# Trust Region Policy Optimization \& The Natural Policy Gradient 

## Lucas Janson and Sham Kakade

CS/Stat 184: Introduction to Reinforcement Learning Fall 2023

## Today

- Recap
- Algorithms:
- Trust Region Policy Optimization (TRPO)
- The Natural Policy Gradient (NPG)
- Proximal Policy Optimization (PPO)


## Recap

## (M=1) PG with a Learned Baseline:

1. Initialize $\theta_{0}$, parameters: $\eta_{1}, \eta_{2}, \ldots$
2. For $\mathrm{k}=0, \ldots$ :
3. Sup. Learning: Using $N$ trajectories sampled under $\pi_{\theta^{k}}$, estimate a baseline $\widetilde{b}_{h}$ $\widetilde{b}(s) \approx V_{h}^{\theta^{k}}(s)$
4. Obtain a trajectory $\tau \sim \rho_{\theta^{k}}$

$$
\text { Set } \widetilde{\nabla}_{\theta} J\left(\theta^{k}\right)=\sum_{h=0}^{H-1} \nabla \ln \pi_{\theta^{k}}\left(a_{h} \mid s_{h}\right)\left(R_{h}(\tau)-\widetilde{b}\left(s_{h}\right)\right)
$$

3. Update: $\theta^{k+1}=\theta^{k}+\eta^{k} \widetilde{\nabla}_{\theta} J\left(\theta^{k}\right)$

Note that regardless of our choice of $\widetilde{b}_{h}(s)$, we still get unbiased gradient estimates.

## The Performance Difference Lemma (PDL)

- Let $\rho_{\widetilde{\pi}, s}$ be the distribution of trajectories from starting state $s$ acting under $\pi$. (we are making the starting distribution explicit now).
- For any two policies $\pi$ and $\tilde{\pi}$ and any state $s$,

$$
V^{\tilde{\pi}}(s)-V^{\pi}(s)=\mathbb{E}_{\tau \sim \rho_{\tilde{\pi}, s}}\left[\sum_{h=0}^{H-1} A_{h}^{\pi}\left(s_{h}, a_{h}\right)\right]
$$

Comments:

- Helps us think about error analysis, instabilities of fitted PI, and sub-optimality.
- Helps to understand algorithm design (TRPO, NPG, PPO)
-This also motivates the use of "local" methods (e.g. policy gradient descent)


## Back to Approximate Policy Iteration (API)

-Suppose $\pi^{k}$ gets updated to $\pi^{k+1}$. How much worse could $\pi^{k+1}$ be?

- Suppose at some state $s, \pi^{k+1}$ choose an action which has a negative advantage for $\pi^{k}$.
- Since $\widetilde{A}^{k}(s, a, h) \approx A_{h}^{\pi^{k}}(s, a, h)$, we expect some error.
- In the worst case, let us consider the most negative advantage:

$$
\Delta_{\infty}:=\min _{s \in S} A_{h}^{\pi^{k}}\left(s, \pi^{k+1}(s)\right)
$$

- Here, if $\Delta_{\infty}<0$, it is possible that degradation may occur:

$$
V^{\pi^{k+1}}\left(s_{0}\right) \geq V^{\pi^{k}}\left(s_{0}\right)-H \cdot\left|\Delta_{\infty}\right|
$$

Proof sketch:
-Fitted PI does not enforce that the trajectory distributions, $\rho_{\pi^{k}}$ and $\rho_{\pi^{k+1}}$, be close to each other.

- Suppose the $\rho_{\pi^{k+1}}$ has full support on these worst case states $s$
(i.e. we get trapped at this state where we made a bad choice).


## Trust Region Policy Optimization (TRPO)

1. Init $\pi_{0}$
2. For $k=0, \ldots K$ :

$$
\begin{aligned}
\theta^{k+1}= & \arg \max _{\theta} \mathbb{E}_{s_{0}, \ldots s_{H-1} \sim \rho_{\pi^{k}}}\left[\sum_{h=0}^{H-1} \mathbb{E}_{a_{h} \sim \pi_{\theta}\left(s_{h}\right)} A^{\pi^{k}}\left(s_{h}, a_{h}\right)\right] \\
& \text { s.t. } K L\left(\rho_{\pi^{k}} \mid \rho_{\pi_{\theta}}\right) \leq \delta
\end{aligned}
$$

3. Return $\pi_{K}$

- We want to maximize local advantage against $\pi_{\theta^{k}}$, but we want the new policy to be close to $\pi_{\theta^{k}}$ (in the KL sense)
- How do we implement this with sampled trajectories?


## KL-divergence: measures the distance between two distributions

Given two distributions $P \& Q$, where $P \in \Delta(X), Q \in \Delta(X)$,
KL Divergence is defined as:

$$
K L(P \mid Q)=\mathbb{E}_{x \sim P}\left[\ln \frac{P(x)}{Q(x)}\right]
$$

## Examples:

$$
\begin{gathered}
\text { If } Q=P \text {, then } K L(P \mid Q)=K L(Q \mid P)=0 \\
\text { If } P=\mathcal{N}\left(\mu_{1}, \sigma^{2} I\right), Q=\mathcal{N}\left(\mu_{2}, \sigma^{2} I\right) \text {, then } K L(P \mid Q)=\frac{1}{2 \sigma^{2}}\left\|\mu_{1}-\mu_{2}\right\|^{2}
\end{gathered}
$$

Fact:
$K L(P \mid Q) \geq 0$, and being 0 if and only if $P=Q$

## Estimating TRPO: optional slide

## (see PPO \& Importance sampling for derivation)

1. Initialize staring policy $\pi_{0}$, samples size M
2. For $k=0, \ldots K$ :
3. Using $N$ trajectories sampled under $\rho^{k}$ to learn a $\widetilde{b}_{h}$

$$
\widetilde{b}(s, h) \approx V_{h}^{\pi^{k}}(s)
$$

2. Obtain M NEW trajectories $\tau_{1}, \ldots \tau_{M} \sim \rho^{k}$

Solve the following optimization problem to obtain $\pi_{k+1}$ :

$$
\begin{aligned}
& \max _{\theta} \frac{1}{M} \sum_{m=1}^{M} \sum_{h=0}^{H-1} \frac{\pi_{\theta}\left(s_{h}\right)}{\pi^{k}\left(s_{h}\right)}\left(R_{h}\left(\tau^{m}\right)-\widetilde{b}\left(s_{h}, h\right)\right) \\
& \text { s.t. } \sum_{m=1}^{M} \sum_{h=0}^{H-1} \ln \frac{\pi_{\theta_{k}}\left(a_{h}^{m} \mid s_{h}^{m}\right)}{\pi_{\theta}\left(a_{h}^{m} \mid s_{h}^{m}\right)} \leq \delta
\end{aligned}
$$

Today:

## Today

- Recap
- Algorithms:
- Trust Region Policy Optimization (TRPO)
- The Natural Policy Gradient (NPG)
- Proximal Policy Optimization (PPO)


## TRPO is locally equivalent to the NPG

TRPO at iteration k :
$\max _{\theta} \mathbb{E}_{s_{0}, \ldots s_{H-1} \sim \rho_{\pi^{k}}}\left[\sum_{h=0}^{H-1} \mathbb{E}_{a_{h} \sim \pi_{\theta}\left(s_{h}\right)} A^{\pi^{k}}\left(s_{h}, a_{h}\right)\right]$
$\longrightarrow$ First-order Taylor expansion at $\theta^{k}$
s.t. $K L\left(\rho_{\pi^{k}} \mid \rho_{\pi_{\theta}}\right) \leq \delta$

Intuition: maximize local adv subject to being incremental (in KL);

$$
\begin{gathered}
\max _{\theta} \nabla_{\theta} J\left(\pi_{\theta^{k}}\right)^{\top}\left(\theta-\theta^{k}\right) \\
\text { s.t. }\left(\theta-\theta^{k}\right)^{\top} F_{\theta^{k}}\left(\theta-\theta^{k}\right) \leq \delta
\end{gathered}
$$

(Where $F_{\theta^{k}}$ is the "Fisher Information Matrix")

## NPG: A "leading order" equivalent program to TRPO:

$$
\begin{aligned}
& \text { 1. Init } \pi_{0} \\
& \text { 2. For } k=0, \ldots K \text { : } \\
& \qquad \theta^{k+1}=\arg \max _{\theta} \nabla_{\theta} J\left(\pi_{\theta^{k}}\right)^{\top}\left(\theta-\theta^{k}\right) \\
& \text { s.t. }\left(\theta-\theta^{k}\right)^{\top} F_{\theta^{k}}\left(\theta-\theta^{k}\right) \leq \delta \\
& \text { 3. Return } \pi_{K}
\end{aligned}
$$

- Where $\nabla_{\theta} J\left(\pi_{\theta^{k}}\right)$ is the gradient at $\theta^{k}$ and
- $F_{\theta}$ is (basically) the Fisher information matrix at $\theta \in \mathbb{R}^{d}$, defined as:

$$
\begin{aligned}
F_{\theta} & :=\mathbb{E}_{\tau \sim \rho_{\theta}}\left[\nabla_{\theta} \ln \rho_{\theta}(\tau)\left(\nabla_{\theta} \ln \rho_{\theta}(\tau)\right)^{\top}\right] \in \mathbb{R}^{d \times d} \\
& =\mathbb{E}_{\tau \sim \rho_{\theta}}\left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\left(\nabla_{\theta} \ln \pi_{\theta}\left(a_{h} \mid s_{h}\right)\right)^{\top}\right]
\end{aligned}
$$

## There is a closed form update:

Linear objective and quadratic convex constraint, we can solve it optimally!
Indeed this gives us:

$$
\begin{aligned}
\theta^{k+1} & =\theta^{k}+\eta F_{\theta^{k}}^{-1} \nabla_{\theta} J\left(\pi_{\theta^{k}}\right) \\
\text { Where } \eta & =\sqrt{\frac{\delta}{\nabla_{\theta} J\left(\pi_{\theta^{k}}\right)^{\top} F_{\theta^{k}}^{-1} \nabla_{\theta} J\left(\pi_{\theta^{k}}\right)}}
\end{aligned}
$$

## An Implementation: Sample Based NPG

1. Init $\pi_{0}$
2. For $k=0, \ldots K$ :

- Estimate PG $\nabla_{\theta} J\left(\pi_{\theta^{k}}\right)$
. Estimate Fisher info-matrix: $F_{\theta^{k}}=\mathbb{E}_{\tau \sim \rho_{\theta^{k}}}\left[\sum_{h=0}^{H-1} \nabla \ln \pi_{\theta^{k}}\left(a_{h} \mid s_{h}\right)\left(\nabla \ln \pi_{\theta^{k}}\left(a_{h} \mid s_{h}\right)^{\top}\right]\right.$
- Natural Gradient Ascent: $\theta^{k+1}=\theta^{k}+\eta{\widehat{F_{\theta^{k}}}}^{-1} \widehat{\nabla_{\theta} J\left(\pi_{\theta^{k}}\right)}$

3. Return $\pi_{K}$
(We will implement it in HW4 on Cartpole)

## NPG Derivation

## First Order Expansion on the Objective Function

$$
\max _{\theta} \mathbb{E}_{s_{0}, \ldots s_{H-1} \sim \rho_{\theta_{k}}}\left[\sum_{h=0}^{H-1} \mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\pi_{\theta_{k}}(s, a)}\right]
$$

Let's look at a first order Taylor expansion around $\theta=\theta^{k}$ :

$$
\begin{aligned}
& \mathbb{E}_{s_{0}, \ldots s_{H-1} \sim \rho_{\theta_{k}}}\left[\sum_{h=0}^{H-1} \mathbb{E}_{a \sim \pi_{\theta}(s)} A^{\left.\pi_{\theta_{k}}(s, a)\right] \approx} \begin{array}{rl}
\mathbb{E}_{s_{0}, \ldots s_{H-1} \sim \rho_{\theta_{k}}}\left[\sum_{h=0}^{H-1} \mathbb{E}_{a \sim \pi_{\theta_{k}}(s)} A^{\pi_{\theta_{k}}(s, a)}\right] \\
& +\mathbb{E}_{s_{0}, \ldots s_{H-1} \sim \rho_{\theta_{k}}}\left[\sum_{h=0} \mathbb{E}_{a \sim \pi_{\theta_{k}}(s)} \nabla_{\theta} \ln \pi_{\theta_{k}}(a \mid s) A^{\left.\pi_{\theta_{k}}(s, a)\right]} \cdot\left(\theta-\theta_{k}\right)\right. \\
\nabla_{\theta} J\left(\pi_{\theta_{k}}\right)
\end{array}\right. \\
&={ }^{\text {"constant" }}+\nabla_{\theta} J\left(\pi_{\theta_{k}}\right)^{\top}\left(\theta-\theta_{k}\right)
\end{aligned}
$$

## Taylor Expansion on the Constraint

(we need it to be second-order. Why?)

$$
\begin{gathered}
\ell(\theta):=K L\left(\rho_{\widetilde{\theta}} \mid \rho_{\theta}\right) \\
\ell(\theta) \approx \ell(\widetilde{\theta})+\nabla \ell(\widetilde{\theta})^{\top}(\theta-\widetilde{\theta})+\frac{1}{2}(\theta-\widetilde{\theta})^{\top} \nabla_{\theta}^{2} \ell(\widetilde{\theta})(\theta-\widetilde{\theta}) \\
\ell(\widetilde{\theta})=K L\left(\rho_{\widetilde{\theta}} \mid \rho_{\widetilde{\theta}}\right)=0
\end{gathered}
$$

We will show that $\nabla_{\theta} \ell(\widetilde{\theta})=0$, and $\nabla^{2} \ell(\tilde{\theta})$ has the claimed form!

## The gradient of the KL-divergence is zero at $\theta^{k}$

Change from trajectory distribution to state-action distribution:

$$
\begin{gathered}
\ell(\theta):=K L\left(\rho_{\widetilde{\theta}} \mid \rho_{\theta}\right)=\mathbb{E}_{\tau \sim \rho_{\overparen{\theta}}}\left[\ln \frac{\rho_{\overparen{\theta}}(\tau)}{\rho_{\theta}(\tau)}\right] \\
\left.\nabla_{\theta} \ell(\theta)\right|_{\theta=\widetilde{\theta}}=-\mathbb{E}_{\tau \sim \rho_{\overparen{\theta}}}\left[\nabla_{\theta} \ln \rho_{\widetilde{\theta}}(\tau)\right] \\
=-\sum_{\tau} \rho_{\widetilde{\theta}}(\tau) \frac{\nabla_{\theta} \rho_{\widetilde{\theta}}(\tau)}{\rho_{\widetilde{\theta}}(\tau)} \\
=0
\end{gathered}
$$

Let's compute the Hessian of the KL-divergence at $\theta^{k}$

$$
\ell(\theta):=K L\left(\rho_{\pi_{\phi} \mid} \mid \rho_{\pi_{\theta}}\right)=\mathbb{E}_{\tau \sim \tau_{\pi_{\phi}}}\left[\ln \frac{\rho_{\pi_{\pi_{k}}}(\tau)}{\rho_{\pi_{\theta}}(\tau)}\right]
$$

$$
\left.\nabla_{\theta}^{2} \ell(\theta)\right|_{\theta=\tilde{\theta}}=-\mathbb{E}_{\tau \sim \rho_{\tilde{\theta}}}\left[\nabla_{\theta}^{2} \ln \rho_{\widetilde{\theta}}(\tau)\right]
$$

$$
=-\sum_{\tau} \rho_{\widehat{\jmath}}(\tau)\left(\frac{\nabla_{\hat{\theta}}^{2} \rho_{\widehat{\widehat{\jmath}}}(\tau)}{\rho_{\widehat{\jmath}}(\tau)}-\frac{\nabla_{\theta} \rho_{\tilde{\jmath}}(\tau) \nabla_{\theta} \rho_{\hat{\jmath}}(\tau)^{\top}}{\left(\rho_{\widehat{\jmath}}(\tau)\right)^{2}}\right)
$$

$$
=\mathbb{E}_{\tau \sim \rho_{\widetilde{\theta}}}\left[\nabla \ln \rho_{\widetilde{\theta}}(\tau)\left(\nabla_{\theta} \ln \rho_{\widetilde{\vartheta}}(\tau)\right)^{\top}\right] \in \mathbb{R}^{d \times d}
$$

It's called the Fisher Information Matrix!

## Today

- Recap
- Algorithms:
- Trust Region Policy Optimization (TRPO)
- The Natural Policy Gradient (NPG)

Proximal Policy Optimization (PPO)

## Back to TRPO/NPG

1. Init $\pi_{0}$
2. For $k=0, \ldots K$ :

$$
\begin{aligned}
\theta^{k+1}= & \arg \max _{\theta} \mathbb{E}_{s_{0}, \ldots s_{H-1} \sim \rho_{\pi^{k}}}\left[\sum_{h=0}^{H-1} \mathbb{E}_{a_{h} \sim \pi_{\theta}\left(s_{h}\right)} A^{\pi^{k}}\left(s_{h}, a_{h}\right)\right] \\
& \text { s.t. } K L\left(\rho_{\pi^{k}} \mid \rho_{\pi_{\theta}}\right) \leq \delta
\end{aligned}
$$

3. Return $\pi_{K}$

- The difficulty with TRPO and NPG is that they could be computationally costly. Need to solve constrained optimization or matrix inversion ("second order") problems.
- Can we use a method which only uses gradients?

```
Let's try to use a "Lagrangian relaxation" of TRPO
```


## Proximal Policy Optimization (PPO)

1. Init $\pi_{0}$, choose $\lambda$
2. For $k=0, \ldots K$ :

$$
\theta^{k+1}=\arg \max _{\theta} \mathbb{E}_{s_{0}, \ldots s_{H-1} \sim \rho_{\pi^{k}}}\left[\sum_{h=0}^{H-1} \mathbb{E}_{a_{h} \sim \pi_{\theta}\left(s_{h}\right)} A^{\pi^{k}}\left(s_{h}, a_{h}\right)\right]-\underbrace{\lambda K L\left(\rho_{\pi^{k}} \mid \rho_{\pi_{\theta}}\right)}_{\text {regularization }}
$$

3. Return $\pi_{K}$

## The regularization term is:

$$
\begin{aligned}
& K L\left(\rho_{\pi_{\theta^{k}}} \mid \rho_{\pi_{\theta}}\right)=\mathbb{E}_{\tau \sim \rho_{\pi_{\theta^{k}}}}\left[\ln \frac{\rho_{\pi_{\theta^{k}}}(\tau)}{\rho_{\pi_{\theta}}(\tau)}\right] \\
& =\mathbb{E}_{\tau \sim \rho_{\pi_{\theta^{k}}}}\left[\sum_{h=0}^{H-1} \ln \frac{\pi_{\theta^{k}}\left(a_{h} \mid s_{h}\right)}{\pi_{\theta}\left(a_{h} \mid s_{h}\right)}\right] \\
& =\mathbb{E}_{\tau \sim \rho_{\pi_{\theta^{k}}}}\left[\sum_{h=0}^{H-1} \ln \frac{1}{\pi_{\theta}\left(a_{h} \mid s_{h}\right)}\right]+[\text { term not a function of } \theta]
\end{aligned}
$$

## Proximal Policy Optimization (PPO)

1. Init $\pi_{0}$, choose $\lambda$
2. For $k=0, \ldots K$ :
use SGD to optimize:
$\theta^{k+1} \approx \arg \max _{\theta} \ell^{k}(\theta)$
where:

$$
\ell^{k}(\theta):=\mathbb{E}_{s_{0}, \ldots s_{H-1} \sim \rho_{\pi^{k}}}\left[\sum_{h=0}^{H-1} \mathbb{E}_{a_{h} \sim \pi_{\theta}\left(s_{h}\right)} A^{\pi^{k}}\left(s_{h}, a_{h}\right)\right]-\lambda \mathbb{E}_{\tau \sim \rho_{\pi^{k}}}\left[\sum_{h=0}^{H-1} \ln \frac{1}{\pi_{\theta}\left(a_{h} \mid s_{h}\right)}\right]
$$

3. Return $\pi_{K}$

## How do we estimate this objective?

## Back to Estimating $\ell^{k}(\theta)$

We want to estimate,
$\mathbb{E}_{s_{0}, \ldots, s_{H-1} \sim \rho_{\pi^{k}}}\left[\sum_{h=0}^{H-1} \mathbb{E}_{a_{h} \sim \pi_{\theta}\left(s_{h}\right)} A^{\pi^{k}}\left(s_{h}, a_{h}\right)\right]$
We will use importance sampling:

$$
\begin{aligned}
& =\mathbb{E}_{s_{0}, \ldots s_{H-1} \sim \rho_{\pi^{k}}}\left[\sum_{h=0}^{H-1} \mathbb{E}_{a_{h} \sim \pi^{k}\left(s_{h}\right)}\left[\frac{\pi_{\theta}\left(s_{h}\right)}{\pi^{k}\left(s_{h}\right)} A^{\pi^{k}}\left(s_{h}, a_{h}\right)\right]\right] \\
& \quad=\mathbb{E}_{\tau \sim \rho_{\pi^{k}}}\left[\sum_{h=0}^{H-1} \frac{\pi_{\theta}\left(s_{h}\right)}{\pi^{k}\left(s_{h}\right)} A^{\pi^{k}}\left(s_{h}, a_{h}\right)\right]
\end{aligned}
$$

## Estimating $\ell^{k}(\theta)$

1. Using $N$ trajectories sampled under $\rho^{k}$ to learn a $\widetilde{b}_{h}$

$$
\widetilde{b}(s, h) \approx V_{h}^{\pi^{k}}(s)
$$

2. Obtain M NEW trajectories $\tau_{1}, \ldots \tau_{M} \sim \rho^{k}$

$$
\text { Set } \widehat{\ell}^{k}(\theta)=\frac{1}{M} \sum_{m=1}^{M} \sum_{h=0}^{H-1}\left(\frac{\pi_{\theta}\left(s_{h}\right)}{\pi^{k}\left(s_{h}\right)}\left(R_{h}\left(\tau^{m}\right)-\widetilde{b}\left(s_{h}, h\right)\right)-\lambda \ln \frac{1}{\pi_{\theta}\left(a_{h} \mid s_{h}\right)}\right)
$$

## Summary:

1. NPG: a simpler way to do TRPO, a "pre-conditioned" gradient method.
2. PPO: "first order" approx to TRPO


Feedback:
bit.Iy/3RHt|xy


