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(M=1) PG with a Learned Baseline:

1. Initialize 6,, parameters: 17, 1,, ...
2. Fork=0, ...:

1. Sup. Learning: Using N trajectories sampled under 7z, estimate a baseline 'Eh
- k
b(s) ~ VI (s)

2. Obtain a trajectory 7 ~ p

H-1
Set V ,J(0") = Z Vin zg(ay, | s)) (Rh(f) - b(sh))
h=0

3. Update: 07! = 0" + M’%J(@k)

Note that regardless of our choice of b, (s), we still get unbiased gradient estimates.



The Performance Difference Lemma (PDL)

-Let p ; be the distribution of trajectories from starting state s acting under 7.
(we are making the starting distribution explicit now).
- For any two policies 7 and 7 and any state s,

H-1
VE(s) = Vi(s) = E,., | ), A5y )
h=0

Comments:
*Helps us think about error analysis, instabilities of fitted Pl, and sub-optimality.

*Helps to understand algorithm design (TRPO, NPG, PPO)
» This also motivates the use of “local” methods (e.g. policy gradient descent)



Trust Region Policy Optimization (TRPO)

1. Init 71'0

2. Fork=0,...K:
H-1

— arg m(?X _SO,...SH_lNPﬂk Z
h=0

s.t. KL (pﬂk\p@) <0

9k+1

3. Return 7y

« We want to maximize local advantage against 7,
but we want the new policy to be close to 7, (in the KL sense)

e How do we implement this with sampled trajectories?



TRPO is locally equivalent to the NPG

TRPO at iteration k:

H-1
max [ Z - A”k(s a,) k
g S0 SH-1P gk Ay~ 7y(Sp) h> ~h —» First-order Taylor expansion at &
h=0

—» second-order Taylor expansion at o
s.t. KL (pﬂk\ p@) <5

Intuition: maximize local adv subject
T k
to being incremental (in KL): mHaX Vej(ﬂek) (0 —6%)

s.t. (0 —0NTF (60— 0 <6

(Where ng is the “Fisher Information Matrix”)



NPG: A “leading order” equivalent program to TRPO:

1. Init 71'0

2. Fork=0,...K:
0! = arg max V@J(ﬂ:@k)_r(g — 69
0

s.t. (0 — 0N F (-0 <6
3. Return 7y

. Where V,J(7,) is the gradient at 8% and
« Fy,is (basically) the Fisher information matrix at 9_6 IRd, defined as:

F,:= Volnpy(2)( Vglnpy()) | € R

~pg

H—-1
T
_TN,O@ Z V@ln ﬂ@(ah ‘ Sh)< V@ln ﬂe(ah ‘ Sh))
h=0




There Is a closed form update:

Linear objective and quadratic convex constraint, we can solve it optimally!

Indeed this gives us:

Ot = 0" + nF ' V o J(my)

0
Where 11 = / P
V Vo (g TFV o T (750




An Implementation: Sample Based NPG

1. Init 71'0

2. Fork = O,...K:/\
o Estimate PGV, J(7my)

A

H—1
.
Estimate Fisher info-matrix: Fe = E., | Z Vin zy(a, | Sh)( Vin zyday, | Sh))
h=0

/\—1 —_—

. Natural Gradient Ascent: @<t = g% + F(gl?'b'j:>v(gj(ﬂ(gk)

3. Return g

10



Example of Natural Gradient on 1-d problem: 2 actions, 1 state

0 1
(ol 1], mpl2]) := ( exp(6) )

1 +exp(@) 1+ exp(6)
JO@) =100 - [ 1] + 1 - my|2]

11
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Every possible policy is a
point on the line segment,
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1 ﬂ[lj
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Example of [ga)tural Gradient on 1-d problem: 2 actions, 1 state

(- P(O)
Vex o 163 Se/(:éﬂ x pLEG
(ﬂ- [1]971-6’[2]) .= ( p ’ )
7 1 +exp(d)’ 1 + exp(6) — %
J(O) = 100 - z[1] + 1 - 7,[2] @?‘f 8%
9*
0 —
. : V@B rrpT

| 2] A

Every possible policy is a
point on the line segment,

parameterized by 0.

1 ﬂ[lj
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Gradient: J'(0) =

99 exp(0)

(1 + exp(0))*
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0 1
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Every possible policy is a
point on the line segment,

parameterized by 0.

1 ﬂ[lj

11

99 exp(0)
(1 + exp(0))?
99 exp(6%)

Gradient: J'(0) =

Exact PG: 9ct! = 9% +

! (1 + exp(6¥))?
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Example of Natural Gradient on 1-d problem: 2 actions, 1 state

99 v,
(ol 11, my[2]) := ( exp©) : ) Gradient: J/(0) = exp(0) 2
T N+ exp(0)” 1+ exp(6) (1 + exp(0))
99 O
J(0) =100 - zy[1] + 1 - z[2] Exact PG: OF+! = gk & exp(0”)

! (1 + exp(6¥))?

0 .e.. vanilla GA moves to = oo with smaller

oo and smaller steps, since J'(f) > 0 as 6 — oo

Every possible policy is a f/é\ — ‘fﬁ [/2 \7% T (1D F— f@(@} Vé?@-@
point on the line segment,
parameterized by 6.

1 Jr[lj
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Example of Natural Gradient on 1-d problem: 2 actions, 1 state
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Example of Natural Gradient on 1-d problem: 2 actions, 1 state
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Back to TRPO/NPG

1. Init 7[0

2. Fork=0,...K:
H-1

— al‘g mHaX _SO,...SH_lNPﬂk 2
h=0

s.t. KL (pﬂk\p@) <0

9k+1

3. Return 7y

The difficulty with TRPO and NPG is that they could be computationally costly.
Need to solve constrained optimization or matrix inversion (“second order”) problems.
Can we use a method which only uses gradients?

Let’s try to use a “Lagrangian relaxation” of TRPO

14



Proximal Policy Optimization (PPO)

1. Init m,, choose 4
2. Fork=0,...K:

| k
9k+ — arg m@aX _SO,...SH_INpﬂ_k Z _Cthﬁ'g(Sh)Aﬂ (Sh9 ah) _AKL (p]l'k ‘ pﬂ'@)

regularization
3. Return 7y

15



The regularization term is:

Pr,(T)
KL (pﬂgk‘pﬂ(g) — _TNpﬂek In P (T)
g

16



The regularization term is:

P@(T) = ﬂ(So)ﬂe(ao | So)P (S1 | S0 61())- P (SH_1 | SH_95 aH_z)ﬂe(aH_1 | SH_1)

Pr,(T)
KL (pﬂgk‘pﬂ(g) — _TNpﬂgk In P (T)
g

16



The regularization term is:

P@(T) = /4(50)7[9(61() | So)P (51 ‘S(), 61())- P (SH_1 ‘SH_Qa aH_z)ﬂe(aH_1 ‘SH_1)

Pr,(T)
KL (pﬂgk‘pﬂ(g) — _TNpﬂek In P (T)
g

H-1

Z ﬂ'gk(ah ‘ Sh)
- In

T~Pr
= mla,|sp)

ok

16



The regularization term is:

P@(T) = M(So)ﬂe(ao | So)P (51 ‘S09 61())- P (SH_l ‘SH_Qa aH_z)ﬂg(ClH_1 ‘SH_1)

pﬂgk(f)
KL (p | P ”@) T Ty In P (T)
g

H-1
— ﬂ'gk(ah ‘ Sh)
TNpﬂek [ Z ln ]

= mla,|sp)

H-1 1
oty 2 In +

term not a function of 4

16



Proximal Policy Optimization (PPO)

1. Init 7z, choose 4

2. Fork=0,...K:
use SGD to optimize:

0! ~ arg max £%(6)
0
where:
H-1 )
fk(9:=‘ N —NSAﬂS,Cl — M In
( ) S0s- - -SH_1~P -k hgo an~7,(Sp) (h h) Prk Z ﬂg(ah‘sh)

3. Return g

How do we estimate this objective”?

17
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Importance Sampling

« Suppose we seek to estimate EXN];[ f(x)].

19



Importance Sampling Sl
/(

 Suppose we seek to estimate £_~| f(x)]. Bsgy [ me [\4 s J
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« we are not able to collect values of f(x) for x ~ p.
(e.g. we have already collected our data from some costly experiment).
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(x)| = fP (=) &(X) — 2 1<) 0;0;7) (<) vE ﬁ%}
- P

» Note: £, 5 [
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 Assume: we have an (i.i.d.) dataset , where p Is known, and

« fand p are known.

« we are not able to collect values of f(x) for x ~ p.
(e.g. we have already collected our data from some costly experiment).

p(x)
- Note: £, [f(x)] = E [p(x) f(x)]

An unbiased estimate of £/__~| /(x)]| is given by i Z PLx) f(x;)
’ ! N = p(x;)

l
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Importance Sampling

 Suppose we seek to estimate £_~| f(x)].

« Assume: we have an (i.l.d.) dataset x, .. .x,, where x. ~ p, where p is known, and

« fand p are known.

« we are not able to collect values of f(x) for x ~ p.
(e.g. we have already collected our data from some costly experiment).

. Note: £, [f(0)] = £, [p s f(x)]

(x)
An unbiased estimate of £ [ f(x)| is given by — Z Px) f(x;)
y p(x;)

* Terminology:
p(x) is the target distribution; p(x) is the proposal distribution;
p(x)/p(x) is the likelihood ratio.
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Importance Sampling

 Suppose we seek to estimate £_~| f(x)].

« Assume: we have an (i.l.d.) dataset x, .. .x,, where x. ~ p, where p is known, and

« fand p are known.

« we are not able to collect values of f(x) for x ~ p.
(e.g. we have already collected our data from some costly experiment).

- Note: £, [f(x)] = E_p [p(x) f(x)]

(x)
An unbiased estimate of £ [ f(x)| is given by — Z Px) f(x;)
y p(x;)

* Terminology:
p(x) is the target distribution; p(x) is the proposal distribution;

p(x)/p(x) is the likelihood ratio.
 \What about the variance of this estimator?

19



Importance Sampling & Variance
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Back to Estimating £~(9)



Back to Estimating £~(9)

 To estimate,

£X(0) =

S0 - - .SH_le][k l

H-1

2

h=0

k
_Cthﬂ'(g(Sh)Aﬂ (Sh’ ah)] o A’

|
A lz ’ ”e(ah\sh)]



Back to Estimating £~(9)

 To estimate,

H—1
£0) :=E = A" (s, — Ak ln

e we Wwill use

H-1

I H-] ﬂ@(Sh) o 1
4 (6) .= _SO,...SH_leﬂk Z _ahrvyrk(sh) ﬂk(Sh)A (Slfv ah) _A_TNpﬂk Z In

= mlaylsy)




Back to Estimating G
¢ [V4TA)

v '

 To estimate,

) H-1 c/ i
2 (9) = =50s+ - SH_1~P gk Z _ah"’”e(Sh)A]Z (Sh’ ah) — AE TPk 2 In
i ﬂe(ah | s7)

e we Wwill use

H-1

k¢ )\ - (Y To(Sp) o 1
f (6)) - _SO,...SH_lNIOﬂk Z —a, ~*(s;,) ﬂk(Sh)A (Slfv ah) _/I_Trvpﬂk Zln

= maylspy)
H-1
S A”k(sh, a,) — Aln :
=\ 7(sp) 7o(ay, | Sp)

|
N
l
=
IR
]



Estimating £2%(6)



Estimating 2%(0)

1. Using N trajectories sampled under p* to learn a b,

b(s, h) = V7 (s)

22



Estimating 2%(0)

1. Using N trajectories sampled under pk to learn a 'Eh
b(s,h) =~ V7 (s)
2. Obtain M NEW trajectorles Ty oo Ty ™~ pk

_ AN
Set 7 “(0) = f Hz (”H(Sh) (Rh(Tm) _ 'E(s,j,%)) _Jln

k
mlhO E(S;;)

|
rro(ay,| sy, )

0€D Come ﬁf/ s 3/\"”( Efopg

o Z\ ((9,) é[<+(ft M/ﬁvw/u% /@ (é)
” 5~
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Meta-Approach: CPI/TRPO/NPG/PPO are all pretty similar.
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Meta-Approach: CPI/TRPO/NPG/PPO are all pretty similar.

1. Init 71'0
2. Fork=0,...K:

k+1 0 — = ¢
nt ~ arg m@ax A (z7), where Ay(7) = g s, ~p, Z amn(s)AT (S ap)

such that p, is “close” to p«

 CPIl: conservative policy iteration

uses unconstrained optimization: 7 ~ arg max Ak(ﬂﬁ),
0
enforces closeness with “mixing”: R (1 —a)- ™+ a - 7t

 [RPO: use KL to enforce closeness.
« NPG: is TRPO up to “leading order” (via Taylor’s theorem).
 PPO: uses a Lagrangian relaxation (i.e. regularization)

3. Return g

24



“Lack of Exploration” leads to Optimization and Statistical Challenges

A\~
TEAVER" O
S 0 if R=1

.

S — —————
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TR ()

So T R=1

——— —

- _—

» Suppose |5 | ~ H & pu(sy) = 1 (i.e. we start at ).
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“Lack of Exploration” leads to Optimization and Statistical Challenges
AN ()

So  +— R=1

a

S —

—————— eee———

» Suppose |5 | ~ H & pu(sy) = 1 (i.e. we start at ).
. A randomly initialized policy z° has prob. O(1/3") of hitting the goal state in a trajectory.
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N\~ 9
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So T R=1
- S states - Thrun 92

» Suppose |5 | ~ H & pu(sy) = 1 (i.e. we start at ).
. A randomly initialized policy z° has prob. O(1/3") of hitting the goal state in a trajectory.
* Implications:

 The following sample based approach, with yi(s,) = 1, require O(3") trajectories.

 Holds for (sample based) Fitted DP
 Holds for (sample based) PG/CPI/TRPO/NPG/PPO
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“Lack of Exploration” leads to Optimization and Statistical Challenges

N\~ 9
TEAVER"
So T R=1
- S states - Thrun 92

Suppose | S| ~ H & ju(sy) = 1 (i.e. we start at s).
A randomly initialized policy 7° has prob. O(1/3") of hitting the goal state in a trajectory.
Implications:

 The following sample based approach, with yi(s,) = 1, require O(3") trajectories.

 Holds for (sample based) Fitted DP
 Holds for (sample based) PG/CPI/TRPO/NPG/PPO

Basically, for these approaches, we are stuck without exploration, if y:(s,) = 1.

25



Let’'s examine the role of i

S states Thrun 92
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Let’s examine the role of i c o
0 / R=1

» Suppose that somehow the distribution ¢ had better coverage.

S states " Thrun 92
e e.g, 4 was uniform over the all states in our toy problem, then all approaches we
covered would work (with mild assumptions )
* Theory:
(assuming some “coverage”)
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Let’'s examine the role of i

» Suppose that somehow the distribution ¢ had better coverage.

e e.g, 4 was uniform over the all states in our toy problem, then all approaches we
covered would work (with mild assumptions )

* Theory: CPI/TRPO/NPG/PPO have better guarantees than fitted DP methods

(assuming some “coverage”)
e Strategies without coverage:

* |f we have a simulator, sometimes we can design u to have better coverage.

* this is helpful for robustness as well.
e |mitation learning (next time).

* An expert gives us samples from a “good” /.

* EXxplicit exploration:

« UCB-VI: we’ll merge two good ideas!

* Encourage exploration in PG methods.
* Try with reward shaping

26
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Aside: Brittle policies if we train starting from only from one configuration!

e [Rajeswaran, Lowrey, Todorov, K. 2017]: showed policies optimized for a single
starting configuration s, are not robust!
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Aside: Brittle policies if we train starting from only from one configuration!

e [Rajeswaran, Lowrey, Todorov, K. 2017]: showed policies optimized for a single
starting configuration s, are not robust!

e How to fix this?

o Training from different starting configurations sampled from s, ~ s fixes this.

m@ax E G~ ﬂ[VQ(SO)]

e The measure 4 is also relevant for robustness.

27



OpenAl: progress on dexterous hand manipulation



OpenAl: progress on dexterous hand manipulation

A lGsh Giraffe
Perturbation
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OpenAl: progress on dexterous hand manipulation

Trained with “domain randomization”

Basically, the measure 5, ~ 1 was
diverse.

Jash Giraffe
Perturbation

28



What about guarantees?
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* The hope is that (average case) “supervised learning” works, then RL would also work.
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* The hope is that (average case) “supervised learning” works, then RL would also work.

[Theorem:] (informal, see AJKS Ch 4+13) for log linear policies,

» Approximation error: For all policies, suppose that for all r,
| 1 H-l
minE,, |— D (0" (spa) — 07 (s ay))? | <6

0 H
h=0
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What about guarantees?

* The hope is that (average case) “supervised learning” works, then RL would also work.

[Theorem:] (informal, see AJKS Ch 4+13) for log linear policies,

» Approximation error: For all policies, suppose that for all r,
| 1 H-l
minE,, |— D (0" (s a) — 07 (s )| <6

0 H
h=0

- Sample size: Suppose that we use a # samples that is poly ind & 1/¢,

for both fittedPl and NPG.
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What about guarantees?

* The hope is that (average case) “supervised learning” works, then RL would also work.

[Theorem:] (informal, see AJKS Ch 4+13) for log linear policies,

» Approximation error: For all policies, suppose that for all r,
H-1

, 1
mem R Z (Qﬂ(sh’ ay) = 0" p(s), ah))z <0
h=0

- Sample size: Suppose that we use a # samples that is poly in d & 1/¢,,, for both fittedPl and NPG.

- Coverage: suppose that u has coverage over the marginal distribution p_..(s | /):

max (pﬂ'*(s ‘ h) ) S C
.l p(s)

- Computation: suppose we run NPG with poly in 1/¢, .,

» Theorem: NPG will return a policy with sub-optimality determined by C and the average case error 0:
J(®) > J(z*) — €, — 2H*CS

H iterations.
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Summary:

1. NPG: a simpler way to do TRPO, a “pre-conditioned” gradient method.
2. PPO: “first order” approx to TRPO

Attendance: Feedback:
bit.ly/3RcTCOT bit.ly/3RHtIxy
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