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Recap++
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(M=1) PG with a Learned Baseline:

1. Initialize , parameters: 

2. For k = 0, … : 


1. Sup. Learning: Using  trajectories sampled under , estimate a baseline  



2. Obtain a trajectory  

Set  

3. Update: 

θ0 η1, η2, …

N πθk b̃h
b̃(s) ≈ Vθk

h (s)
τ ∼ ρθk

∇̃ θJ(θk) =
H−1

∑
h=0

∇ln πθk(ah |sh)(Rh(τ) − b̃(sh))
θk+1 = θk + ηk ∇̃ θJ(θk)
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Note that regardless of our choice of , we still get unbiased gradient estimates.b̃h(s)



The Performance Difference Lemma (PDL)

5

•Let  be the distribution of trajectories from starting state  acting under .  
(we are making the starting distribution explicit now).

•For any two policies  and  and any state , 

	  

 

Comments:

•Helps us think about error analysis, instabilities of fitted PI, and sub-optimality.

•Helps to understand algorithm design (TRPO, NPG, PPO)

•This also motivates the use of “local” methods (e.g. policy gradient descent)

ρπ̃,s s π

π π̃ s

Vπ̃(s) − Vπ(s) = 𝔼τ∼ρπ̃,s [
H−1

∑
h=0

Aπ
h (sh, ah)]



1. Init 

2. For  :  

	  

	 	 s.t. 


3. Return 

π0
k = 0,…K

θk+1 = arg max
θ

𝔼s0,…sH−1∼ρπk [
H−1

∑
h=0

𝔼ah∼πθ(sh)A
πk(sh, ah)]

KL (ρπk |ρπθ) ≤ δ

πK
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• We want to maximize local advantage against ,  
but we want the new policy to be close to  (in the KL sense) 

• How do we implement this with sampled trajectories?

πθk

πθk

Trust Region Policy Optimization (TRPO)



TRPO is locally equivalent to the NPG

max
θ

𝔼s0,…sH−1∼ρπk [
H−1

∑
h=0

𝔼ah∼πθ(sh)A
πk(sh, ah)]

s.t. KL (ρπk |ρπθ) ≤ δ

First-order Taylor expansion at θk

second-order Taylor expansion at θk

max
θ

∇θJ(πθk)⊤(θ − θk)
s.t. (θ − θk)⊤Fθk(θ − θk) ≤ δ

(Where  is the “Fisher Information Matrix”)Fθk

Intuition: maximize local adv subject 
to being incremental (in KL);

TRPO at iteration k:
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1. Init 

2. For  :  

	  

	  s.t. 

3. Return 

π0
k = 0,…K

θk+1 = arg max
θ

∇θJ(πθk)⊤(θ − θk)

(θ − θk)⊤Fθk(θ − θk) ≤ δ
πK
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NPG: A “leading order” equivalent program to TRPO:

• Where  is the gradient at  and 

•  is (basically) the Fisher information matrix at , defined as: 

	  
 

 	     

∇θJ(πθk) θk

Fθ θ ∈ ℝd

Fθ := 𝔼τ∼ρθ [∇θln ρθ(τ)(∇θln ρθ(τ))⊤] ∈ ℝd×d

= 𝔼τ∼ρθ [
H−1

∑
h=0

∇θln πθ(ah |sh)(∇θln πθ(ah |sh))⊤]



There is a closed form update:
Linear objective and quadratic convex constraint, we can solve it optimally!

Indeed this gives us:

θk+1 = θk + ηF−1
θk ∇θJ(πθk)

Where η =
δ

∇θJ(πθk)⊤F−1
θk ∇θJ(πθk)
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1. Init 

2. For  : 


• Estimate PG 


• Estimate Fisher info-matrix: 


• Natural Gradient Ascent:   

3. Return 

π0

k = 0,…K
∇θJ(πθk)

Fθk = 𝔼τ∼ρθk [
H−1

∑
h=0

∇ln πθk(ah |sh)(∇ln πθk(ah |sh))⊤]
θk+1 = θk + η ̂Fθk

−1 ̂∇θJ(πθk)
πK

10

An Implementation: Sample Based NPG



Example of Natural Gradient on 1-d problem: 2 actions, 1 state

1

1

π[1]

π[2]

θ0

NPG moves to  much more quickly 
(for a fixed )

θ = ∞
η

(πθ[1], πθ[2]) := ( exp(θ)
1 + exp(θ)

,
1

1 + exp(θ) )
J(θ) = 100 ⋅ πθ[1] + 1 ⋅ πθ[2]

∞−∞

θ⋆

Fisher information scalar: Fθ =
exp(θ)

(1 + exp(θ))2

NPG:  θk+1 = θk + η
J′ (θk)
Fθk

Exact PG: θk+1 = θk + η
99 exp(θk)

(1 + exp(θk))2

Gradient: J′ (θ) =
99 exp(θ)

(1 + exp(θ))2

i.e., vanilla GA moves to  with smaller 
and smaller steps, since  as 

θ = ∞
J′ (θ) → 0 θ → ∞

Every possible policy is a 
point on the line segment, 
parameterized by .θ

= θk + η ⋅ 99
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Today:

12



• Recap++


• Proximal Policy Optimization (PPO)


• Importance Sampling


• Exploration?


• PG review

Today

13



1. Init 

2. For  :  

	  

	 	 s.t. 


3. Return 

π0
k = 0,…K

θk+1 = arg max
θ

𝔼s0,…sH−1∼ρπk [
H−1

∑
h=0

𝔼ah∼πθ(sh)A
πk(sh, ah)]

KL (ρπk |ρπθ) ≤ δ

πK
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• The difficulty with TRPO and NPG is that they could be computationally costly.  
Need to solve constrained optimization  or matrix inversion (“second order”) problems. 


• Can we use a method which only uses gradients? 

Let’s try to use a “Lagrangian relaxation” of TRPO

Back to TRPO/NPG



1. Init , choose 

2. For  :  




3. Return 

π0 λ
k = 0,…K

θk+1 = arg max
θ

𝔼s0,…sH−1∼ρπk [
H−1

∑
h=0

𝔼ah∼πθ(sh)A
πk(sh, ah)]−λKL (ρπk |ρπθ)

regularization
πK
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Proximal Policy Optimization (PPO)



The regularization term is:

= 𝔼τ∼ρπθk [
H−1

∑
h=0

ln
1

πθ(ah |sh) ] + [term not a function of θ]
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KL (ρπθk
|ρπθ) = 𝔼τ∼ρπθk [ln

ρπθk
(τ)

ρπθ
(τ) ]

ρθ(τ) = μ(s0)πθ(a0 |s0)P(s1 |s0, a0)…P(sH−1 |sH−2, aH−2)πθ(aH−1 |sH−1)

= 𝔼τ∼ρπθk [
H−1

∑
h=0

ln
πθk(ah |sh)
πθ(ah |sh) ]



Proximal Policy Optimization (PPO)
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1. Init , choose 

2. For  :  

use SGD to optimize: 
 

where: 




3. Return 

π0 λ
k = 0,…K

θk+1 ≈ arg max
θ

ℓk(θ)

ℓk(θ) := 𝔼s0,…sH−1∼ρπk [
H−1

∑
h=0

𝔼ah∼πθ(sh)A
πk(sh, ah)] − λ𝔼τ∼ρπk [

H−1

∑
h=0

ln
1

πθ(ah |sh) ]
πK

How do we estimate this objective?



• Recap++


• Proximal Policy Optimization (PPO)


• Importance Sampling


• Exploration?


• PG review

Today

18



Importance Sampling
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• Suppose we seek to estimate .


• Assume: we have an (i.i.d.) dataset , where , where  is known, and

•  and  are known.

• we are not able to collect values of  for . 

(e.g. we have already collected our data from some costly experiment). 

• Note:  


• An unbiased estimate of  is given by 


• Terminology:  
 is the target distribution;  is the proposal distribution;  

 is the likelihood ratio.

• What about the variance of this estimator?

Ex∼p̃[ f(x)]
x1, …xN xi ∼ p p

f p̃
f(x) x ∼ p̃

Ex∼p̃ [f(x)] =

Ex∼p̃[ f(x)]
1
N ∑

i

p̃(xi)
p(xi)

f(xi)

p̃(x) p(x)
p̃(x)/p(x)

Ex∼p [ p̃(x)
p(x)

f(x)]



Importance Sampling & Variance
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Back to Estimating ℓk(θ)
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• To estimate,  

 

• we will use importance sampling: 
 

ℓk(θ) := 𝔼s0,…sH−1∼ρπk [
H−1

∑
h=0

𝔼ah∼πθ(sh)A
πk(sh, ah)] − λ𝔼τ∼ρπk [

H−1

∑
h=0

ln
1

πθ(ah |sh) ]

ℓk(θ) := 𝔼s0,…sH−1∼ρπk [
H−1

∑
h=0

𝔼ah∼πk(sh) [ πθ(sh)
πk(sh)

Aπk(sh, ah)]] − λ𝔼τ∼ρπk [
H−1

∑
h=0

ln
1

πθ(ah |sh) ]

= 𝔼τ∼ρπk

H−1

∑
h=0 ( πθ(sh)

πk(sh)
Aπk(sh, ah) − λ ln

1
πθ(ah |sh) )



Estimating ℓk(θ)
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1. Using  trajectories sampled under  to learn a  



2. Obtain M NEW trajectories  

Set  

 
use SGD to optimize: 

N ρk b̃h
b̃(s, h) ≈ Vπk

h (s)
τ1, …τM ∼ ρk

̂ℓ k(θ) =
1
M

M

∑
m=1

H−1

∑
h=0 ( πθ(sm

h )
πk(sm

h ) (Rh(τm) − b̃(sm
h , h)) − λ ln

1
πθ(am

h |sm
h ) )

θk+1 ≈ arg max
θ

ℓk(θ)



The meta-approach:
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1. Init 

2. For  :  

   , 	                 where  

   such that  is “close” to  

• CPI: conservative policy iteration  
uses unconstrained optimization: ,  

enforces closeness with “mixing”: 

• TRPO: use KL to enforce closeness.

• NPG: is TRPO up to “leading order” (via Taylor’s theorem).

• PPO: uses a Lagrangian relaxation (i.e. regularization)


3. Return 

π0
k = 0,…K

πk+1 ≈ arg max
θ

Δk(πθ) Δk(π) = 𝔼s0,…sH−1∼ρπk [
H−1

∑
h=0

𝔼ah∼π(sh)A
πk(sh, ah)]

ρθ ρθk

π̃ ≈ arg max
θ

Δk(πθ)

πk+1 = (1 − α) ⋅ πk + α ⋅ π̃k+1

πK

Meta-Approach: CPI/TRPO/NPG/PPO are all pretty similar.



“Lack of Exploration” leads to Optimization and Statistical Challenges

• Suppose  &  (i.e. we start at ).

• A randomly initialized policy  has prob.   of hitting the goal state in a trajectory. 

• Implications:

• The following sample based approach, with , require  trajectories.

• Holds for (sample based) Fitted DP

• Holds for (sample based) PG/CPI/TRPO/NPG/PPO


• Basically, for these approaches, we are stuck without exploration, if . 

H ≈ poly( |S | ) μ(s0) = 1 s0
π0 O(1/3|S|)

μ(s0) = 1 O(3|S|)

μ(s0) = 1

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

25



Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1
Let’s examine the role of μ

• Suppose that somehow the distribution  had better coverage.

• e.g,  was uniform over the all states in our toy problem, then all approaches we 

covered would work (with mild assumptions )

• Theory: CPI/TRPO/NPG/PPO have better guarantees than fitted DP methods  

(assuming some “coverage”)

• Strategies without coverage:

• If we have a simulator, sometimes we can design  to have better coverage.

• this is helpful for robustness as well.


• Imitation learning (next time). 

• An expert gives us samples from a “good” .


• Explicit exploration:

• UCB-VI: we’ll merge two good ideas!

• Encourage exploration in PG methods.


• Try with reward shaping

μ
μ

μ

μ
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Aside: Brittle policies if we train starting from only from one configuration!

• [Rajeswaran, Lowrey, Todorov,  K. 2017]: showed policies optimized for a single 
starting configuration  are not robust! 

• How to fix this? 

• Training from different starting configurations sampled from  fixes this. 
     

• The measure  is also relevant for robustness.

𝑠0

s0 ∼ μ
max

θ
Es0∼μ[Vθ(s0)]

μ
27



OpenAI: progress on dexterous hand manipulation

Trained with “domain randomization” 

Basically, the measure  was 
diverse. 

s0 ∼ μ
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Summary:

Feedback: 

bit.ly/3RHtlxy
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Attendance: 
bit.ly/3RcTC9T

1. NPG: a simpler way to do TRPO, a “pre-conditioned” gradient method.

2. PPO: “first order” approx to TRPO

http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

