PPO & Importance Sampling

Lucas Janson and Sham Kakade CS/Stat 184: Introduction to Reinforcement Learning Fall 2023

- Proximal Policy Optimization (PPO)
 - Importance Sampling
- Exploration?
- PG review

Recap++

(M=1) PG with a Learned Baseline:

- 1. Initialize θ_0 , parameters: η_1, η_2, \ldots
- 2. For k = 0, ...:
 - 1. Sup. Learning: Using N trajectories sampled under $\pi_{\theta k}$, estimate a baseline b_h $\widetilde{b}(s) \approx V_{h}^{\theta^{k}}(s)$
 - 2. Obtain a trajectory $\tau \sim \rho_{\theta^k}$ Set $\widetilde{\nabla}_{\theta} J(\theta^k) = \sum_{k=1}^{H-1} \nabla \ln \pi_{\theta^k}(a_h | s_h) \left(R_h(\tau) - \widetilde{b}(s_h) \right)$ h=()
 - 3. Update: $\theta^{k+1} = \theta^k + \eta^k \widetilde{\nabla}_{\rho} J(\theta^k)$

Note that regardless of our choice of $b_h(s)$, we still get unbiased gradient estimates.

The Performance Difference Lemma (PDL)

- (we are making the starting distribution explicit now).
- For any two policies π and $\widetilde{\pi}$ and any state s,

Comments:

- •Helps to understand algorithm design (TRPO, NPG, PPO)

• Let $\rho_{\tilde{\pi},s}$ be the distribution of trajectories from starting state s acting under π .

 $V^{\widetilde{\pi}}(s) - V^{\pi}(s) = \mathbb{E}_{\tau \sim \rho_{\widetilde{\pi},s}} \left[\sum_{h=0}^{H-1} A_h^{\pi}(s_h, a_h) \right]$

• Helps us think about error analysis, instabilities of fitted PI, and sub-optimality. • This also motivates the use of "local" methods (e.g. policy gradient descent)

Trust Region Policy Optimization (TRPO)

1. Init
$$\pi_0$$

2. For $k = 0, ..., K$:
 $\theta^{k+1} = \arg \max_{\theta} \mathbb{E}_{s_0, ..., s_{H-1} \sim \rho_{\pi^k}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi_{\theta}(s_h)} A^{\pi^k}(s_h, a_h) \right]$
s.t. $KL\left(\rho_{\pi^k} \mid \rho_{\pi_{\theta}}\right) \leq \delta$
3. Return π_K

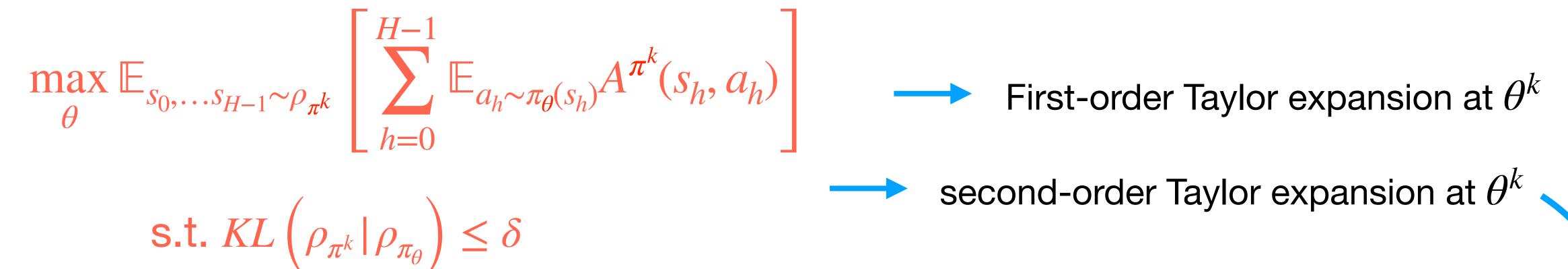
- We want to maximize local advantage against π_{θ^k} ,

but we want the new policy to be close to π_{θ^k} (in the KL sense)

How do we implement this with sampled trajectories?

TRPO is locally equivalent to the NPG

TRPO at iteration k:



Intuition: maximize local adv subject to being incremental (in KL);

$$\max_{\theta} \nabla_{\theta} J(\pi_{\theta^{k}})^{\mathsf{T}}(\theta - \theta^{k})$$

s.t. $(\theta - \theta^{k})^{\mathsf{T}} F_{\theta^{k}}(\theta - \theta^{k}) \leq \delta$

(Where F_{θ^k} is the "Fisher Information Matrix")

NPG: A "leading order" equivalent program to TRPO:

1. Init
$$\pi_0$$

2. For $k = 0, ...K$:
 $\theta^{k+1} = \arg \max_{\theta} \nabla_{\theta} J(\pi_{\theta^k})^{\mathsf{T}}(\theta - \theta^k)$
s.t. $(\theta - \theta^k)^{\mathsf{T}} F_{\theta^k}(\theta - \theta^k) \leq \delta$
3. Return π_K

- Where $\nabla_{\theta} J(\pi_{\theta^k})$ is the gradient at θ^k and
- F_{θ} is (basically) the Fisher information matrix at $\theta \in \mathbb{R}^d$, defined as:

$$F_{\theta} := \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\nabla_{\theta} \ln \rho_{\theta}(\tau) \left(\nabla_{\theta} \ln \rho_{\theta}(\tau) \right) \right]$$
$$= \mathbb{E}_{\tau \sim \rho_{\theta}} \left[\sum_{h=0}^{H-1} \nabla_{\theta} \ln \pi_{\theta}(a_{h} | s_{h}) \left(\nabla_{\theta} \ln \sigma_{\theta}(\tau) \right) \right]$$

 $(at \ \theta \in \mathbb{R}^d, defined as:$ $(\tau))^\top \in \mathbb{R}^{d \times d}$

 $\nabla_{\theta} \ln \pi_{\theta}(a_h \,|\, s_h) \big)^{\mathsf{T}}$

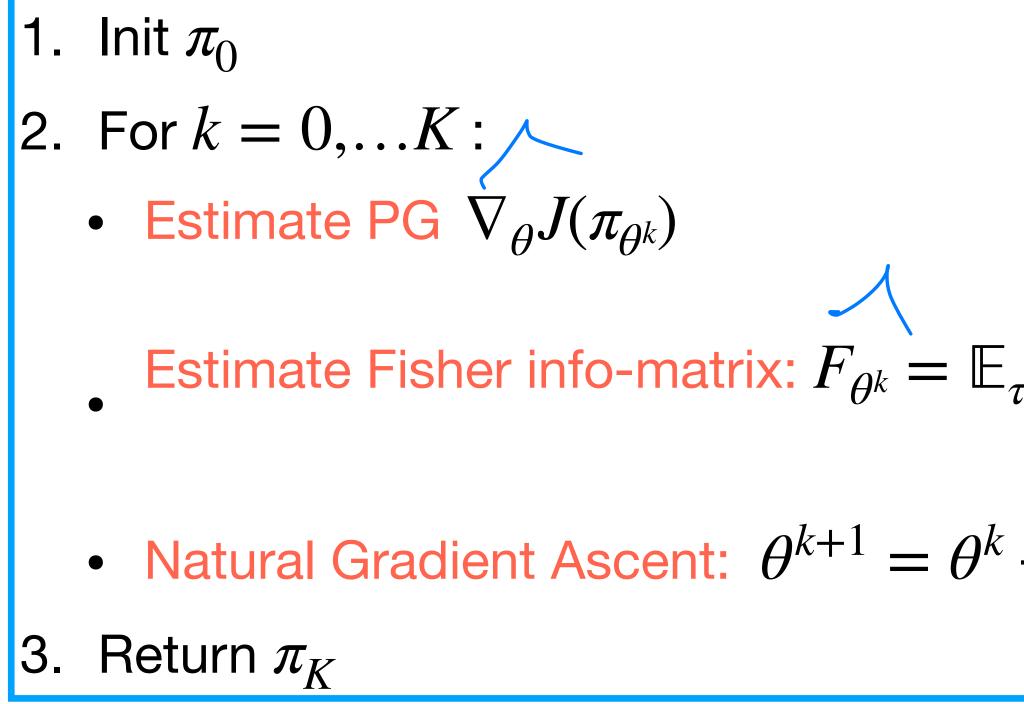
There is a closed form update:

Linear objective and quadratic convex constraint, we can solve it optimally! Indeed this gives us:

$$\theta^{k+1} = \theta^k + \eta F_{\theta^k}^{-1} \nabla$$
Where $\eta = \sqrt{\nabla_{\theta} J(\pi_{\theta^k})}$

 $\delta^{T} F_{\theta^{k}}^{-1} \nabla_{\theta} J(\pi_{\theta^{k}})$

An Implementation: Sample Based NPG

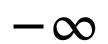


$$\pi \sim \rho_{\theta^{k}} \left[\sum_{h=0}^{H-1} \nabla \ln \pi_{\theta^{k}}(a_{h} | s_{h}) \left(\nabla \ln \pi_{\theta^{k}}(a_{h} | s_{h}) \right)^{\top} \right] + \eta \widehat{F_{\theta^{k}}} \widehat{\nabla_{\theta} J(\pi_{\theta^{k}})}$$

$$(\pi_{\theta}[1], \pi_{\theta}[2]) := \left(\frac{\exp(\theta)}{1 + \exp(\theta)}, \frac{1}{1 + \exp(\theta)}\right)$$

 $J(\theta) = 100 \cdot \pi_{\theta}[1] + 1 \cdot \pi_{\theta}[2]$

$$(\pi_{\theta}[1], \pi_{\theta}[2]) := \left(\frac{\exp(\theta)}{1 + \exp(\theta)}, \frac{1}{1 + \exp(\theta)}\right)$$
$$J(\theta) = 100 \cdot \pi_{\theta}[1] + 1 \cdot \pi_{\theta}[2]$$



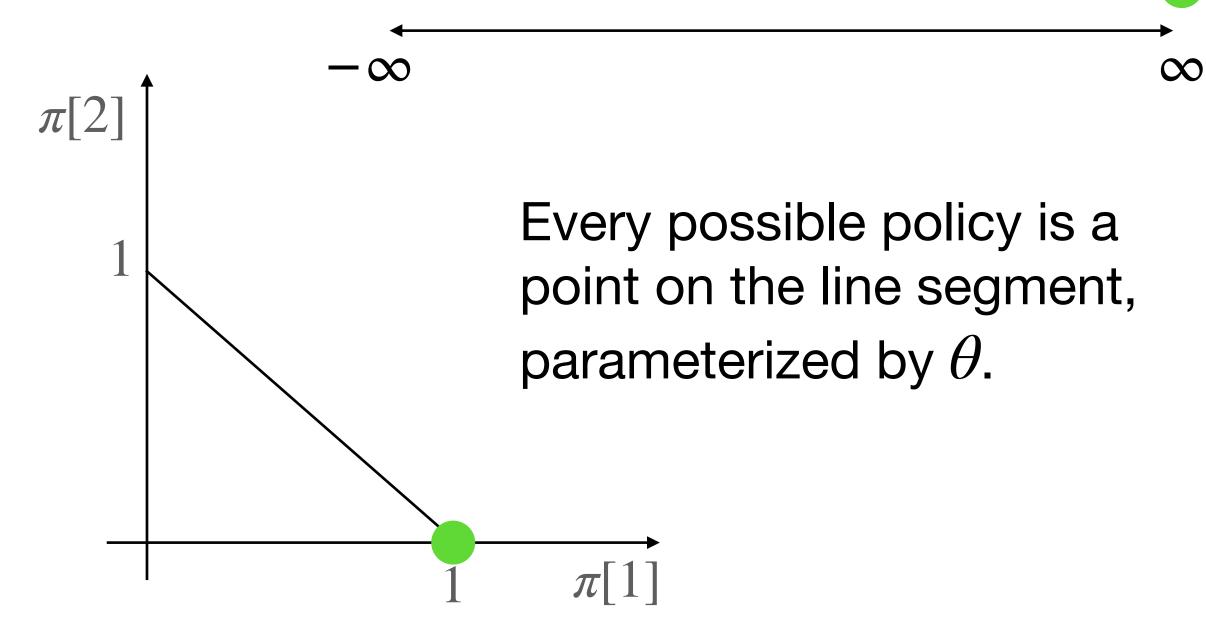
 θ^{\star}

 ∞

11

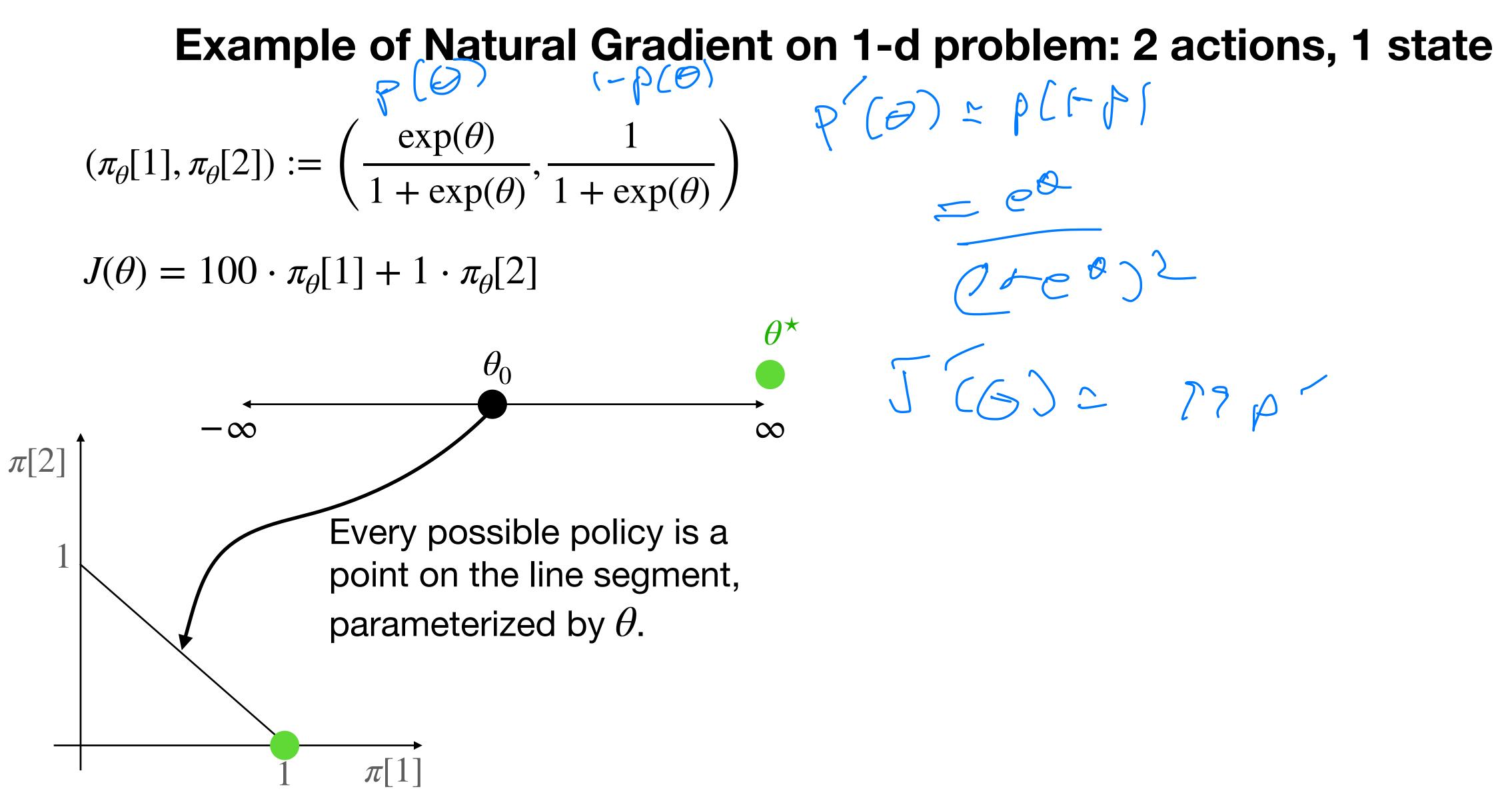
$$(\pi_{\theta}[1], \pi_{\theta}[2]) := \left(\frac{\exp(\theta)}{1 + \exp(\theta)}, \frac{1}{1 + \exp(\theta)}\right)$$

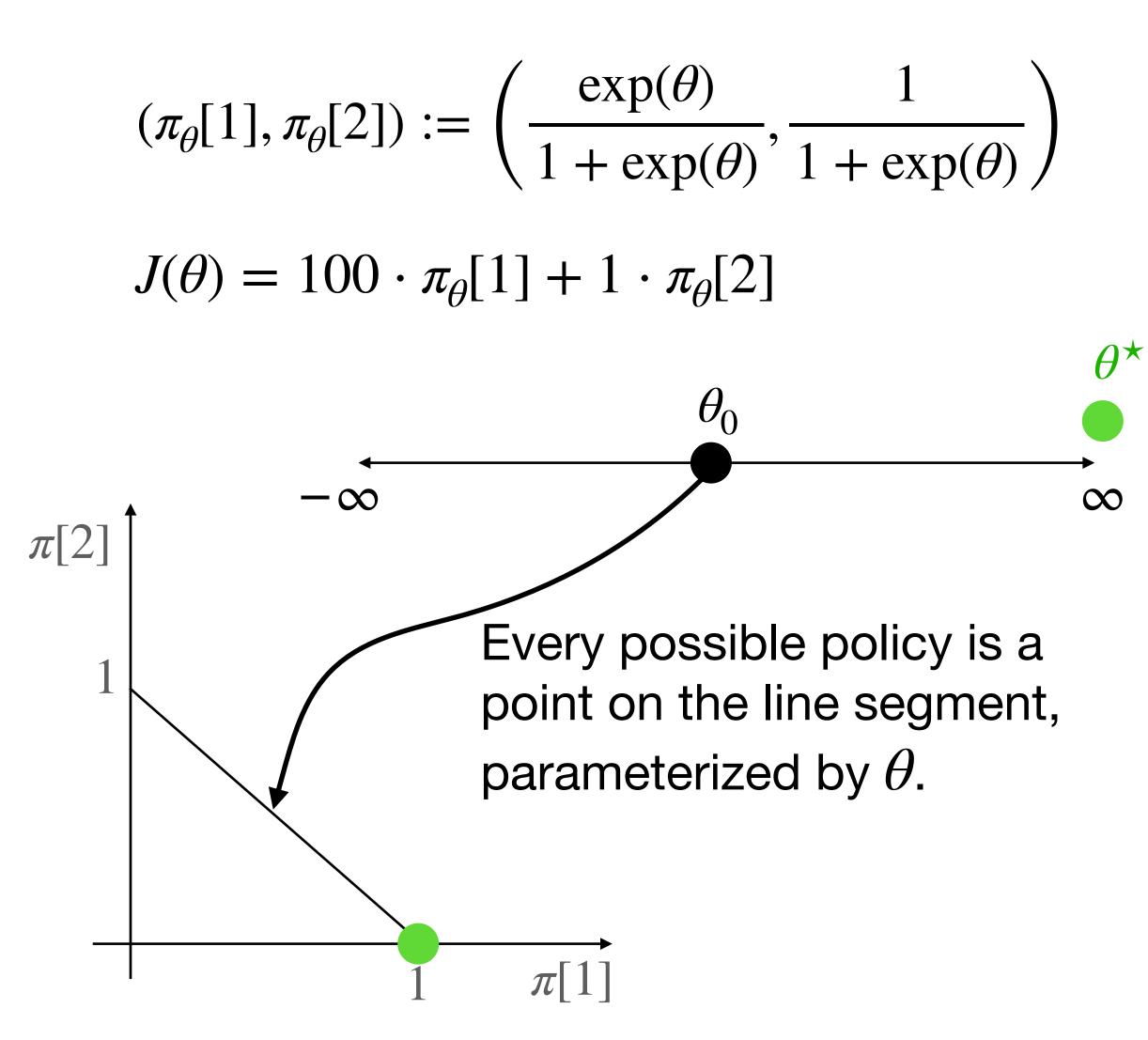
 $J(\theta) = 100 \cdot \pi_{\theta}[1] + 1 \cdot \pi_{\theta}[2]$



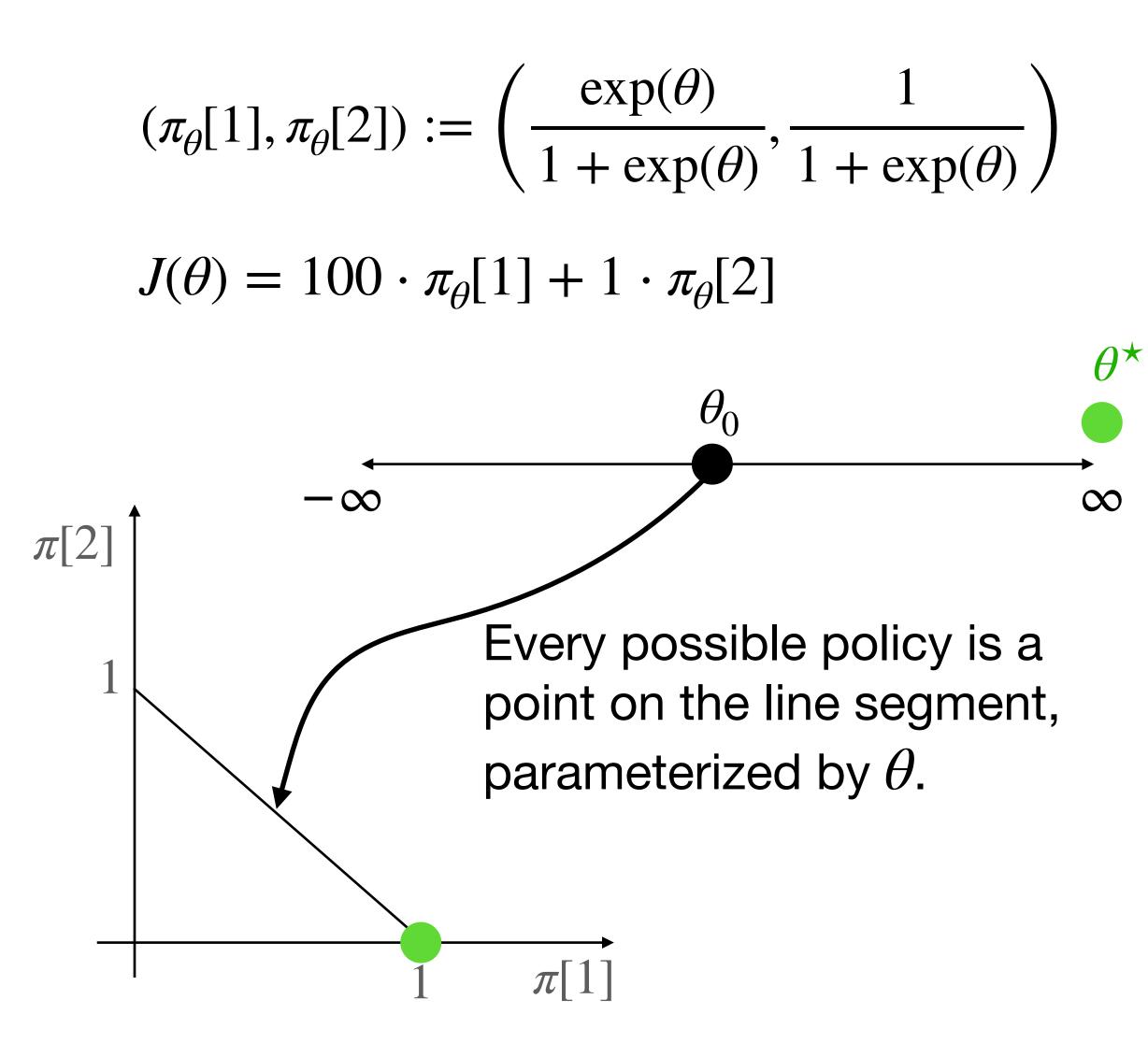
 θ^{\star}

11

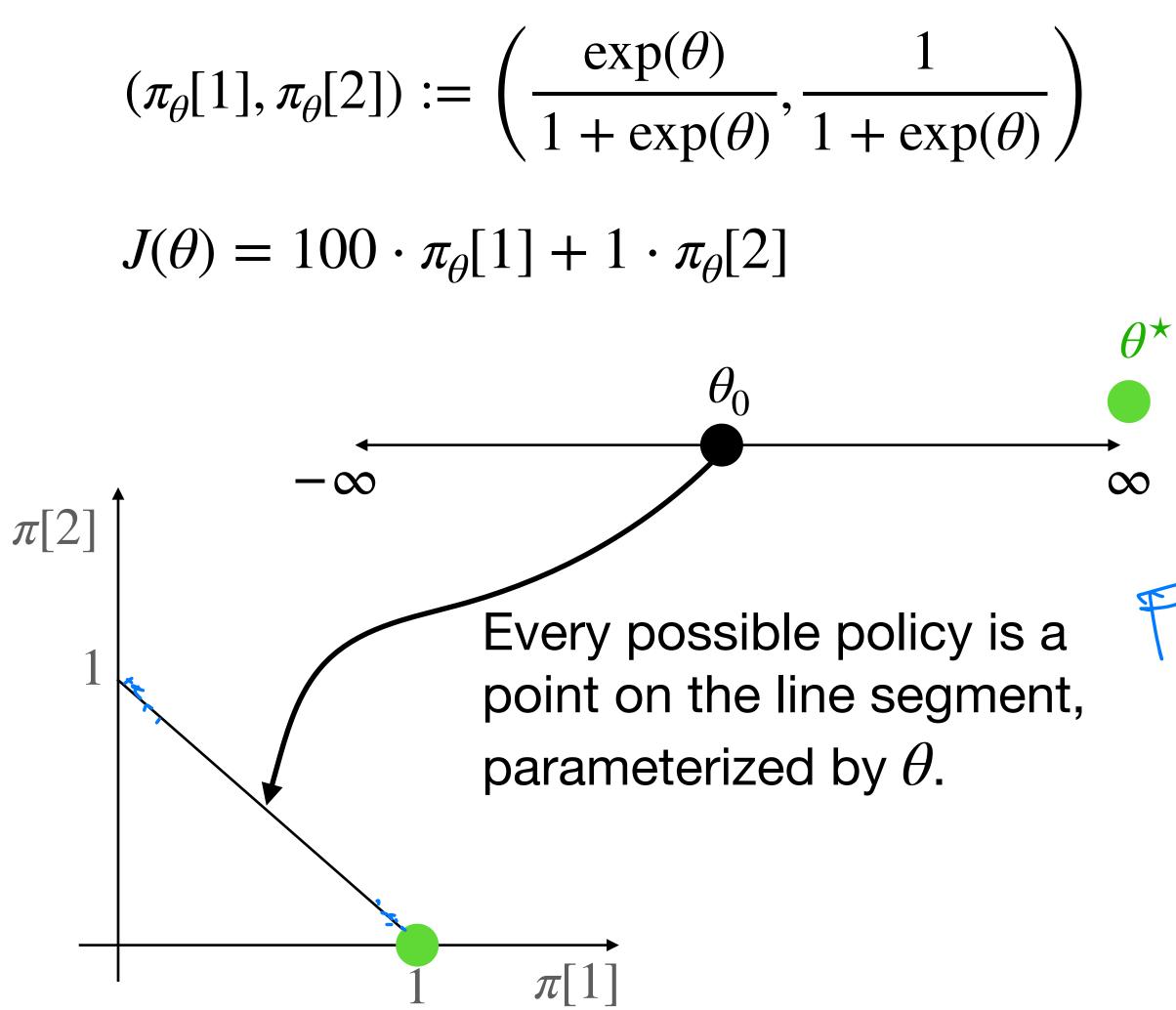




Gradient: $J'(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$



Gradient: $J'(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$ Exact PG: $\theta^{k+1} = \theta^k + \eta \frac{99 \exp(\theta^k)}{(1 + \exp(\theta^k))^2}$

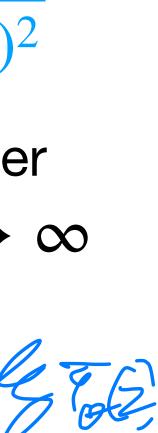


Gradient:
$$J'(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$$

Exact PG: $\theta^{k+1} = \theta^k + \eta \frac{99 \exp(\theta^k)}{(1 + \exp(\theta^k))^2}$

i.e., vanilla GA moves to $\theta = \infty$ with smaller and smaller steps, since $J'(\theta) \to 0$ as $\theta \to \infty$

 $F(G) = T_{G}(I) V g T_{O}(I) + T_{O}(O) V g T_{O}(I)$



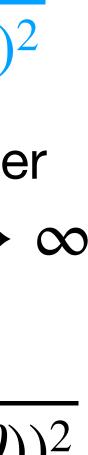


Gradient:
$$J'(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$$

Exact PG: $\theta^{k+1} = \theta^k + \eta \frac{99 \exp(\theta^k)}{(1 + \exp(\theta^k))^2}$

i.e., vanilla GA moves to $\theta = \infty$ with smaller and smaller steps, since $J'(\theta) \to 0$ as $\theta \to \infty$

Fisher information scalar: $F_{\theta} = \frac{\exp(\theta)}{(1 + \exp(\theta))^2}$





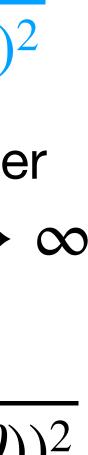
Gradient:
$$J'(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$$

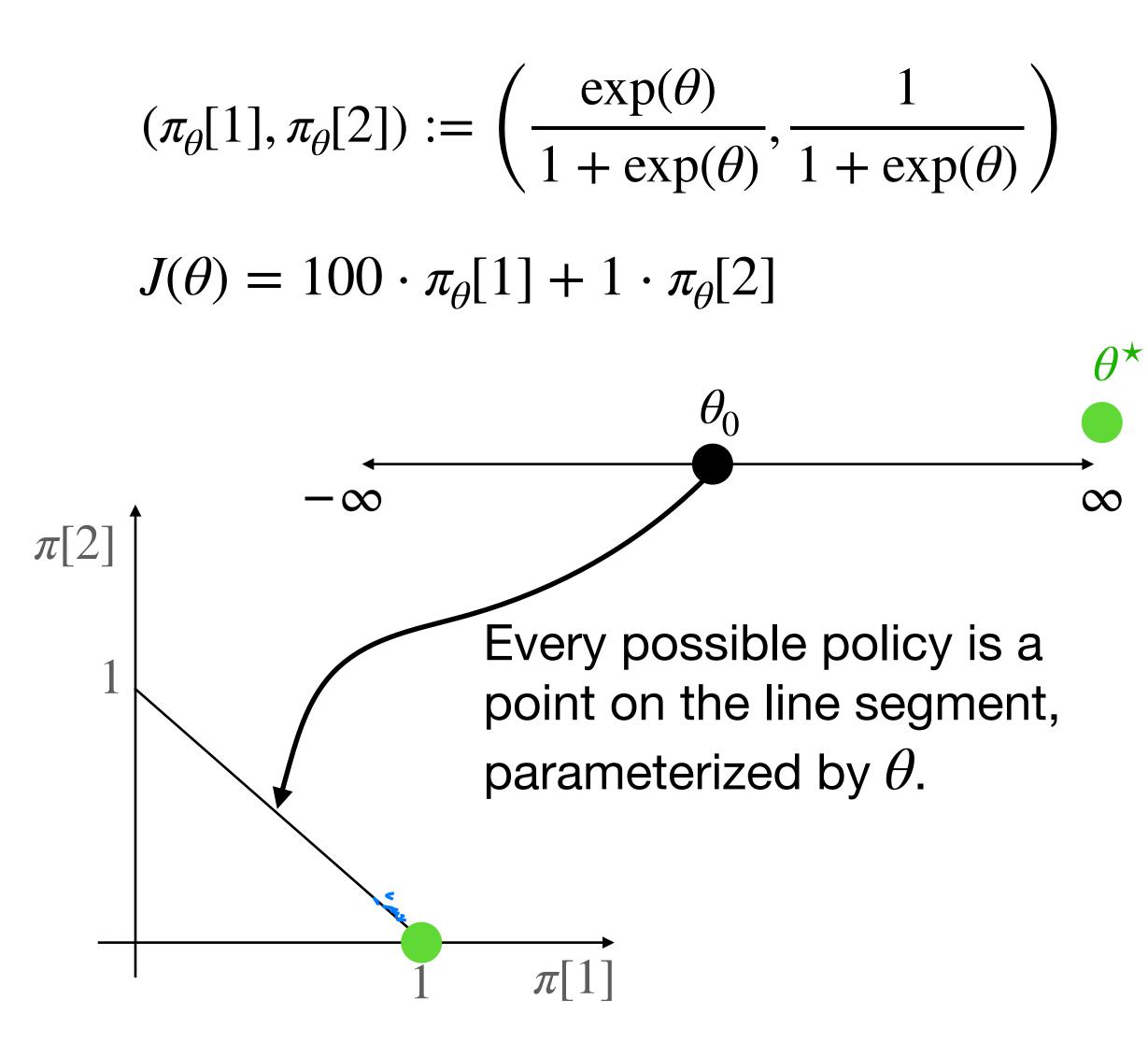
Exact PG: $\theta^{k+1} = \theta^k + \eta \frac{99 \exp(\theta^k)}{(1 + \exp(\theta^k))^2}$

i.e., vanilla GA moves to $\theta = \infty$ with smaller and smaller steps, since $J'(\theta) \to 0$ as $\theta \to \infty$

Fisher information scalar: $F_{\theta} = \frac{\exp(\theta)}{(1 + \exp(\theta))^2}$

NPG:
$$\theta^{k+1} = \theta^k + \eta \frac{J'(\theta^k)}{F_{\theta^k}}$$





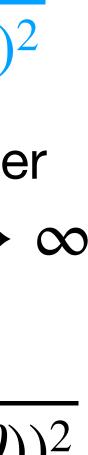
Gradient:
$$J'(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$$

Exact PG: $\theta^{k+1} = \theta^k + \eta \frac{99 \exp(\theta^k)}{(1 + \exp(\theta^k))^2}$

i.e., vanilla GA moves to $\theta = \infty$ with smaller and smaller steps, since $J'(\theta) \to 0$ as $\theta \to \infty$

Fisher information scalar: $F_{\theta} = \frac{\exp(\theta)}{(1 + \exp(\theta))^2}$

NPG:
$$\theta^{k+1} = \theta^k + \eta \frac{J'(\theta^k)}{F_{\theta^k}} = \theta_{\varphi}^{k} + \eta \cdot 99$$





Gradient:
$$J'(\theta) = \frac{99 \exp(\theta)}{(1 + \exp(\theta))^2}$$

Exact PG: $\theta^{k+1} = \theta^k + \eta \frac{99 \exp(\theta^k)}{(1 + \exp(\theta^k))^2}$

i.e., vanilla GA moves to $\theta = \infty$ with smaller and smaller steps, since $J'(\theta) \to 0$ as $\theta \to \infty$

Fisher information scalar: $F_{\theta} = \frac{\exp(\theta)}{(1 + \exp(\theta))^2}$

NPG:
$$\theta^{k+1} = \theta^k + \eta \frac{J'(\theta^k)}{F_{\theta^k}} = \theta_t + \eta \cdot 99$$

NPG moves to $\theta = \infty$ much more quickly (for a fixed η)

Today:

- Recap++
- Proximal Policy Optimization (PPO)
 - Importance Sampling
 - Exploration?
 - PG review

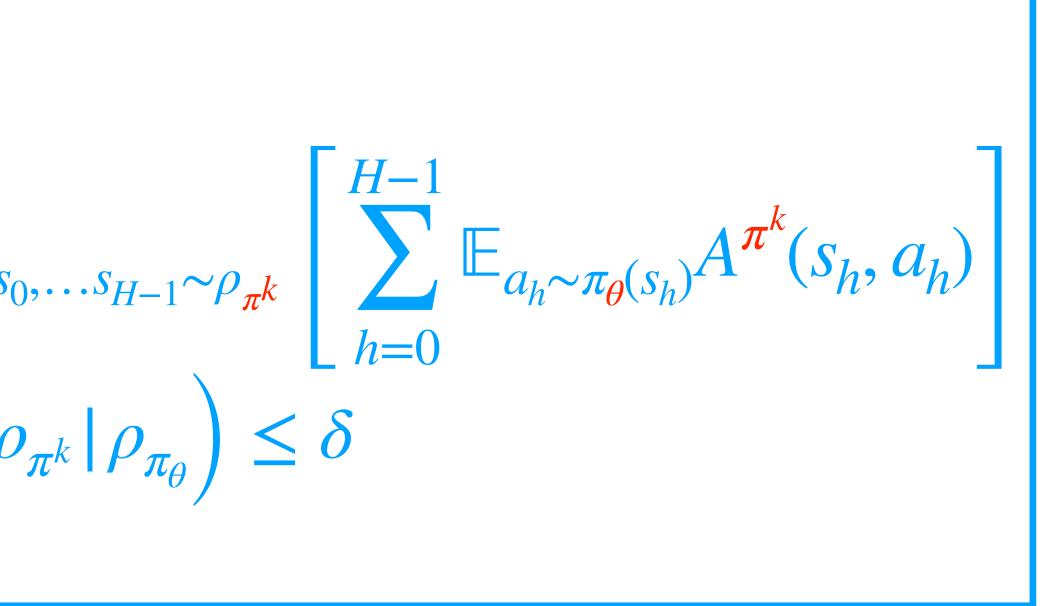
Back to TRPO/NPG

1. Init
$$\pi_0$$

2. For $k = 0, ..., K$:
 $\theta^{k+1} = \arg \max_{\theta} \mathbb{E}_{s_0, ...}$
s.t. $KL\left(\rho_{\pi}\right)$
3. Return π_K

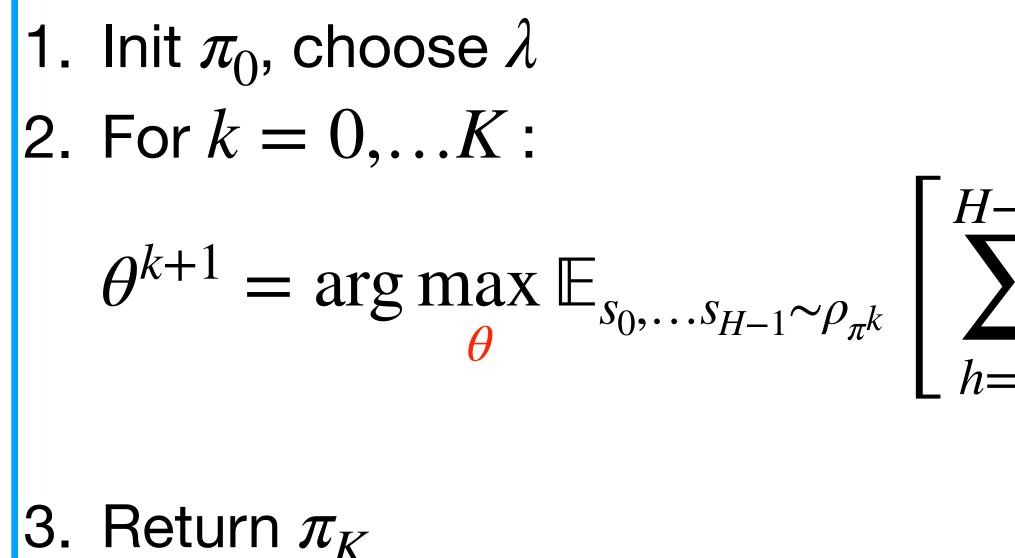
- \bullet
- Can we use a method which only uses gradients? \bullet

Let's try to use a "Lagrangian relaxation" of TRPO



The difficulty with TRPO and NPG is that they could be computationally costly. Need to solve constrained optimization or matrix inversion ("second order") problems.

Proximal Policy Optimization (PPO)



$$\sum_{k=0}^{I-1} \mathbb{E}_{a_{h} \sim \pi_{\theta}(s_{h})} A^{\pi^{k}}(s_{h}, a_{h}) \Bigg] - \frac{\lambda KL\left(\rho_{\pi^{k}} \mid \rho_{\pi_{\theta}}\right)}{\text{regularization}}$$

 $KL\left(\rho_{\pi_{\theta^{k}}}|\rho_{\pi_{\theta}}\right) = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^{k}}}}\left[\ln\frac{\rho_{\pi_{\theta^{k}}}(\tau)}{\rho_{\pi_{\theta}}(\tau)}\right]$

 $\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0 | s_0)P(s_1 | s_0, a_0)\dots P(s_{H-1} | s_{H-2}, a_{H-2})\pi_{\theta}(a_{H-1} | s_{H-1})$

 $KL\left(\rho_{\pi_{\theta^{k}}}|\rho_{\pi_{\theta}}\right) = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^{k}}}}\left[\ln\frac{\rho_{\pi_{\theta^{k}}}(\tau)}{\rho_{\pi_{\theta}}(\tau)}\right]$

 $KL\left(\rho_{\pi_{\theta^{k}}}|\rho_{\pi_{\theta}}\right) = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^{k}}}}\left|\ln\frac{\rho_{\pi_{\theta^{k}}}(\tau)}{\rho_{\pi_{\theta}}(\tau)}\right|$ $= \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^k}}} \left[\sum_{h=0}^{H-1} \ln \frac{\pi_{\theta^k}(a_h | s_h)}{\pi_{\theta}(a_h | s_h)} \right]$

 $\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0 | s_0)P(s_1 | s_0, a_0)\dots P(s_{H-1} | s_{H-2}, a_{H-2})\pi_{\theta}(a_{H-1} | s_{H-1})$

 $KL\left(\rho_{\pi_{\theta^{k}}}|\rho_{\pi_{\theta}}\right) = \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^{k}}}}\left|\ln\frac{\rho_{\pi_{\theta^{k}}}(\tau)}{\rho_{\pi_{\theta}}(\tau)}\right|$ $= \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^k}}} \left[\sum_{k=0}^{H-1} \ln \frac{\pi_{\theta}}{\pi_{\theta^k}} \right]$

 $= \mathbb{E}_{\tau \sim \rho_{\pi_{\theta^k}}} \left| \begin{array}{c} H - \\ \sum_{k=0}^{H-1} \\ \sum_{k=$

 $\rho_{\theta}(\tau) = \mu(s_0)\pi_{\theta}(a_0 | s_0)P(s_1 | s_0, a_0)\dots P(s_{H-1} | s_{H-2}, a_{H-2})\pi_{\theta}(a_{H-1} | s_{H-1})$

$$\frac{E_{\theta^{k}}(a_{h} \mid s_{h})}{\sum_{k=0}^{-1} \ln \frac{1}{\pi_{\theta}(a_{h} \mid s_{h})}} + \left[\text{term not a function of } \theta \right]$$

Proximal Policy Optimization (PPO)

1. Init
$$\pi_0$$
, choose λ
2. For $k = 0, \dots K$:
use SGD to optimize:
 $\theta^{k+1} \approx \underset{\theta}{\operatorname{arg max}} \ell^k(\theta)$
where:
 $\ell^k(\theta) := \mathbb{E}_{s_0,\dots,s_{H-1}\sim\rho_{\pi^k}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h\sim\pi_{\theta}(s_h)} A^{\pi^k}(s_h, a_h) \right] - \lambda \mathbb{E}_{\tau\sim\rho_{\pi^k}} \left[\sum_{h=0}^{H-1} \ln \frac{1}{\pi_{\theta}(a_h \mid s_h)} \right]$
3. Return π_K

How do we estimate this objective?

- Recap++
- Proximal Policy Optimization (PPO)
 - Importance Sampling
- Exploration?
- PG review

Importance Sampling

Importance Sampling

• Suppose we seek to estimate $E_{x \sim \tilde{p}}[f(x)]$.

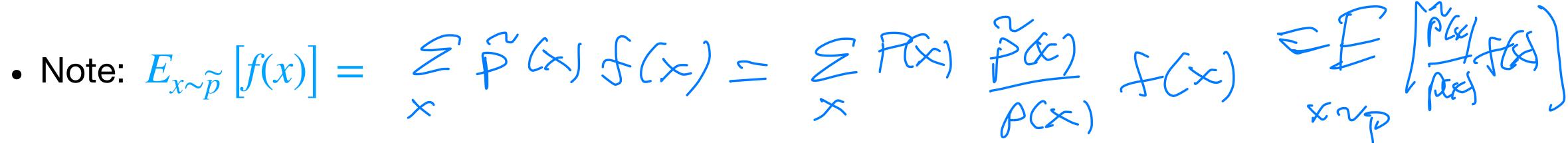
777 Cisy Exaption Importance Sampling

- Suppose we seek to estimate $E_{x \sim \tilde{p}}[f(x)]$.
- Assume: we have an (i.i.d.) dataset $x_1, \ldots x_N$, where $x_i \sim p$, where p is known, and
 - f and \widetilde{p} are known.
 - we are not able to collect values of f(x) for $x \sim \widetilde{p}$. (e.g. we have already collected our data from some costly experiment).

Importance Sampling

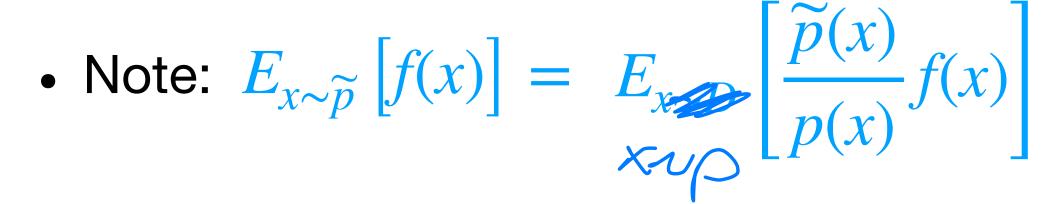
- Suppose we seek to estimate $E_{x \sim \tilde{p}}[f(x)]$.
- - f and \widetilde{p} are known.
 - we are not able to collect values of f(x) for $x \sim \widetilde{p}$. (e.g. we have already collected our data from some costly experiment).

• Assume: we have an (i.i.d.) dataset $x_1, \ldots x_N$, where $x_i \sim p$, where p is known, and



Importance Sampling

- Suppose we seek to estimate $E_{x \sim \tilde{p}}[f(x)]$.
- - f and \widetilde{p} are known.
 - we are not able to collect values of f(x) for $x \sim \widetilde{p}$. (e.g. we have already collected our data from some costly experiment).



• Assume: we have an (i.i.d.) dataset $x_1, \ldots x_N$, where $x_i \sim p$, where p is known, and

Importance Sampling

- Suppose we seek to estimate $E_{x \sim \tilde{p}}[f(x)]$.
- - f and \widetilde{p} are known.
 - we are not able to collect values of f(x) for $x \sim \widetilde{p}$. (e.g. we have already collected our data from some costly experiment).
- Note: $E_{x \sim \widetilde{p}}[f(x)] = E_{x \sim D} \left[\frac{\widetilde{p}(x)}{p(x)}f(x)\right]$

An unbiased estimate of $E_{x \sim \tilde{p}}[f(x)]$ is given by

• Assume: we have an (i.i.d.) dataset $x_1, \ldots x_N$, where $x_i \sim p$, where p is known, and

viven by
$$\frac{1}{N} \sum_{i} \frac{\widetilde{p}(x_i)}{p(x_i)} f(x_i)$$

Importance Sampling

- Suppose we seek to estimate $E_{x \sim \tilde{p}}[f(x)]$.
- - f and \widetilde{p} are known.
 - we are not able to collect values of f(x) for $x \sim \widetilde{p}$. (e.g. we have already collected our data from some costly experiment).
- Note: $E_{x \sim \widetilde{p}}[f(x)] = E_{x \sim D} \left[\frac{\widetilde{p}(x)}{p(x)}f(x)\right]$

An unbiased estimate of $E_{x \sim \tilde{p}}[f(x)]$ is gi

• Terminology: $\widetilde{p}(x)$ is the target distribution; p(x) is the proposal distribution; $\widetilde{p}(x)/p(x)$ is the likelihood ratio.

• Assume: we have an (i.i.d.) dataset $x_1, \ldots x_N$, where $x_i \sim p$, where p is known, and

view by
$$\frac{1}{N} \sum_{i} \frac{\widetilde{p}(x_i)}{p(x_i)} f(x_i)$$

Importance Sampling

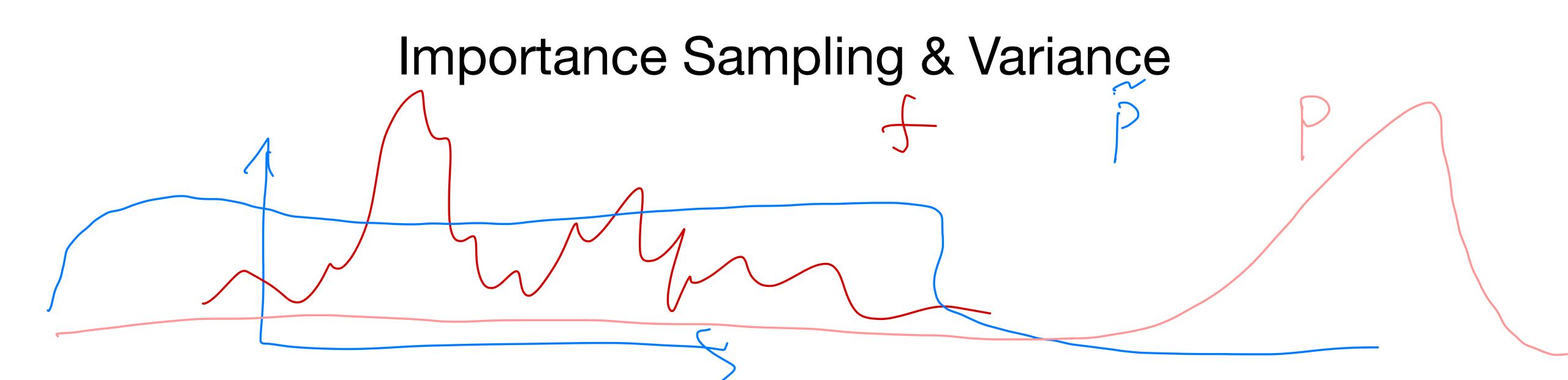
- Suppose we seek to estimate $E_{x \sim \tilde{p}}[f(x)]$.
- - f and \widetilde{p} are known.
 - we are not able to collect values of f(x) for $x \sim \widetilde{p}$. (e.g. we have already collected our data from some costly experiment).
- Note: $E_{x \sim \widetilde{p}}[f(x)] = E_{x \sim D} \left[\frac{\widetilde{p}(x)}{p(x)}f(x)\right]$

An unbiased estimate of $E_{x \sim \tilde{p}}[f(x)]$ is g

- Terminology: $\widetilde{p}(x)$ is the target distribution; p(x) is the proposal distribution; $\widetilde{p}(x)/p(x)$ is the likelihood ratio.
- What about the variance of this estimator?

• Assume: we have an (i.i.d.) dataset $x_1, \ldots x_N$, where $x_i \sim p$, where p is known, and

viven by
$$\frac{1}{N} \sum_{i} \frac{\widetilde{p}(x_i)}{p(x_i)} f(x_i)$$

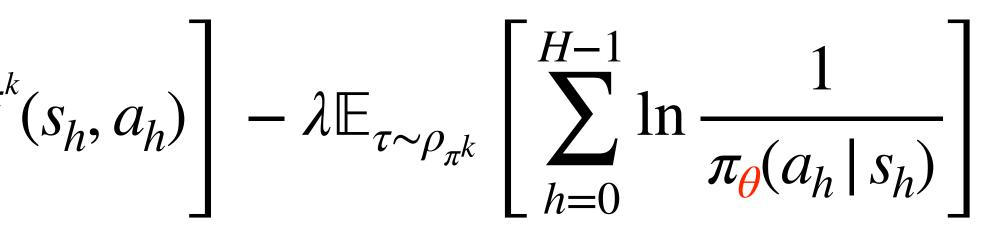


Back to Estimating $\ell^k(\theta)$

• To estimate,

$$\mathscr{C}^{k}(\theta) := \mathbb{E}_{s_{0},\ldots,s_{H-1}\sim\rho_{\pi^{k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_{h}\sim\pi_{\theta}(s_{h})} A^{\pi^{k}}(s_{h}) \right]$$

Back to Estimating $\ell^{k}(\theta)$



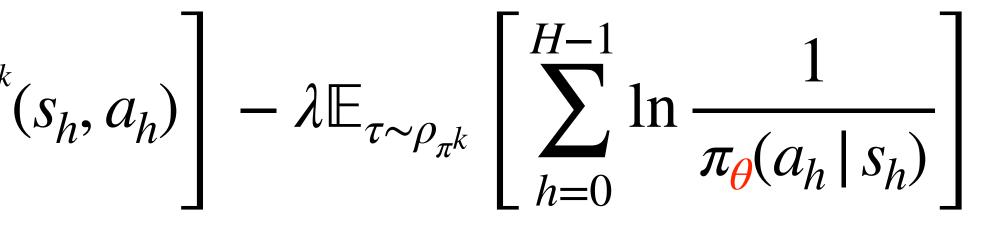
• To estimate,

$$\mathscr{C}^{k}(\theta) := \mathbb{E}_{s_{0},\ldots,s_{H-1}\sim\rho_{\pi^{k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_{h}\sim\pi_{\theta}(s_{h})} A^{\pi^{k}}(\theta) \right]$$

• we will use importance sampling:

$$\mathscr{C}^{k}(\theta) := \mathbb{E}_{s_{0},\ldots,s_{H-1}\sim\rho_{\pi^{k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_{h}\sim\pi^{k}(s_{h})} \left[\frac{\pi_{\theta}(s_{h})}{\pi^{k}(s_{h})} A^{\pi^{k}}(s_{h},a_{h}) \right] \right] - \lambda \mathbb{E}_{\tau\sim\rho_{\pi^{k}}} \left[\sum_{h=0}^{H-1} \ln \frac{1}{\pi_{\theta}(a_{h} \mid s_{h})} \right]$$

Back to Estimating $\ell^{k}(\theta)$



• To estimate,

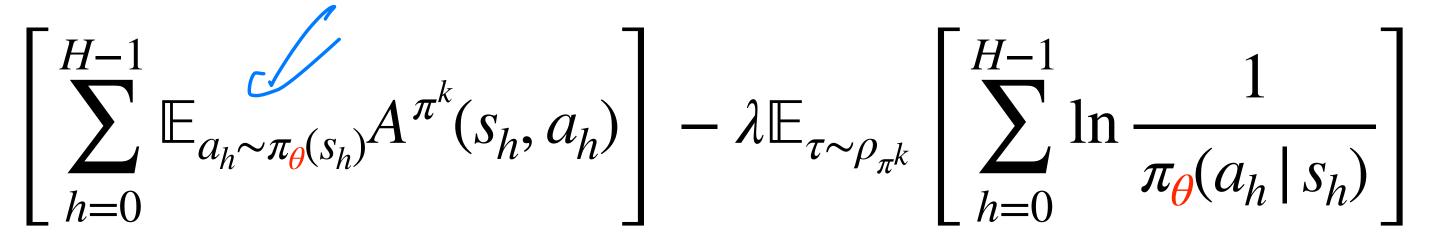
$$\mathscr{C}^{k}(\theta) := \mathbb{E}_{s_{0},\ldots,s_{H-1}\sim\rho_{\pi^{k}}} \left[\sum_{h=0}^{r} \mathbb{E}_{a_{h}\sim\pi_{\theta}(s_{h})} A^{\pi^{k}} \right]$$

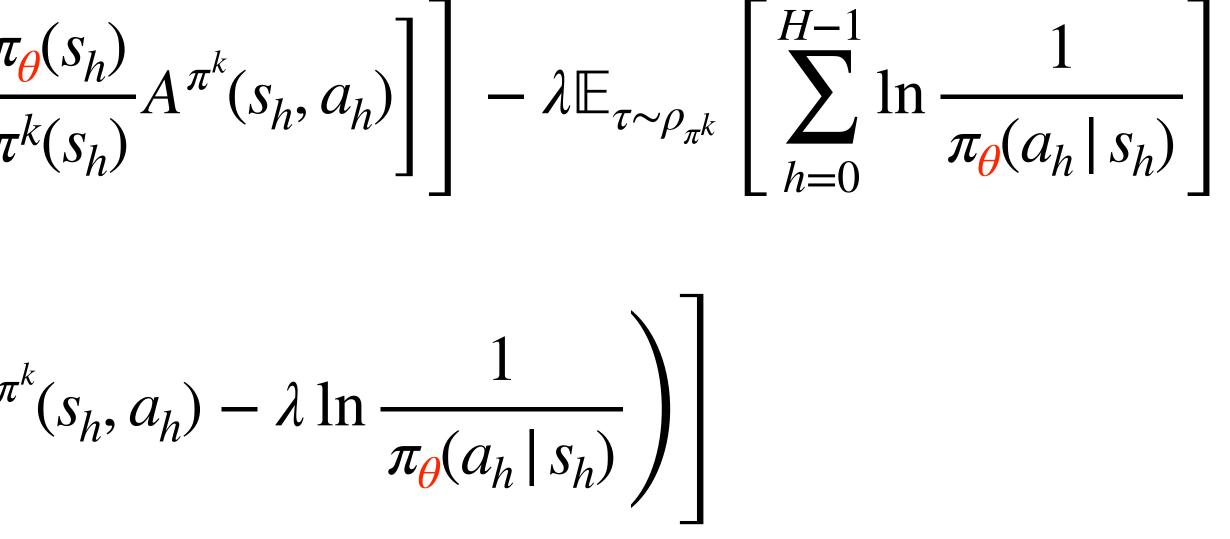
• we will use importance sampling:

$$\mathscr{C}^{k}(\theta) := \mathbb{E}_{s_{0},\ldots,s_{H-1}\sim\rho_{\pi^{k}}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_{h}\sim\pi^{k}(s_{h})} \left[\frac{\pi_{\theta}}{\pi^{k}} \right] \right]$$

$$= \mathbb{E}_{\tau \sim \rho_{\pi^k}} \left[\sum_{h=0}^{H-1} \left(\frac{\pi_{\theta}(s_h)}{\pi^k(s_h)} A^{\pi^k} \right) \right]$$

Back to Estimating $\ell^{k}(\theta)$ $E_{max} \left[\sqrt{2} \frac{1}{2} \frac{1}{$

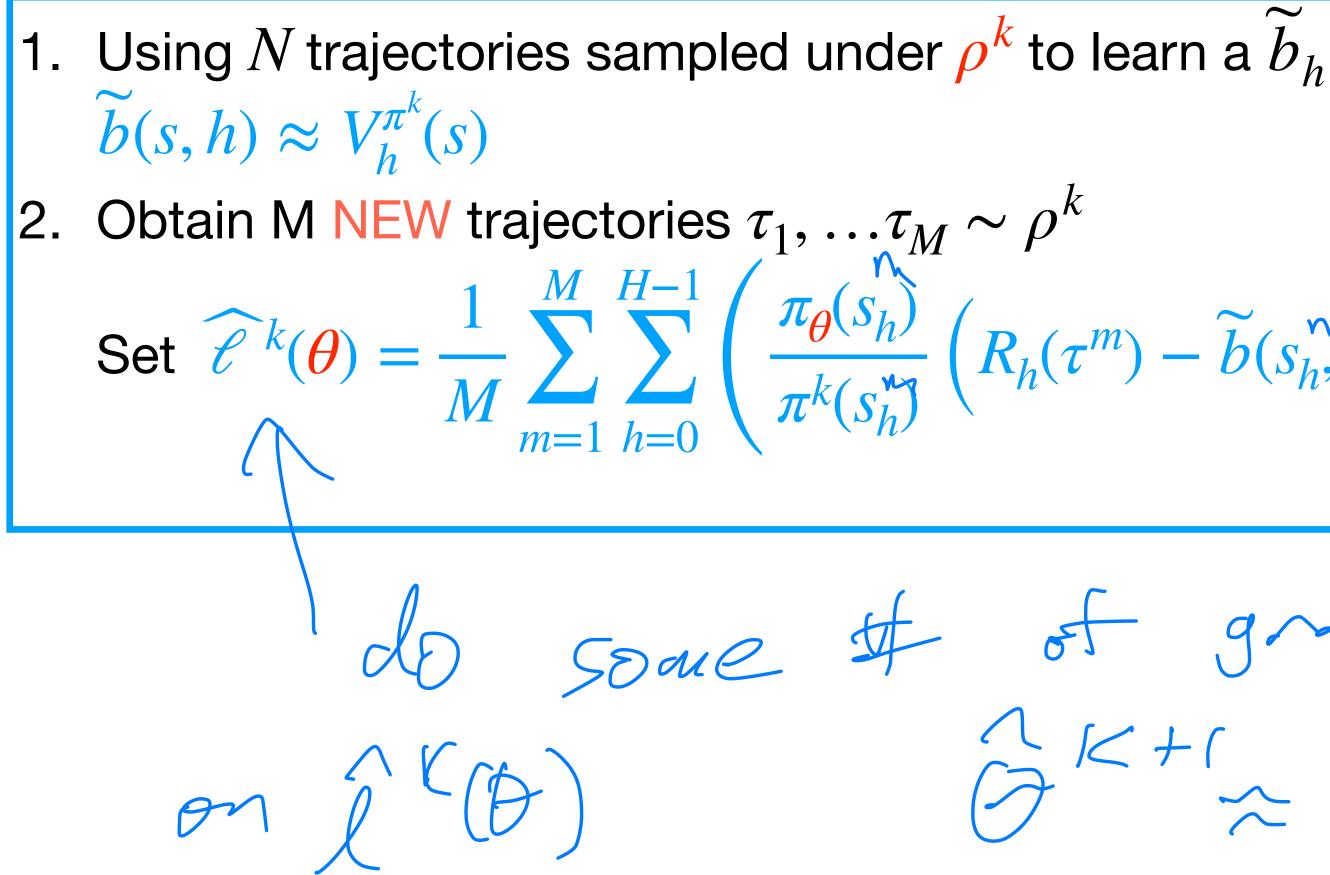




Estimating $\mathcal{C}^{k}(\theta)$

1. Using *N* trajectories sampled under ρ^k to learn a \tilde{b}_h $\tilde{b}(s,h) \approx V_h^{\pi^k}(s)$

Estimating $\mathcal{C}^{k}(\theta)$



Estimating $\ell^{k}(\theta)$

2. Obtain M NEW trajectories $\tau_1, \dots, \tau_M \sim \rho^k$ Set $\widehat{\ell}^k(\theta) = \frac{1}{M} \sum_{m=1}^M \sum_{h=0}^{H-1} \left(\frac{\pi_{\theta}(s_h)}{\pi^k(s_h)} \left(R_h(\tau^m) - \widetilde{b}(s_h, h) \right) - \lambda \ln \frac{1}{\pi_{\theta}(a_h)} \right)$ do some # of grad. stops $\hat{\ell}^{K}(\Phi) \qquad \hat{\Theta}^{K+1} \approx argany \ell^{K}(\Theta)$ 22

The meta-approach:

1. Init
$$\pi_0$$

2. For $k = 0, ..., K$:
 $\pi^{k+1} \approx \arg \max_{\theta} \Delta_k(\pi^{\theta}),$ where $\Delta_k(\pi) = \mathbb{E}_{s_0, ..., s_{H-1} \sim \rho_{\pi^k}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi(s_h)} A^{\pi^k}(s_h, a_h) \right]$
such that ρ_0 is "close" to ρ_{0^k} $\delta_{\mathcal{K}} (\pi^{-\phi}) = \nabla \mathcal{F}(\phi^{\mathcal{K}}), (\phi - \phi^{\mathcal{K}}) = S_{r+1} (\phi - \phi^{$

1. Init
$$\pi_0$$

2. For $k = 0, ...K$:
 $\pi^{k+1} \approx \arg \max_{\theta} \Delta_k(\pi^{\theta}),$ where $\Delta_k(\pi) = \mathbb{E}_{s_0,...s_{H-1} \sim \rho_{\pi^k}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi(s_h)} A^{\pi^k}(s_h, a_h) \right]$
such that ρ_{θ} is "close" to ρ_{θ^k}
• CPI: conservative policy iteration
uses unconstrained optimization: $\tilde{\pi} \approx \arg \max_{\theta} \Delta_k(\pi^{\theta}),$
enforces closeness with "mixing": $\pi^{k+1} = (1 - \alpha) \cdot \pi^k + \alpha \cdot \tilde{\pi}^{k+1}$

- 1. Init π_0
- 2. For k = 0, ..., K:

$$\pi^{k+1} \approx \arg \max_{\theta} \Delta_k(\pi^{\theta}), \qquad \text{where } \Delta_k(\pi) = \mathbb{E}_{s_0, \dots, s_{H-1} \sim \rho_{\pi^k}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi(s_h)} A^{\pi^k}(s_h, a_h) \right]$$

such that ρ_{θ} is "close" to ρ_{θ^k}

• CPI: conservative policy iteration uses unconstrained optimization: $\tilde{\pi} \approx a$

enforces closeness with "mixing": π^{k+1}

• TRPO: use KL to enforce closeness.

$$\operatorname{rg\,max}_{\theta} \Delta_{k}(\pi^{\theta}),$$
$$= (1 - \alpha) \cdot \pi^{k} + \alpha \cdot \widetilde{\pi}^{k+1}$$

- 1. Init π_0
- 2. For k = 0, ..., K:

$$\pi^{k+1} \approx \arg \max_{\theta} \Delta_k(\pi^{\theta}), \qquad \text{where } \Delta_k(\pi) = \mathbb{E}_{s_0, \dots s_{H-1} \sim \rho_{\pi^k}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi(s_h)} A^{\pi^k}(s_h, a_h) \right]$$

such that ρ_{θ} is "close" to ρ_{θ^k}

• CPI: conservative policy iteration uses unconstrained optimization: $\widetilde{\pi} \approx a$

enforces closeness with "mixing": π^{k+1}

- TRPO: use KL to enforce closeness.
- NPG: is TRPO up to "leading order" (via Taylor's theorem).

$$\operatorname{rg\,max}_{\theta} \Delta_{k}(\pi^{\theta}),$$
$$= (1 - \alpha) \cdot \pi^{k} + \alpha \cdot \widetilde{\pi}^{k+1}$$

- 1. Init π_0
- 2. For k = 0, ..., K:

$$\pi^{k+1} \approx \arg \max_{\theta} \Delta_k(\pi^{\theta}), \qquad \text{where } \Delta_k(\pi) = \mathbb{E}_{s_0, \dots s_{H-1} \sim \rho_{\pi^k}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi(s_h)} A^{\pi^k}(s_h, a_h) \right]$$

such that ρ_{θ} is "close" to ρ_{θ^k}

• CPI: conservative policy iteration uses unconstrained optimization: $\tilde{\pi} \approx a$

enforces closeness with "mixing": π^{k+1}

- TRPO: use KL to enforce closeness.
- NPG: is TRPO up to "leading order" (via Taylor's theorem).
- PPO: uses a Lagrangian relaxation (i.e. regularization)

$$\operatorname{rg\,max}_{\theta} \Delta_{k}(\pi^{\theta}),$$
$$= (1 - \alpha) \cdot \pi^{k} + \alpha \cdot \widetilde{\pi}^{k+1}$$

Taylor's theorem). regularization)

- 1. Init π_0
- 2. For k = 0, ..., K:

$$\pi^{k+1} \approx \arg \max_{\theta} \Delta_k(\pi^{\theta}), \qquad \text{where } \Delta_k(\pi) = \mathbb{E}_{s_0, \dots, s_{H-1} \sim \rho_{\pi^k}} \left[\sum_{h=0}^{H-1} \mathbb{E}_{a_h \sim \pi(s_h)} A^{\pi^k}(s_h, a_h) \right]$$

such that ρ_{θ} is "close" to ρ_{θ^k}

• CPI: conservative policy iteration uses unconstrained optimization: $\tilde{\pi} \approx a$

enforces closeness with "mixing": π^{k+1}

- TRPO: use KL to enforce closeness.
- NPG: is TRPO up to "leading order" (via Taylor's theorem).
- PPO: uses a Lagrangian relaxation (i.e. regularization)

3. Return π_K

$$\operatorname{rg\,max}_{\theta} \Delta_{k}(\pi^{\theta}),$$
$$= (1 - \alpha) \cdot \pi^{k} + \alpha \cdot \widetilde{\pi}^{k+1}$$

Taylor's theorem). regularization)

S states

• Suppose $|S| \approx H \& \mu(s_0) = 1$ (i.e. we start at s_0).

S states



- Suppose $|S| \approx H \& \mu(s_0) = 1$ (i.e. we start at s_0).
- ullet

Thrun '92

A randomly initialized policy π^0 has prob. $O(1/3^H)$ of hitting the goal state in a trajectory.

- Suppose $|S| \approx H \& \mu(s_0) = 1$ (i.e. we start at s_0).
- Implications:
 - - Holds for (sample based) Fitted DP
 - Holds for (sample based) PG/CPI/TRPO/NPG/PPO

Thrun '92

A randomly initialized policy π^0 has prob. $O(1/3^H)$ of hitting the goal state in a trajectory.

• The following sample based approach, with $\mu(s_0) = 1$, require $O(3^H)$ trajectories.

- Suppose $|S| \approx H \& \mu(s_0) = 1$ (i.e. we start at s_0).
- Implications:
 - - Holds for (sample based) Fitted DP
 - Holds for (sample based) PG/CPI/TRPO/NPG/PPO
- Basically, for these approaches, we are stuck without exploration, if $\mu(s_0) = 1$.

Thrun '92

A randomly initialized policy π^0 has prob. $O(1/3^H)$ of hitting the goal state in a trajectory.

• The following sample based approach, with $\mu(s_0) = 1$, require $O(3^H)$ trajectories.

Let's examine the role of μ

Let's examine the role of μ

- Suppose that somehow the distribution μ had better coverage.
 - e.g, μ was uniform over the all states in our toy problem, then all approaches we covered would work (with mild assumptions)
 - Theory: CPI/TRPO/NPG/PPO have better guarantees than fitted DP methods (assuming some "coverage")

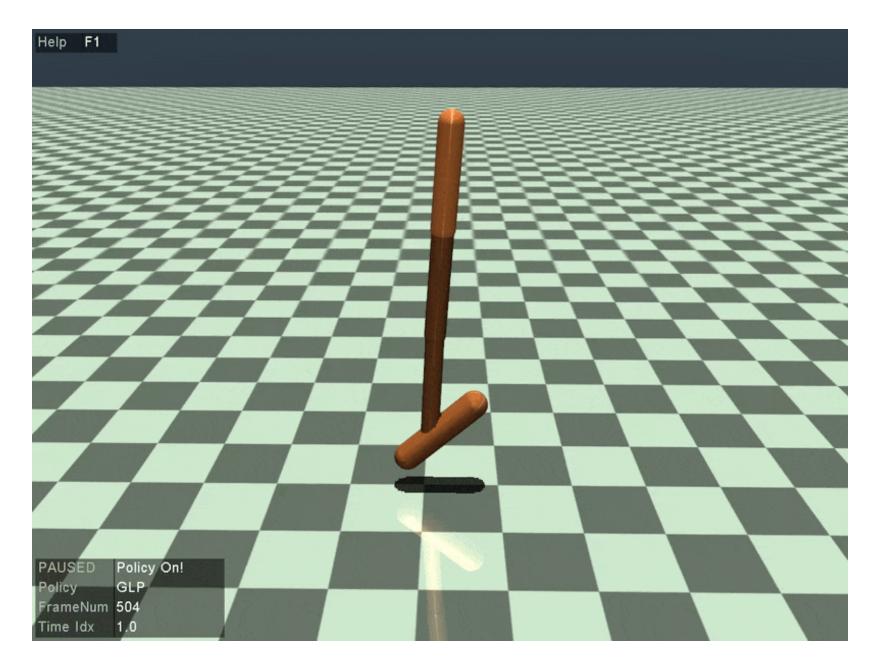
S states

Let's examine the role of μ

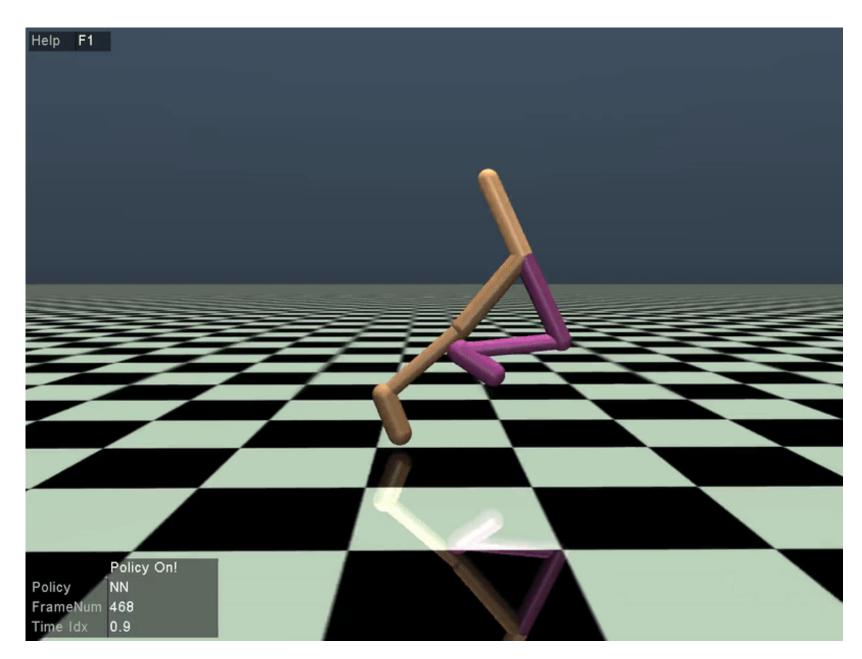
- Suppose that somehow the distribution μ had better coverage.
 - e.g, μ was uniform over the all states in our toy problem, then all approaches we covered would work (with mild assumptions)
 - Theory: CPI/TRPO/NPG/PPO have better guarantees than fitted DP methods (assuming some "coverage")
- Strategies without coverage:
 - If we have a simulator, sometimes we can design μ to have better coverage.
 - this is helpful for robustness as well.
 - Imitation learning (next time).
 - An expert gives us samples from a "good" μ .
 - Explicit exploration:
 - UCB-VI: we'll merge two good ideas!
 - Encourage exploration in PG methods.
 - Try with reward shaping

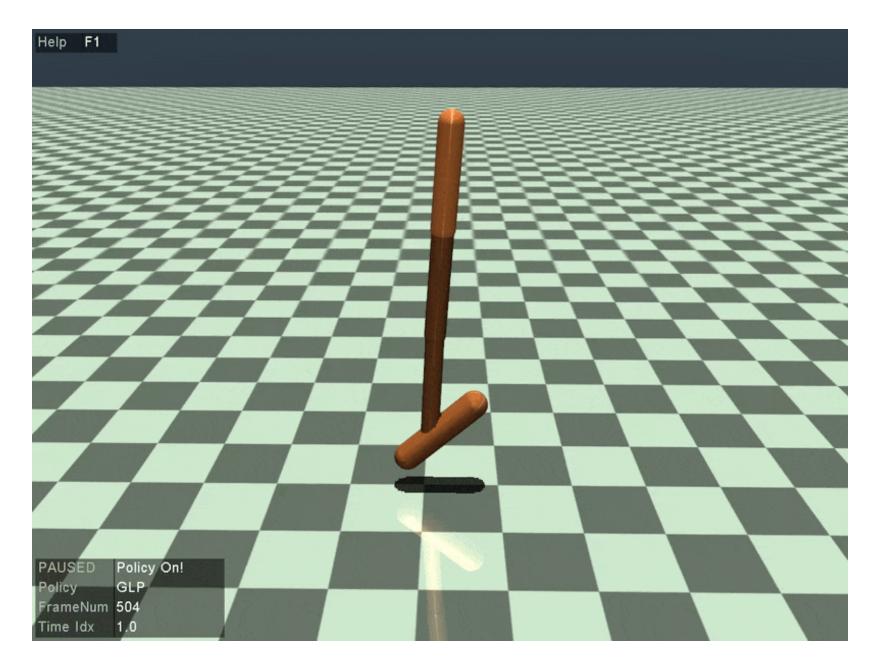
S states

s! ds

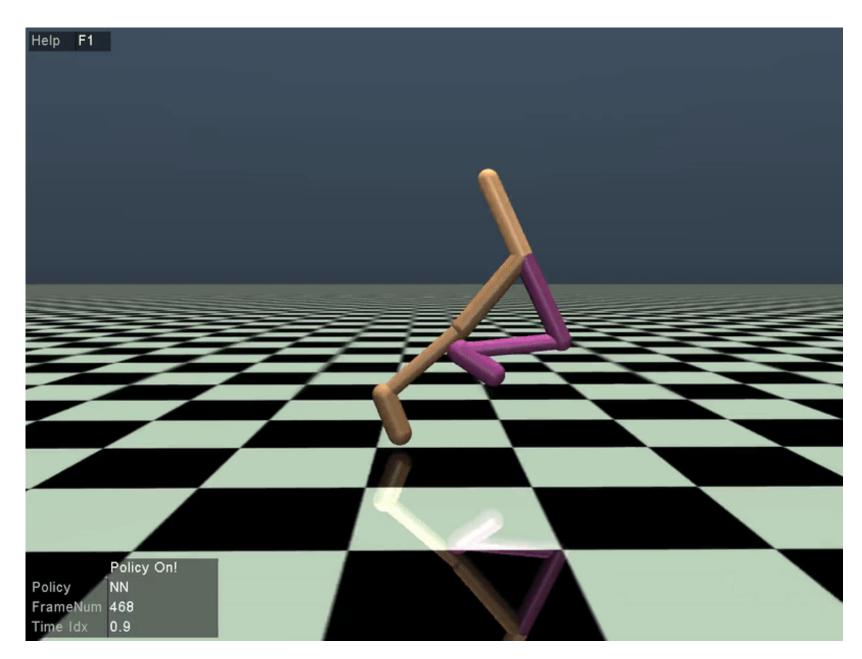


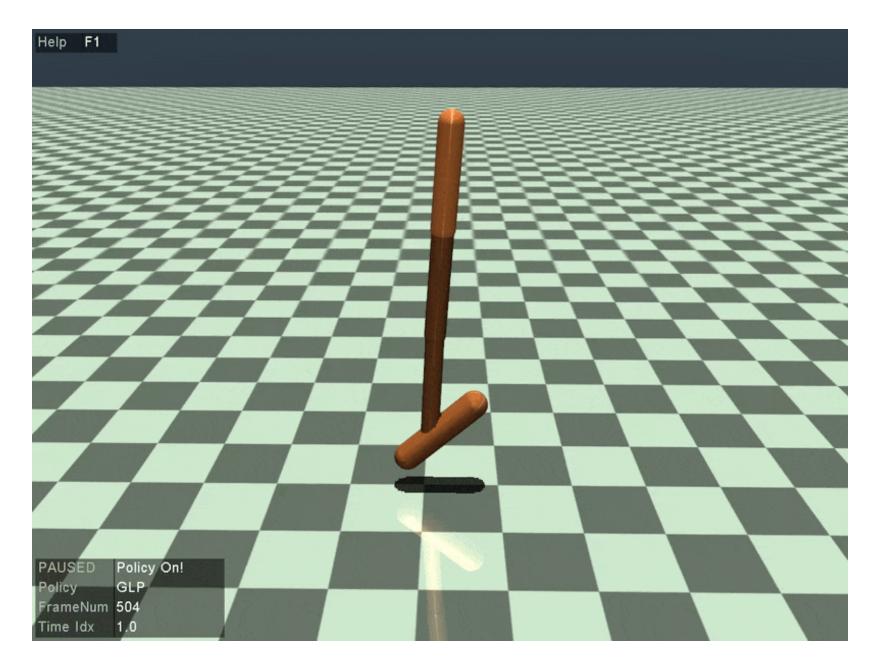
starting configuration *s*₀ are not robust!



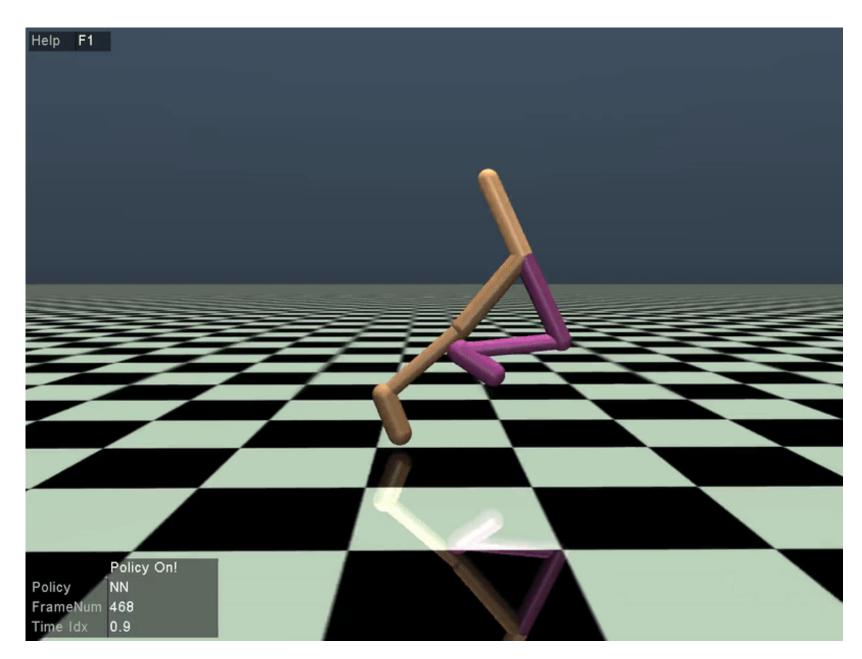


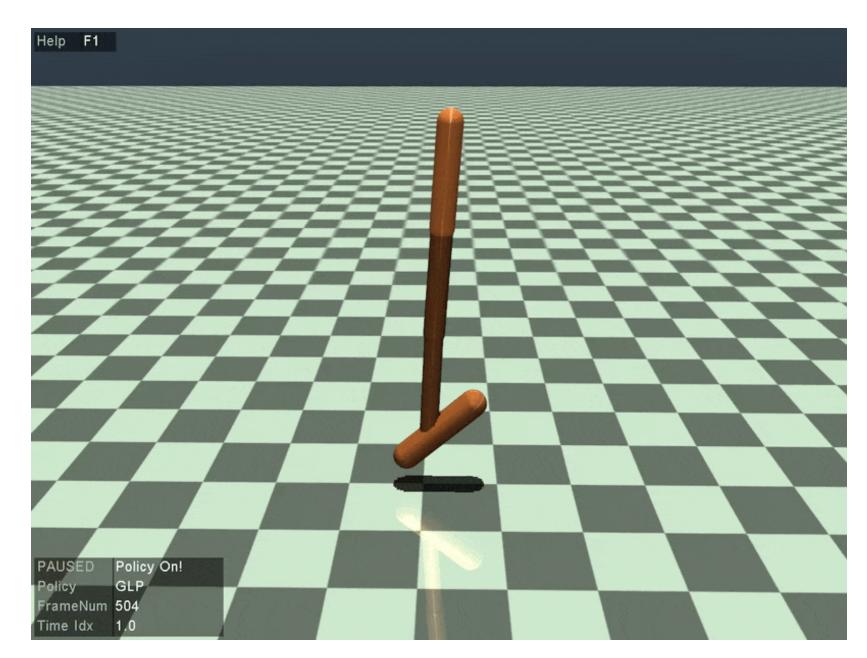
starting configuration *s*₀ are not robust!





starting configuration *s*₀ are not robust!

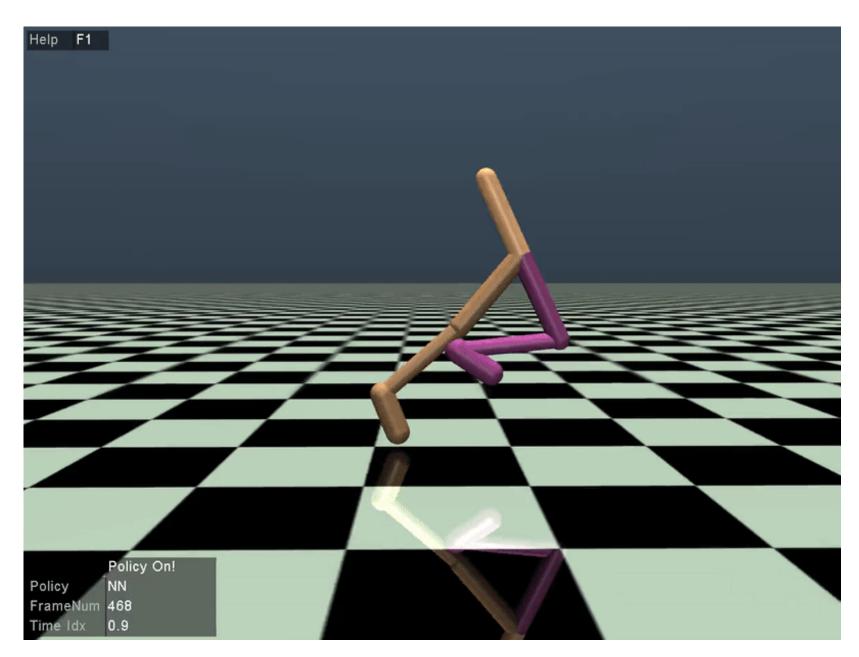




- starting configuration s_0 are not robust!
- How to fix this?

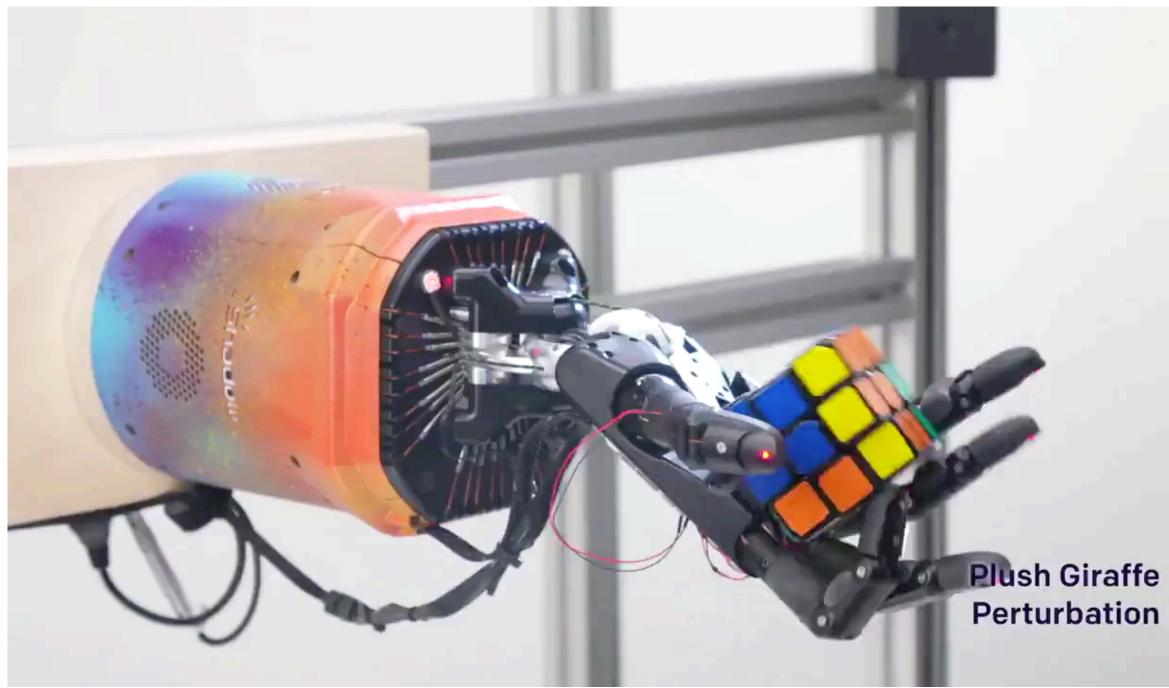
• Training from different starting configurations sampled from $s_0 \sim \mu$ fixes this. $\max_{\Theta} E_{s_0 \sim \mu} [V^{\theta}(s_0)]$

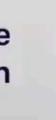
• The measure μ is also relevant for robustness.



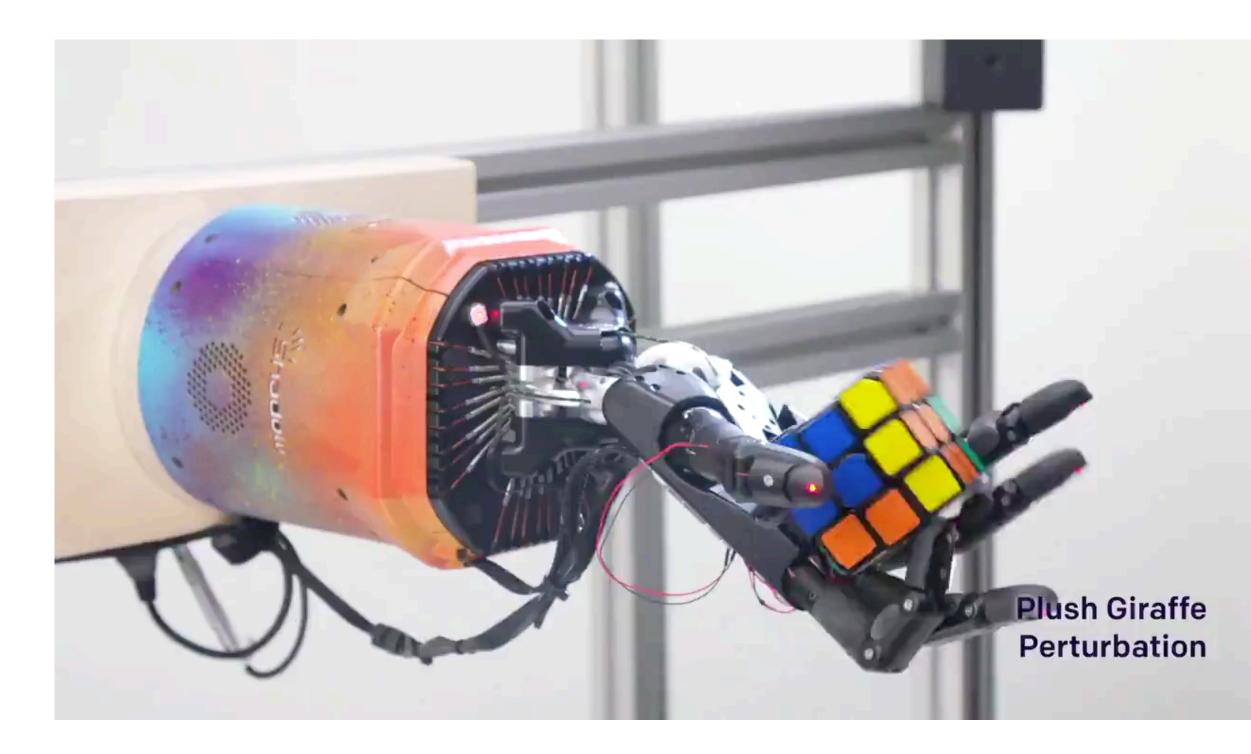
OpenAl: progress on dexterous hand manipulation

OpenAl: progress on dexterous hand manipulation





OpenAl: progress on dexterous hand manipulation



Trained with "domain randomization"

Basically, the measure $s_0 \sim \mu$ was diverse.

• The hope is that (average case) "supervised learning" works, then RL would also work.

• The hope is that (average case) "supervised learning" works, then RL would also work.

[Theorem:] (informal, see AJKS Ch 4+13) for log linear policies,

• The hope is that (average case) "supervised learning" works, then RL would also work.

[Theorem:] (informal, see AJKS Ch 4+13) for log linear policies,

• Approximation error: For all policies, suppose that for all π ,

$$\min_{\theta} \mathbb{E}_{\tau \sim \rho_{\pi_{\pi}}} \left[\frac{1}{H} \sum_{h=0}^{H-1} \left(Q^{\pi}(s_h, a_h) - \theta^{\top} \phi(s_h, a_h) \right)^2 \right] \leq \delta$$

• The hope is that (average case) "supervised learning" works, then RL would also work.

[Theorem:] (informal, see AJKS Ch 4+13) for log linear policies,

• Approximation error: For all policies, suppose that for all π ,

$$\min_{\theta} \mathbb{E}_{\tau \sim \rho_{\pi_{\pi}}} \left[\frac{1}{H} \sum_{h=0}^{H-1} \left(Q^{\pi}(s_h, a_h) - \theta^{\top} \phi(s_h) \right) \right]$$

• Sample size: Suppose that we use a # samples that is poly in $d \& 1/\epsilon_{stat}$ for both fittedPI and NPG.

• The hope is that (average case) "supervised learning" works, then RL would also work.

[Theorem:] (informal, see AJKS Ch 4+13) for log linear policies,

• Approximation error: For all policies, suppose that for all π ,

$$\min_{\theta} \mathbb{E}_{\tau \sim \rho_{\pi_{\pi}}} \left[\frac{1}{H} \sum_{h=0}^{H-1} \left(Q^{\pi}(s_h, a_h) - \theta^{\top} \phi(s_h) \right) \right]$$

- Sample size: Suppose that we use a # samples that is poly in $d \& 1/\epsilon_{stat}$ for both fittedPI and NPG.
- Coverage: suppose that μ has coverage over the marginal distribution $\rho_{\pi\star}(s \mid h)$:

$$\max_{s,h} \left(\frac{\rho_{\pi^{\star}}(s \mid h)}{\mu(s)} \right) \leq C$$

• The hope is that (average case) "supervised learning" works, then RL would also work.

[Theorem:] (informal, see AJKS Ch 4+13) for log linear policies,

• Approximation error: For all policies, suppose that for all π ,

$$\min_{\theta} \mathbb{E}_{\tau \sim \rho_{\pi_{\pi}}} \left[\frac{1}{H} \sum_{h=0}^{H-1} \left(Q^{\pi}(s_h, a_h) - \theta^{\top} \phi(s_h) \right) \right]$$

- Sample size: Suppose that we use a # samples that is poly in $d \& 1/\epsilon_{stat}$ for both fittedPI and NPG.
- Coverage: suppose that μ has coverage over the marginal distribution $\rho_{\pi^{\star}}(s \mid h)$: $\max_{s,h} \left(\frac{\rho_{\pi^{\star}}(s \mid h)}{\mu(s)} \right) \leq C$
- Computation: suppose we run NPG with poly in $1/\epsilon_{stat}$, H iterations.

• The hope is that (average case) "supervised learning" works, then RL would also work.

[Theorem:] (informal, see AJKS Ch 4+13) for log linear policies,

• Approximation error: For all policies, suppose that for all π ,

$$\min_{\theta} \mathbb{E}_{\tau \sim \rho_{\pi_{\pi}}} \left[\frac{1}{H} \sum_{h=0}^{H-1} \left(Q^{\pi}(s_h, a_h) - \theta^{\top} \phi(s_h) \right) \right]$$

- Sample size: Suppose that we use a # samples that is poly in $d \& 1/\epsilon_{stat}$ for both fittedPI and NPG.
- Coverage: suppose that μ has coverage over the marginal distribution $\rho_{\pi^*}(s \mid h)$: $\max_{s,h} \left(\frac{\rho_{\pi^{\star}}(s \mid h)}{\mu(s)} \right) \leq C$
- Computation: suppose we run NPG with poly in $1/\epsilon_{stat}$, H iterations.
- Theorem: NPG will return a policy with sub-optimality determined by C and the average case error δ : $J(\hat{\pi}) \ge J(\pi^{\star}) - \epsilon_{\text{stat}} - 2H^2 C \delta$

1. NPG: a simpler way to do TRPO, a "pre-conditioned" gradient method.

2. PPO: "first order" approx to TRPO

Attendance: bit.ly/3RcTC9T

Summary:

Feedback: <u>bit.ly/3RHtlxy</u>

