\pi_{\theta^{k}}(a_{h}|s_{h})}{\pi_{\theta}(a_{h}|s_{h})}\right] \\ &= \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^{k}}}}\left[\sum_{h=0}^{H-1}\ln\frac{1}{\pi_{\theta}(a_{h}|s_{h})}\right] + \left[\text{term not a function of }\theta\right] \end{split}$$

 $\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0 | s_0)P(s_1 | s_0, a_0)\dots P(s_{H-1} | s_{H-2}, a_{H-2})\pi_{\theta}(a_{H-1} | s_{H-1})$

Proximal Policy Optimization (PPO)

1. Init
$$\pi_0$$
, choose λ
2. For $k = 0, \dots K$:
use SGD to optimize:
 $\theta^{k+1} \approx \underset{\theta}{\operatorname{arg max}} \ell^k(\theta)$
where:
 $\ell^k(\theta) := \mathbb{E}_{s_0,\dots,s_{H-1}\sim\rho_{\pi^k}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h\sim\pi_{\theta}(s_h)} A^{\pi^k}(s_h, a_h) \right] - \lambda \mathbb{E}_{\tau\sim\rho_{\pi^k}} \left[\sum_{h=0}^{H-1} \ln \frac{1}{\pi_{\theta}(a_h \mid s_h)} \right]$
3. Return π_K

How do we estimate this objective?

Back to Estimating $\ell^k(\theta)$

We want to estimate,

 $\mathbb{E}_{s_0,\ldots,s_{H-1}\sim\rho_{\pi^k}}\left[\sum_{h=0}^{H-1}\mathbb{E}_{a_h\sim\pi_{\theta}(s_h)}A^{\pi^k}(s_h,a_h)\right]$

Back to Estimating $\ell^{k}(\theta)$

We want to estimate,

$$\mathbb{E}_{s_0,\ldots,s_{H-1}\sim\rho_{\pi^k}}\left[\sum_{h=0}^{H-1}\mathbb{E}_{a_h\sim\pi_{\theta}(s_h)}A^{\pi^k}(s_h,a_h)\right]$$

We will use importance sampling:

$$=\mathbb{E}_{s_0,\ldots,s_{H-1}\sim\rho_{\pi^k}}\left[\sum_{h=0}^{H-1}\mathbb{E}_{a_h\sim\pi^k(s_h)}\left[\frac{\pi_{\theta}(s_h)}{\pi^k(s_h)}\right]\right]$$

Back to Estimating $\ell^k(\theta)$

 $\left[\frac{1}{2}A^{\pi^k}(s_h,a_h)\right]$

We want to estimate,

$$\mathbb{E}_{s_0,\ldots,s_{H-1}\sim\rho_{\pi^k}}\left[\sum_{h=0}^{H-1}\mathbb{E}_{a_h\sim\pi_{\theta}(s_h)}A^{\pi^k}(s_h,a_h)\right]$$

We will use importance sampling:

$$= \mathbb{E}_{s_0, \dots, s_{H-1} \sim \rho_{\pi^k}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi^k(s_h)} \left[\frac{\pi_{\theta}(s_h)}{\pi^k(s_h)} \right] \right]$$
$$= \mathbb{E}_{\tau \sim \rho_{\pi^k}} \left[\sum_{h=0}^{H-1} \frac{\pi_{\theta}(s_h)}{\pi^k(s_h)} A^{\pi^k}(s_h, a_h) \right]$$

Back to Estimating $\ell^k(\theta)$

 $\left[-A^{\pi^k}(s_h, a_h) \right]$

Estimating $\ell^k(\theta)$

1. Using *N* trajectories sampled under ρ^k to learn a \tilde{b}_h $\tilde{b}(s,h) \approx V_h^{\pi^k}(s)$

Estimating $\mathcal{C}^{k}(\theta)$

1. Using N trajectories sampled und $\widetilde{b}(s,h) \approx V_h^{\pi^k}(s)$ 2. Obtain M NEW trajectories au_1, \ldots Set $\widehat{\ell}^{k}(\theta) = \frac{1}{M} \sum_{m=1}^{M} \sum_{h=0}^{H-1} \left(\frac{\pi_{\theta}(s_{h})}{\pi^{k}(s_{h})} \right)$

Estimating $\mathcal{C}^{k}(\theta)$

der
$$\rho^k$$
 to learn a \widetilde{b}_h
 $\tau_M \sim \rho^k$
 $\frac{h}{h} \left(R_h(\tau^m) - \widetilde{b}(s_h, h) \right) - \lambda \ln \frac{1}{\pi_{\theta}(a_h \mid s_h)} \right)$

1. NPG: a simpler way to do TRPO, a "pre-conditioned" gradient method.

2. PPO: "first order" approx to TRPO

Attendance: bit.ly/3RcTC9T

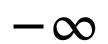
Summary:

Feedback: <u>bit.ly/3RHtlxy</u>

$$(\pi_{\theta}[1], \pi_{\theta}[2]) := \left(\frac{\exp(\theta)}{1 + \exp(\theta)}, \frac{1}{1 + \exp(\theta)}\right)$$

 $J(\theta) = 100 \cdot \pi_{\theta}[1] + 1 \cdot \pi_{\theta}[2]$

$$(\pi_{\theta}[1], \pi_{\theta}[2]) := \left(\frac{\exp(\theta)}{1 + \exp(\theta)}, \frac{1}{1 + \exp(\theta)}\right)$$
$$J(\theta) = 100 \cdot \pi_{\theta}[1] + 1 \cdot \pi_{\theta}[2]$$



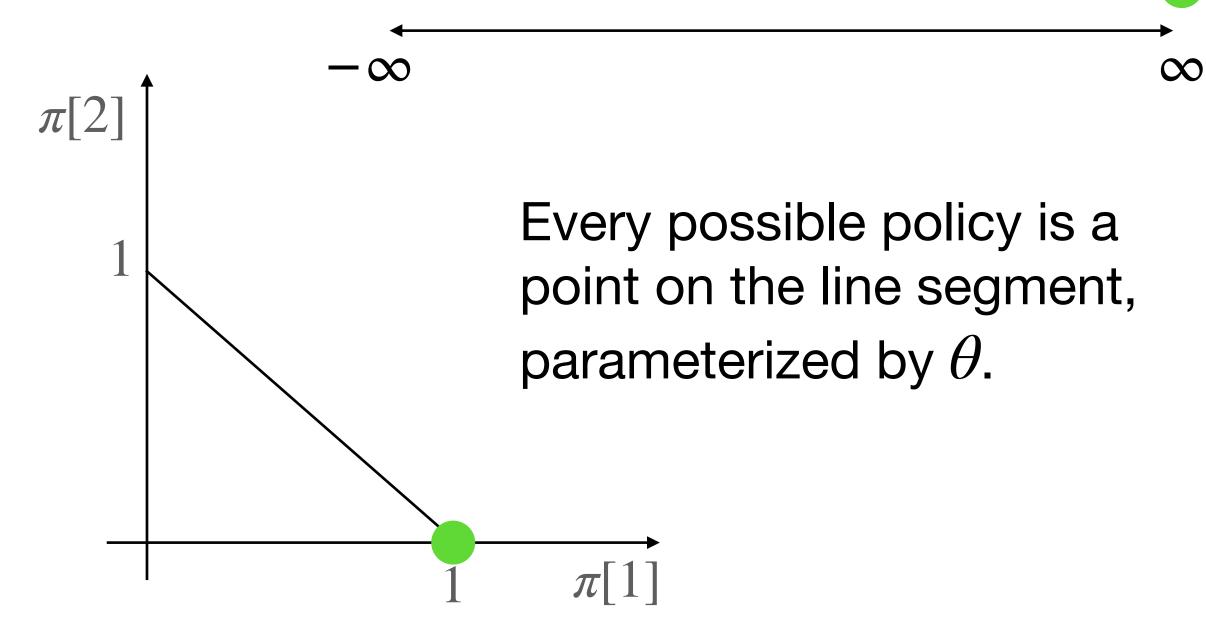
 θ^{\star}

 ∞

29

$$(\pi_{\theta}[1], \pi_{\theta}[2]) := \left(\frac{\exp(\theta)}{1 + \exp(\theta)}, \frac{1}{1 + \exp(\theta)}\right)$$

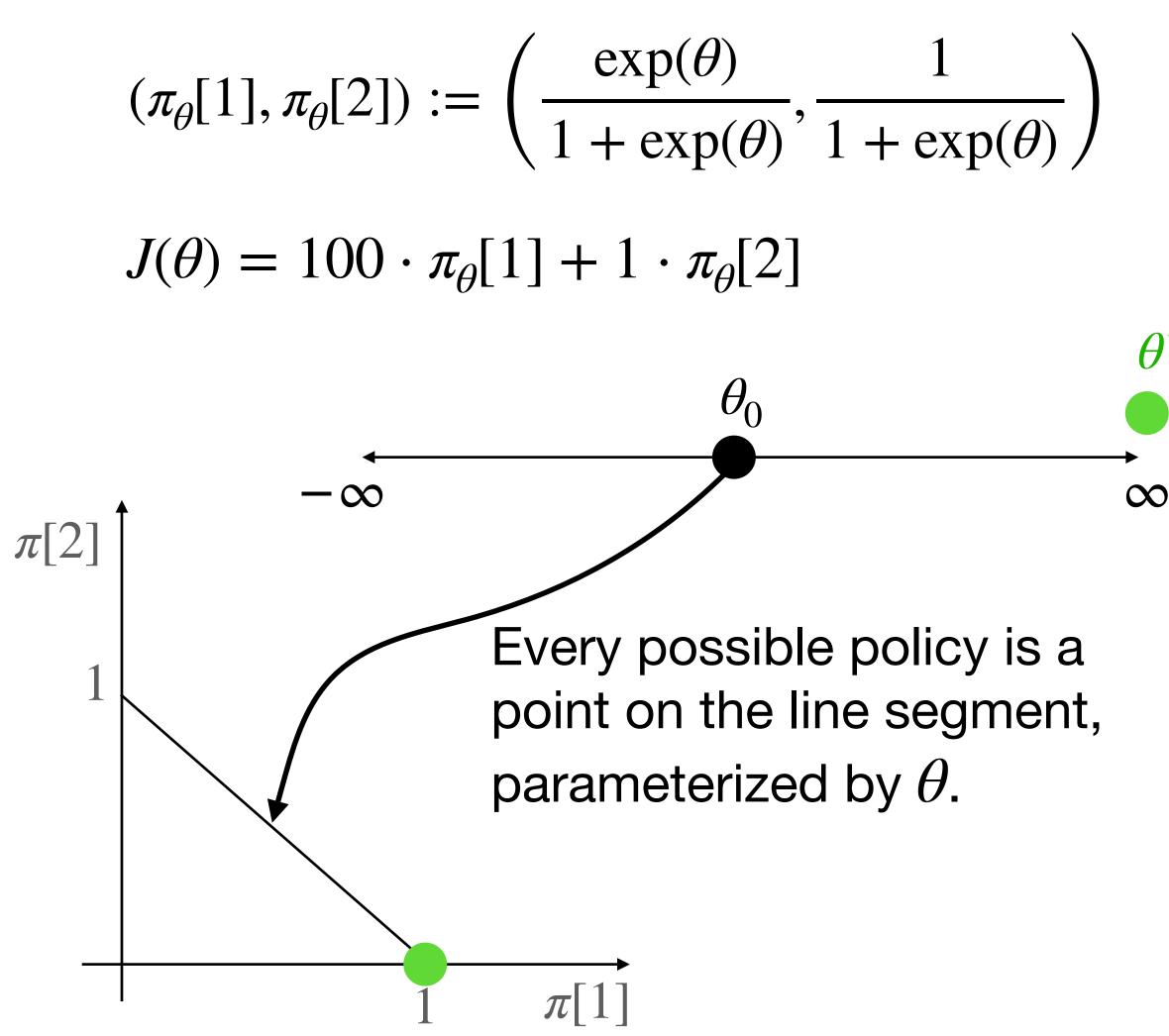
 $J(\theta) = 100 \cdot \pi_{\theta}[1] + 1 \cdot \pi_{\theta}[2]$



 θ^{\star}

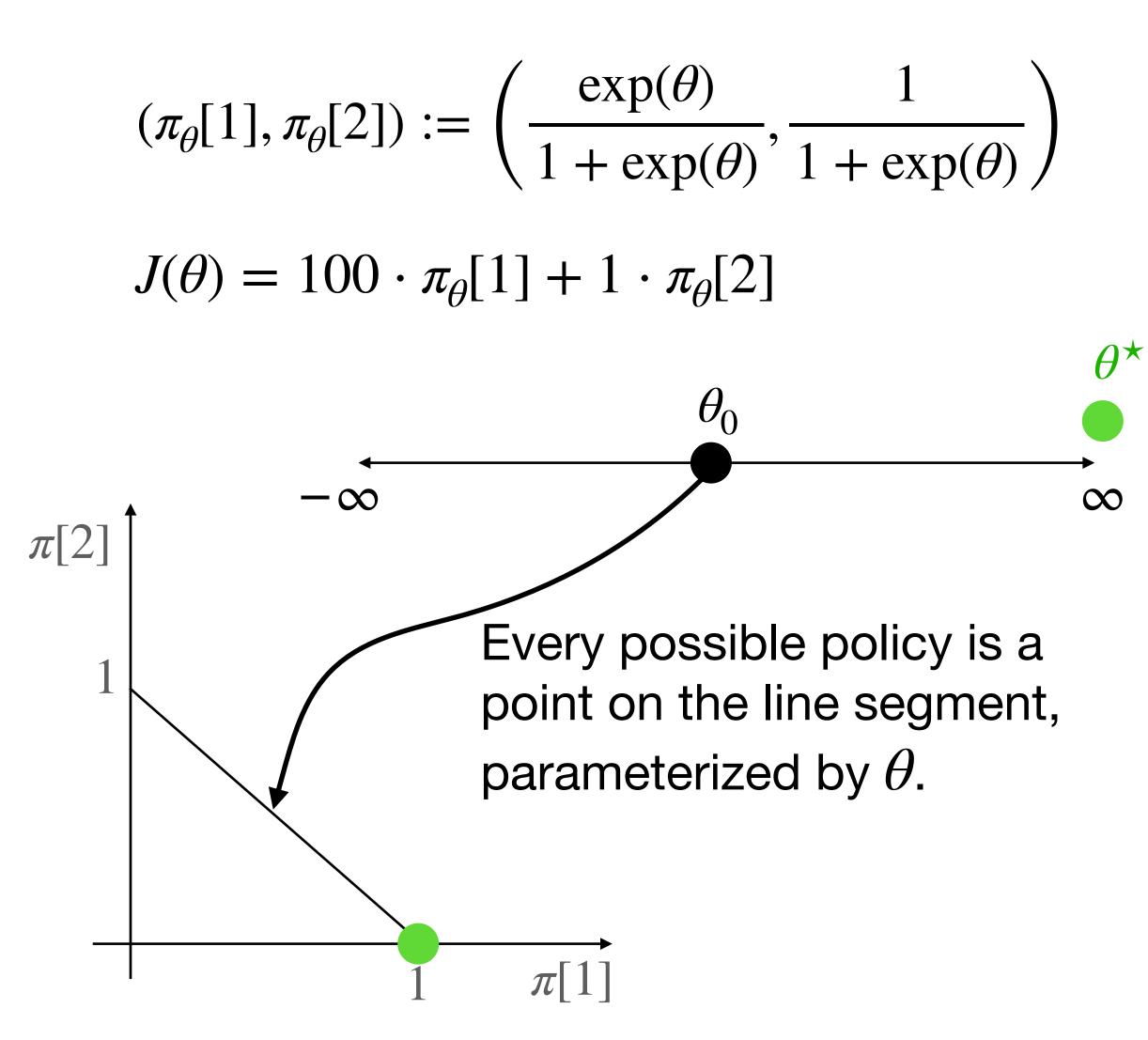
)

29

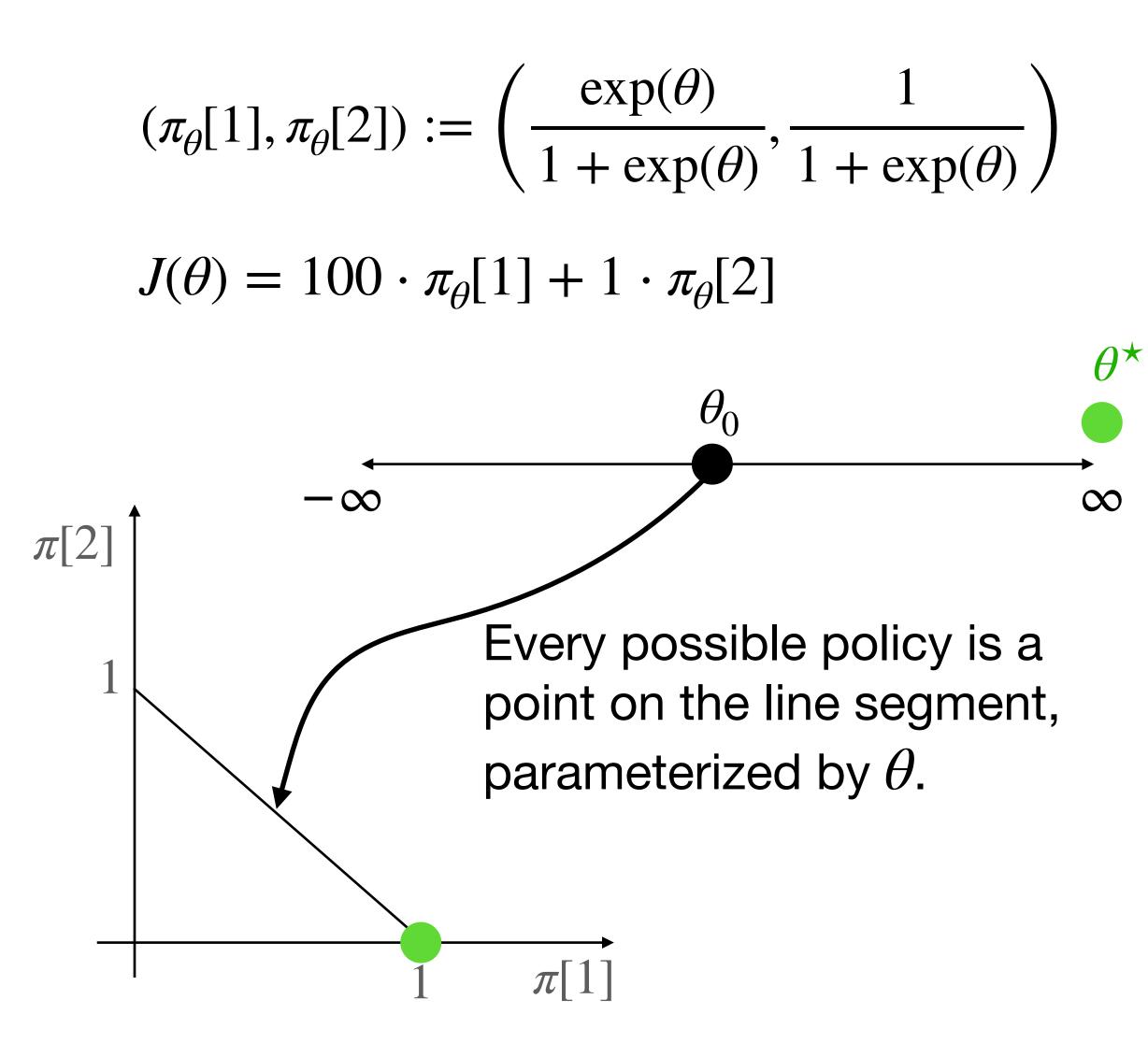


 θ^{\star}

29



Gradient: $J'(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$



Gradient: $J'(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$ Exact PG: $\theta^{k+1} = \theta^k + \eta \frac{99 \exp(\theta^k)}{(1 + \exp(\theta^k))^2}$



Gradient:
$$J'(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$$

Exact PG: $\theta^{k+1} = \theta^k + \eta \frac{99 \exp(\theta^k)}{(1 + \exp(\theta^k))^2}$

i.e., vanilla GA moves to $\theta = \infty$ with smaller and smaller steps, since $J'(\theta) \to 0$ as $\theta \to \infty$

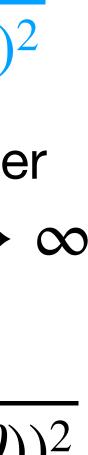


Gradient:
$$J'(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$$

Exact PG: $\theta^{k+1} = \theta^k + \eta \frac{99 \exp(\theta^k)}{(1 + \exp(\theta^k))^2}$

i.e., vanilla GA moves to $\theta = \infty$ with smaller and smaller steps, since $J'(\theta) \to 0$ as $\theta \to \infty$

Fisher information scalar: $F_{\theta} = \frac{\exp(\theta)}{(1 + \exp(\theta))^2}$





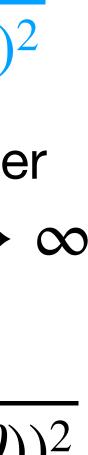
Gradient:
$$J'(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$$

Exact PG: $\theta^{k+1} = \theta^k + \eta \frac{99 \exp(\theta^k)}{(1 + \exp(\theta^k))^2}$

i.e., vanilla GA moves to $\theta = \infty$ with smaller and smaller steps, since $J'(\theta) \to 0$ as $\theta \to \infty$

Fisher information scalar: $F_{\theta} = \frac{\exp(\theta)}{(1 + \exp(\theta))^2}$

NPG:
$$\theta^{k+1} = \theta^k + \eta \frac{J'(\theta^k)}{F_{\theta^k}}$$





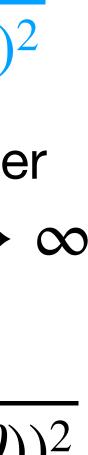
Gradient:
$$J'(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$$

Exact PG: $\theta^{k+1} = \theta^k + \eta \frac{99 \exp(\theta^k)}{(1 + \exp(\theta^k))^2}$

i.e., vanilla GA moves to $\theta = \infty$ with smaller and smaller steps, since $J'(\theta) \to 0$ as $\theta \to \infty$

Fisher information scalar: $F_{\theta} = \frac{\exp(\theta)}{(1 + \exp(\theta))^2}$

NPG: $\theta^{k+1} = \theta^k + \eta \frac{J'(\theta^k)}{F_{\theta^k}} = \theta_t + \eta \cdot 99$





Gradient:
$$J'(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$$

Exact PG: $\theta^{k+1} = \theta^k + \eta \frac{99 \exp(\theta^k)}{(1 + \exp(\theta^k))^2}$

i.e., vanilla GA moves to $\theta = \infty$ with smaller and smaller steps, since $J'(\theta) \to 0$ as $\theta \to \infty$

Fisher information scalar: $F_{\theta} = \frac{\exp(\theta)}{(1 + \exp(\theta))^2}$

NPG:
$$\theta^{k+1} = \theta^k + \eta \frac{J'(\theta^k)}{F_{\theta^k}} = \theta_t + \eta \cdot 99$$

NPG moves to $\theta = \infty$ much more quickly (for a fixed η)

