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(M=1) PG with a Learned Baseline:

1. Initialize , parameters: 

2. For k = 0, … : 


1. Sup. Learning: Using  trajectories sampled under , estimate a baseline  



2. Obtain a trajectory  

Set  

3. Update: 

θ0 η1, η2, …

N πθk b̃h
b̃(s) ≈ Vθk

h (s)
τ ∼ ρθk

∇̃ θJ(θk) =
H−1

∑
h=0

∇ln πθk(ah |sh)(Rh(τ) − b̃(sh))
θk+1 = θk + ηk ∇̃ θJ(θk)
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Note that regardless of our choice of , we still get unbiased gradient estimates.b̃h(s)



The Performance Difference Lemma (PDL)
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•Let  be the distribution of trajectories from starting state  acting under .  
(we are making the starting distribution explicit now).

•For any two policies  and  and any state , 

	  

 

Comments:

•Helps us think about error analysis, instabilities of fitted PI, and sub-optimality.

•Helps to understand algorithm design (TRPO, NPG, PPO)

•This also motivates the use of “local” methods (e.g. policy gradient descent)

ρπ̃,s s π

π π̃ s

Vπ̃(s) − Vπ(s) = %τ∼ρπ̃,s [
H−1

∑
h=0

Aπ
h (sh, ah)]



1. Init 

2. For  :  

	  

	 	 s.t. 


3. Return 

π0
k = 0,…K

θk+1 = arg max
θ

%s0,…sH−1∼ρπk [
H−1

∑
h=0

%ah∼πθ(sh)A
πk(sh, ah)]

KL (ρπk |ρπθ) ≤ δ
πK
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• We want to maximize local advantage against ,  
but we want the new policy to be close to  (in the KL sense) 

• How do we implement this with sampled trajectories?

πθk

πθk

Trust Region Policy Optimization (TRPO)



TRPO is locally equivalent to the NPG

max
θ

%s0,…sH−1∼ρπk [
H−1

∑
h=0

%ah∼πθ(sh)A
πk(sh, ah)]

s.t. KL (ρπk |ρπθ) ≤ δ

First-order Taylor expansion at θk

second-order Taylor expansion at θk

max
θ

∇θJ(πθk)⊤(θ − θk)
s.t. (θ − θk)⊤Fθk(θ − θk) ≤ δ

(Where  is the “Fisher Information Matrix”)Fθk

Intuition: maximize local adv subject 
to being incremental (in KL);

TRPO at iteration k:
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1. Init 

2. For  :  

	  

	  s.t. 

3. Return 

π0
k = 0,…K

θk+1 = arg max
θ

∇θJ(πθk)⊤(θ − θk)
(θ − θk)⊤Fθk(θ − θk) ≤ δ

πK
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NPG: A “leading order” equivalent program to TRPO:

• Where  is the gradient at  and 

•  is (basically) the Fisher information matrix at , defined as:  

	  
 

 	     

∇θJ(πθk) θk

Fθ θ ∈ ℝd

Fθ := %τ∼ρθ [∇θln ρθ(τ)(∇θln ρθ(τ))⊤] ∈ ℝd×d

= %τ∼ρθ [
H−1

∑
h=0

∇θln πθ(ah |sh)(∇θln πθ(ah |sh))⊤]



There is a closed form update:
Linear objective and quadratic convex constraint, we can solve it optimally!

Indeed this gives us:

θk+1 = θk + ηF−1
θk ∇θJ(πθk)

Where η = δ
∇θJ(πθk)⊤F−1

θk ∇θJ(πθk)
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1. Init 

2. For  : 

• Estimate PG 


• Estimate Fisher info-matrix: 


• Natural Gradient Ascent:   

3. Return 

π0
k = 0,…K

∇θJ(πθk)

Fθk = %τ∼ρθk [
H−1

∑
h=0

∇ln πθk(ah |sh)(∇ln πθk(ah |sh))⊤]
θk+1 = θk + η ̂Fθk

−1 ̂∇θJ(πθk)
πK
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An Implementation: Sample Based NPG



Example of Natural Gradient on 1-d problem: 2 actions, 1 state

(πθ[1], πθ[2]) := ( exp(θ)
1 + exp(θ) , 1

1 + exp(θ) )
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]
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1. Init 

2. For  :  

	  

	 	 s.t. 


3. Return 

π0
k = 0,…K

θk+1 = arg max
θ

%s0,…sH−1∼ρπk [
H−1

∑
h=0

%ah∼πθ(sh)A
πk(sh, ah)]

KL (ρπk |ρπθ) ≤ δ
πK

14

• The difficulty with TRPO and NPG is that they could be computationally costly.  
Need to solve constrained optimization  or matrix inversion (“second order”) problems. 


• Can we use a method which only uses gradients?  

Let’s try to use a “Lagrangian relaxation” of TRPO

Back to TRPO/NPG



1. Init , choose 

2. For  :  




3. Return 

π0 λ
k = 0,…K

θk+1 = arg max
θ

%s0,…sH−1∼ρπk [
H−1

∑
h=0

%ah∼πθ(sh)A
πk(sh, ah)]−λKL (ρπk |ρπθ)

regularization
πK
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Proximal Policy Optimization (PPO)



The regularization term is:

16

KL (ρπθk |ρπθ) = %τ∼ρπθk [ln
ρπθk(τ)
ρπθ

(τ) ]



The regularization term is:

16

KL (ρπθk |ρπθ) = %τ∼ρπθk [ln
ρπθk(τ)
ρπθ

(τ) ]
ρθ(τ) = μ(s0)πθ(a0 |s0)P(s1 |s0, a0)…P(sH−1 |sH−2, aH−2)πθ(aH−1 |sH−1)



The regularization term is:

16

KL (ρπθk |ρπθ) = %τ∼ρπθk [ln
ρπθk(τ)
ρπθ

(τ) ]
ρθ(τ) = μ(s0)πθ(a0 |s0)P(s1 |s0, a0)…P(sH−1 |sH−2, aH−2)πθ(aH−1 |sH−1)

= %τ∼ρπθk [
H−1

∑
h=0

ln πθk(ah |sh)
πθ(ah |sh) ]



The regularization term is:

= %τ∼ρπθk [
H−1

∑
h=0

ln 1
πθ(ah |sh) ] + [term not a function of θ]
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KL (ρπθk |ρπθ) = %τ∼ρπθk [ln
ρπθk(τ)
ρπθ

(τ) ]
ρθ(τ) = μ(s0)πθ(a0 |s0)P(s1 |s0, a0)…P(sH−1 |sH−2, aH−2)πθ(aH−1 |sH−1)

= %τ∼ρπθk [
H−1

∑
h=0

ln πθk(ah |sh)
πθ(ah |sh) ]



Proximal Policy Optimization (PPO)
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1. Init , choose 

2. For  :  

use SGD to optimize:  
 

where: 




3. Return 

π0 λ
k = 0,…K

θk+1 ≈ arg max
θ

ℓk(θ)

ℓk(θ) := %s0,…sH−1∼ρπk [
H−1

∑
h=0

%ah∼πθ(sh)A
πk(sh, ah)] − λ%τ∼ρπk [

H−1

∑
h=0

ln 1
πθ(ah |sh) ]

πK

How do we estimate this objective?
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• Suppose we seek to estimate .Ex∼p̃[ f(x)]



Importance Sampling
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• Suppose we seek to estimate .Ex∼p̃[ f(x)]
• Assume: we have an (i.i.d.) dataset , where , where  is known, and

•  and  are known.

• we are not able to collect values of  for . 

(e.g. we have already collected our data from some costly experiment).  

x1, …xN xi ∼ p p
f p̃

f(x) x ∼ p̃
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• Suppose we seek to estimate .Ex∼p̃[ f(x)]
• Assume: we have an (i.i.d.) dataset , where , where  is known, and

•  and  are known.

• we are not able to collect values of  for . 

(e.g. we have already collected our data from some costly experiment).  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• Note:  Ex∼p̃ [f(x)] =

• An unbiased estimate of  is given by Ex∼p̃[ f(x)] 1
N ∑

i

p̃(xi)
p(xi)

f(xi)

• Terminology:  
 is the target distribution;  is the proposal distribution;  

 is the likelihood ratio.
p̃(x) p(x)
p̃(x)/p(x)

• What about the variance of this estimator?

Ex∼D [ p̃(x)
p(x) f(x)]



Importance Sampling & Variance
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Back to Estimating ℓk(θ)
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• To estimate,  

 ℓk(θ) := %s0,…sH−1∼ρπk [
H−1

∑
h=0

%ah∼πθ(sh)A
πk(sh, ah)] − λ%τ∼ρπk [

H−1

∑
h=0

ln 1
πθ(ah |sh) ]
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ℓk(θ) := %s0,…sH−1∼ρπk [
H−1

∑
h=0

%ah∼πθ(sh)A
πk(sh, ah)] − λ%τ∼ρπk [

H−1

∑
h=0

ln 1
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• we will use importance sampling: 
 

ℓk(θ) := %s0,…sH−1∼ρπk [
H−1

∑
h=0

%ah∼πk(sh) [ πθ(sh)
πk(sh)
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• To estimate,  

 ℓk(θ) := %s0,…sH−1∼ρπk [
H−1

∑
h=0

%ah∼πθ(sh)A
πk(sh, ah)] − λ%τ∼ρπk [

H−1

∑
h=0

ln 1
πθ(ah |sh) ]

• we will use importance sampling: 
 

ℓk(θ) := %s0,…sH−1∼ρπk [
H−1

∑
h=0

%ah∼πk(sh) [ πθ(sh)
πk(sh)

Aπk(sh, ah)]] − λ%τ∼ρπk [
H−1

∑
h=0

ln 1
πθ(ah |sh) ]

= %τ∼ρπk

H−1

∑
h=0 ( πθ(sh)

πk(sh)
Aπk(sh, ah) − λ ln 1

πθ(ah |sh) )



Estimating ℓk(θ)
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Estimating ℓk(θ)
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1. Using  trajectories sampled under  to learn a  N ρk b̃h
b̃(s, h) ≈ Vπk

h (s)



Estimating ℓk(θ)
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1. Using  trajectories sampled under  to learn a  N ρk b̃h
b̃(s, h) ≈ Vπk

h (s)
2. Obtain M NEW trajectories  

Set 

τ1, …τM ∼ ρk

̂ℓ k(θ) = 1
M

M

∑
m=1

H−1

∑
h=0 ( πθ(sh)

πk(sh) (Rh(τm) − b̃(sh, h)) − λ ln 1
πθ(ah |sh) )



The meta-approach:
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Meta-Approach: CPI/TRPO/NPG/PPO are all pretty similar.
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1. Init π0
2. For  :  

   , 	                 where  

   such that  is “close” to  

k = 0,…K

πk+1 ≈ arg max
θ

Δk(πθ) Δk(π) = %s0,…sH−1∼ρπk [
H−1

∑
h=0

%ah∼π(sh)A
πk(sh, ah)]

ρθ ρθk

Meta-Approach: CPI/TRPO/NPG/PPO are all pretty similar.
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1. Init π0
2. For  :  

   , 	                 where  

   such that  is “close” to  

k = 0,…K

πk+1 ≈ arg max
θ

Δk(πθ) Δk(π) = %s0,…sH−1∼ρπk [
H−1

∑
h=0

%ah∼π(sh)A
πk(sh, ah)]

ρθ ρθk

• CPI: conservative policy iteration  
uses unconstrained optimization: ,  

enforces closeness with “mixing”: 

π̃ ≈ arg max
θ

Δk(πθ)
πk+1 = (1 − α) ⋅ πk + α ⋅ π̃k+1

• TRPO: use KL to enforce closeness.
• NPG: is TRPO up to “leading order” (via Taylor’s theorem).
• PPO: uses a Lagrangian relaxation (i.e. regularization)

3. Return πK

Meta-Approach: CPI/TRPO/NPG/PPO are all pretty similar.



“Lack of Exploration” leads to Optimization and Statistical Challenges

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1
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s!
S states Thrun ‘92

R=1
Let’s examine the role of μ

• Suppose that somehow the distribution  had better coverage.

• e.g,  was uniform over the all states in our toy problem, then all approaches we 

covered would work (with mild assumptions )

• Theory: CPI/TRPO/NPG/PPO have better guarantees than fitted DP methods  

(assuming some “coverage”)

μ
μ

• Strategies without coverage:

• If we have a simulator, sometimes we can design  to have better coverage.

• this is helpful for robustness as well.


• Imitation learning (next time). 

• An expert gives us samples from a “good” .


• Explicit exploration:

• UCB-VI: we’ll merge two good ideas!

• Encourage exploration in PG methods.


• Try with reward shaping

μ

μ
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Aside: Brittle policies if we train starting from only from one configuration!

• [Rajeswaran, Lowrey, Todorov,  K. 2017]: showed policies optimized for a single 
starting configuration  are not robust!+0
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Aside: Brittle policies if we train starting from only from one configuration!

• [Rajeswaran, Lowrey, Todorov,  K. 2017]: showed policies optimized for a single 
starting configuration  are not robust!+0

• How to fix this? 
• Training from different starting configurations sampled from  fixes this. 

     

• The measure  is also relevant for robustness.

s0 ∼ μ
max

θ
Es0∼μ[Vθ(s0)]

μ
27



OpenAI: progress on dexterous hand manipulation
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OpenAI: progress on dexterous hand manipulation
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OpenAI: progress on dexterous hand manipulation

Trained with “domain randomization” 

Basically, the measure  was 
diverse. 

s0 ∼ μ

28



What about guarantees?

29



What about guarantees?
•The hope is that (average case) “supervised learning” works, then RL would also work. 

29



What about guarantees?
•The hope is that (average case) “supervised learning” works, then RL would also work. 

[Theorem:] (informal, see AJKS Ch 4+13) for log linear policies,

29



What about guarantees?
•The hope is that (average case) “supervised learning” works, then RL would also work. 

[Theorem:] (informal, see AJKS Ch 4+13) for log linear policies,
•Approximation error: For all policies, suppose that for all ,  

	

π

min
θ

%τ∼ρππ [ 1
H

H−1

∑
h=0

(Qπ(sh, ah) − θ⊤ϕ(sh, ah))2] ≤ δ

29



What about guarantees?
•The hope is that (average case) “supervised learning” works, then RL would also work. 

[Theorem:] (informal, see AJKS Ch 4+13) for log linear policies,
•Approximation error: For all policies, suppose that for all ,  

	

π

min
θ

%τ∼ρππ [ 1
H

H−1

∑
h=0

(Qπ(sh, ah) − θ⊤ϕ(sh, ah))2] ≤ δ

•  Sample size: Suppose that we use a # samples that is poly in  for both fittedPI and NPG.d & 1/ϵstat

29



What about guarantees?
•The hope is that (average case) “supervised learning” works, then RL would also work. 

[Theorem:] (informal, see AJKS Ch 4+13) for log linear policies,
•Approximation error: For all policies, suppose that for all ,  

	

π

min
θ

!τ∼ρππ [ 1
H

H−1

∑
h=0

(Qπ(sh, ah) − θ⊤ϕ(sh, ah))2] ≤ δ

•  Sample size: Suppose that we use a # samples that is poly in  for both fittedPI and NPG.d & 1/ϵstat
•  Coverage: suppose that  has coverage over the marginal distribution :  

	 	

μ ρπ⋆(s |h)
max

s,h ( ρπ⋆(s |h)
μ(s) ) ≤ C

29



What about guarantees?
•The hope is that (average case) “supervised learning” works, then RL would also work. 

[Theorem:] (informal, see AJKS Ch 4+13) for log linear policies,
•Approximation error: For all policies, suppose that for all ,  

	

π

min
θ

!τ∼ρππ [ 1
H

H−1

∑
h=0

(Qπ(sh, ah) − θ⊤ϕ(sh, ah))2] ≤ δ

•  Sample size: Suppose that we use a # samples that is poly in  for both fittedPI and NPG.d & 1/ϵstat
•  Coverage: suppose that  has coverage over the marginal distribution :  

	 	

μ ρπ⋆(s |h)
max

s,h ( ρπ⋆(s |h)
μ(s) ) ≤ C

•Computation: suppose we run NPG with poly in ,  iterations.1/ϵstat H

29



What about guarantees?
•The hope is that (average case) “supervised learning” works, then RL would also work. 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H
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•  Sample size: Suppose that we use a # samples that is poly in  for both fittedPI and NPG.d & 1/ϵstat
•  Coverage: suppose that  has coverage over the marginal distribution :  

	 	

μ ρπ⋆(s |h)
max

s,h ( ρπ⋆(s |h)
μ(s) ) ≤ C

•Computation: suppose we run NPG with poly in ,  iterations.1/ϵstat H
•Theorem: NPG will return a policy with sub-optimality determined by  and the average case error : 
	 	

C δ
J( ̂π) ≥ J(π⋆) − ϵstat − 2H2Cδ
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Summary:

Feedback: 

bit.ly/3RHtlxy

30

Attendance: 
bit.ly/3RcTC9T

1. NPG: a simpler way to do TRPO, a “pre-conditioned” gradient method.

2. PPO: “first order” approx to TRPO


