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Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

2.
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Iterative LQR (iLQR)

For i = 0,1,…

Initialize (how might we do this?)ū0
0, …, ū0

H−1,
Generate nominal trajectory: x̄0

0 = x̄0, ū0
0, …, ū0

h, x̄0
h+1 = f(x̄0

h, ū0
h), …, x̄0

H−1, ū0
H−1

For each , linearize  at :  
h f(x, u) (x̄i
h, ūi

h)
fh(x, u) ≈ f(x̄i

h, ūi
h) + ∇x f(x̄i

h, ūi
h)(x − x̄i

h) + ∇u f(x̄i
h, ūi

h)(u − ūi
h)

For each , quadratize  at : 
h ch(x, u) (x̄i
h, ūi

h)

ch(x, u) ≈ 1
2 [x − x̄i

h

u − ūi
h]

⊤

[
∇2

xc(x̄i
h, ūi

h)∇2
x,uc(x̄i

h, ūi
h)

∇2
u,xc(x̄i

h, ūi
h)∇2

uc(x̄i
h, ūi

h) ] [x − x̄i
h

u − ūi
h]

+[x − x̄i
h

u − ūi
h]

⊤

[ ∇xc(x̄i
h, ūi

h)
∇uc(x̄i

h, ūi
h)] + c(x̄i

h, ūi
h)

Formulate time-dependent LQR and compute its optimal control πi
0, …, πi

H−1
Set new nominal trajectory: x̄i+1

0 = x̄0, ūi+1
h = πi

h(x̄i+1
h ),  and x̄i+1

h+1 = f(x̄i+1
h , ūi+1

h )

Recall ; denote x0 ∼ μ0 &x0∼μ0
[x0] = x̄0

Note this is true , not approximationf5

Note that although true  is stationary, 
its approximation  is not

f
fh

per
Her :

#(d2k + k3)



Practical Considerations of Iterative LQR:

6



Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

6



Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

2. Still want to use finite differences to approximate derivatives

6



Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

3. We want to use line-search to get monotonic improvement:

2. Still want to use finite differences to approximate derivatives

6



Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

3. We want to use line-search to get monotonic improvement:

Given the previous nominal control  and the latest computed controls ūi
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h + (1 − α)ūh
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We want to find  such that  has the smallest cost, α ∈ [0,1] ūi+1
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3. We want to use line-search to get monotonic improvement:

Given the previous nominal control  and the latest computed controls ūi
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We want to find  such that  has the smallest cost, α ∈ [0,1] ūi+1
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H−1

∑
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s.t.  xh+1 = f(xh, ūi+1
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h = αūi
h + (1 − α)ūh, x0 = x̄0

2. Still want to use finite differences to approximate derivatives

Why is this tractable?
6
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Summary of LQR extended to nonlinear control:
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Summary of LQR extended to nonlinear control:

Local Linearization:  
Approximate an LQR at the balance (goal) position  and then solve the approximated LQR(x⋆, u⋆)

Iterative LQR 
Iterate between:


(1) forming an LQR around the current nominal trajectory, 

(2) computing a new nominal trajectory using the optimal policy of the LQR

7

Computes an approximately globally optimal solution for a small class of nonlinear control problems

Computes a locally optimal (in policy space) solution for a large class of nonlinear control problems
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Intro to Multi-armed bandits (MAB)
Setting:

We have K many arms; label them 1,…, K
Each arm has a unknown reward distribution, i.e., , 


w/ mean 
νk ∈ Δ([0,1])

μk = &r∼νk
[r]

Example:  is a Bernoulli distribution w/ mean νk μk = ℙr∼νk
(r = 1)

Every time we pull arm , we observe an i.i.d reward k r = {1  w/ prob μk
0 w/ prob 1 − μk
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Application: online advertising

Arms correspond to Ads

Reward is 1 if user clicks on ad

A learning system aims to 
maximize clicks in the long run:

1. Try an Ad (pull an arm)

2. Observe if it is clicked 
(see a zero-one reward)

3. Update: Decide what ad 
to recommend for next 
round
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Application: mobile health

Arms correspond to messages sent to users

Reward is, e.g., 1 if user exercised 
after seeing message

A learning system aims to 
maximize fitness in the long run:

1. Send a message (pull an arm)

2. Observe if user exercises 
(see a zero-one reward)

3. Update: Decide what 
message to send next round

11
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MAB sequential process

More formally, we have the following interactive learning process:

For t = 0 → T − 1
1. Learner pulls arm at ∈ {1,…, K}

2. Learner observes an i.i.d reward  of arm rt ∼ νat
at

(based on historical information)

Note: each iteration, we do not observe rewards of arms that we did not try
Note: there is no state ; rewards from a given arm are i.i.d. (data NOT i.i.d.!)s
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MAB learning objective

RegretT = Tμ⋆ −
T−1

∑
t=0

μat

Total expected reward if we 
pulled best arm over T rounds

Total expected reward of the 
arms we pulled over T rounds

Goal: want  as small as possibleRegretT

Optimal policy when reward distributions known is trivial: μ⋆ := max
k∈[K]

μk

13

Why not sum the ?rt



Why is MAB hard?

Exploration-Exploitation Tradeoff:

14



Why is MAB hard?

Exploration-Exploitation Tradeoff:

Every round, we need to ask ourselves: 


Should we pull the arm that currently appears best now (exploit; immediate payoff)?

Or pull another arm, in order to potentially learn it is better (explore; payoff later)?
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Naive baseline: pure exploration

Algorithm: at each round choose an arm uniformly at random 
from among {1,…, K}
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Naive baseline: pure exploration

Algorithm: at each round choose an arm uniformly at random 
from among {1,…, K}

Clearly no learning taking place!

&[RegretT] = & [Tμ⋆ −
T−1

∑
t=0

μat] = T (μ⋆ − μ̄) = Ω(T)

μ̄ = 1
K

K

∑
k=1

μk

16

grows
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Baseline: pure greedy

Algorithm: try each arm once, and then commit to the one that 
has the highest observed reward

Q: what could go wrong?

A bad arm (i.e., low ) may generate a high reward by chance (or vice versa)!μk
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Example: pure greedy
More concretely, let’s say we have two arms:

Reward distribution for arm 1:  = Bernoulliν1 (μ1 = 0.6)
Reward distribution for arm 2:  = Bernoulliν2 (μ2 = 0.4)
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Example: pure greedy
More concretely, let’s say we have two arms:

Reward distribution for arm 1:  = Bernoulliν1 (μ1 = 0.6)

Clearly the first arm is better! 

First , :

with probability 16%, we observe reward pair 

a0 = 1 a1 = 2
(r0,r1) = (0,1)

Reward distribution for arm 2:  = Bernoulliν2 (μ2 = 0.4)

(1 − μ1)μ2 = (1 − 0.6) × 0.4

    (regret of arm 2)#[RegretT] ≥ (T − 2) × ℙ(select arm 2 for all t > 1) ×
= (T − 2) × .16 × 0.2 = Ω(T)

Same rate as pure exploration!18
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Lessons learned
Lesson from pure greedy: exploring each arm once is not enough

Let’s allow both, and see how best to trade them off

Plan: (1) try each arm multiple times, (2) compute the empirical mean of each arm, (3) 
commit to the one that has the highest empirical mean

Lesson from pure exploration: exploring each arm too much is bad too
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Explore-Then-Commit (ETC)
Algorithm hyper parameter  (we assume  >> )Ne < T/K T K

Pull arm    times to observe  k Ne {r(k)
i }Ne

i=1 ∼ νk

Calculate arm k’s empirical mean: ̂μk = 1
Ne

Ne
∑
i=1

r(k)
i

For : k = 1,…, K (Exploration phase)

For : t = NeK, …, (T − 1) (Exploitation phase)

Pull the best empirical arm at = arg max
i∈[K]

̂μi

Q: how to set ?Ne

Number of explorationsNe =
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Regret Analysis Strategy

1. Calculate regret during exploration stage
2. Quantify error of arm mean estimates at end of exploration stage
3. Using step 2, calculate regret during exploitation stage

(Actually, will only be able to upper-bound total regret in steps 1-3)

4. Minimize our upper-bound over Ne

22
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But First… An Important Inequality
Hoeffding inequality

Given N i.i.d samples  with mean , let 


Then with probability at least , 


{ri}N
i=1 ∼ ν ∈ Δ([0,1]) μ ̂μ := 1

N

N

∑
i=1

ri .

1 − δ

̂μ − μ ≤ ln(2/δ)
2N

•Why is this useful? Quantify error of arm mean estimates at end of exploration 
stage (if all estimates are close, arm we commit to must be close to best)

•Why is this true? Full proof beyond course scope, but intuition easier…
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Intuition Behind Hoeffding
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Hoeffding inequality: sample mean of  i.i.d. samples on  satisfies


 w/p 

N [0,1]

̂μ − μ ≤ ln(2/δ)
2N

1 − δ

Think of as finite-sample (and conservative) version of Central Limit Theorem (CLT):
•CLT  Gaussian w/ mean 0 and standard deviation⇒ ̂μ − μ ≈ ∝ 1/N
•CLT standard deviation explains the Hoeffding denominator
•Numerator is because Gaussian has double-exponential tails, i.e., probability of 
a deviation from the mean by  scales roughly like , which, when inverted 
(i.e., set  and solve for ) gives 

x e−x2

δ = e−x2 x x = ln(1/δ)
•Don’t worry too much about the extra ’s… CLT is only approximate!2
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Regret Analysis of ETC (cont’d)
4. From steps 1-3: with probability ,1 − δ

RegretT ≤ NeK + T 2 ln(2K/δ)/Ne

Minimize over : (won’t bore you with algebra)Ne

optimal Ne = (
T ln(2K/δ)/2

K )
2/3

⇒ RegretT ≤ 3T2/3(K ln(2K/δ)/2)1/3 = o(T)
(A bit more algebra to plug optimal  into Regret  equation above)Ne T

Take any  so that  and  (e.g.,  ): sublinear regret!Ne Ne → ∞ Ne/T → 0 Ne = T
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Today

• Feedback from last lecture

• Recap

• Multi-armed bandit problem statement

• Baseline approaches: pure exploration and pure greedy

• Explore-then-commit
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Summary:

Feedback: 

bit.ly/3RHtlxy
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Attendance: 
bit.ly/3RcTC9T

•Multi-armed bandits (or MAB or just bandits)

•Exemplify exploration vs exploitation

•Pure greedy not much better than pure exploration (linear regret)

•Explore then commit obtains sublinear regret


