Multi-Armed Bandits

Lucas Janson and Sham Kakade

CS/Stat 184: Introduction to Reinforcement Learning Fall 2023

Today

- Feedback from last lecture
- Recap
- Multi-armed bandit problem statement
- Baseline approaches: pure exploration and pure greedy
- Explore-then-commit

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

2

Today

- Feedback from last lecture
 - Recap
 - Multi-armed bandit problem statement
 - Baseline approaches: pure exploration and pure greedy
 - Explore-then-commit

Iterative LQR (iLQR)

Recall
$$x_0 \sim \mu_0$$
; denote $\mathbb{E}_{x_0 \sim \mu_0}[x_0] = \bar{x}_0$

Initialize $\bar{u}_0^0, \ldots, \bar{u}_{H-1}^0$, (how might we do this?)

Generate nominal trajectory:
$$\bar{x}_0^0 = \bar{x}_0, \bar{u}_0^0, ..., \bar{u}_h^0, \bar{x}_{h+1}^0 = f(\bar{x}_h^0, \bar{u}_h^0), ..., \bar{x}_{H-1}^0, \bar{u}_{H-1}^0$$

For i = 0, 1, ...

Note that although true f is stationary,

For each h, linearize f(x, u) at $(\bar{x}_h^i, \bar{u}_h^i)$: its approximation f_h is not

$$f_h(x, u) \approx f(\bar{x}_h^i, \bar{u}_h^i) + \nabla_x f(\bar{x}_h^i, \bar{u}_h^i)(x - \bar{x}_h^i) + \nabla_u f(\bar{x}_h^i, \bar{u}_h^i)(u - \bar{u}_h^i)$$

For each h, quadratize $c_h(x, u)$ at $(\bar{x}_h^i, \bar{u}_h^i)$:

$$c_h(x,u) \approx \frac{1}{2} \begin{bmatrix} x - \bar{x}_h^i \\ u - \bar{u}_h^i \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \nabla_x^2 c(\bar{x}_h^i, \bar{u}_h^i) \nabla_{x,u}^2 c(\bar{x}_h^i, \bar{u}_h^i) \\ \nabla_{u,x}^2 c(\bar{x}_h^i, \bar{u}_h^i) \nabla_u^2 c(\bar{x}_h^i, \bar{u}_h^i) \end{bmatrix} \begin{bmatrix} x - \bar{x}_h^i \\ u - \bar{u}_h^i \end{bmatrix}$$

$$+ \begin{bmatrix} x - \bar{x}_h^i \\ u - \bar{u}_h^i \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \nabla_x c(\bar{x}_h^i, \bar{u}_h^i) \\ \nabla_u c(\bar{x}_h^i, \bar{u}_h^i) \end{bmatrix} + c(\bar{x}_h^i, \bar{u}_h^i)$$

Formulate time-dependent LQR and compute its optimal control $\pi_0^i, \ldots, \pi_{H-1}^i$

Set new nominal trajectory: $\bar{x}_0^{i+1} = \bar{x}_0$, $\bar{u}_h^{i+1} = \pi_h^i(\bar{x}_h^{i+1})$, and $\bar{x}_{h+1}^{i+1} = f(\bar{x}_h^{i+1}, \bar{u}_h^{i+1})$

Note this is true f, not approximation

per ster; H(d2k+k3)

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

- 1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians
 - 2. Still want to use finite differences to approximate derivatives

- 1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians
 - 2. Still want to use finite differences to approximate derivatives
 - 3. We want to use line-search to get monotonic improvement:

- 1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians
 - 2. Still want to use finite differences to approximate derivatives
 - 3. We want to use line-search to get monotonic improvement:

Given the previous nominal control $\bar{u}_0^i,\ldots,\bar{u}_{H-1}^i$, and the latest computed controls $\bar{u}_0,\ldots,\bar{u}_{H-1}$

- 1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians
 - 2. Still want to use finite differences to approximate derivatives
 - 3. We want to use line-search to get monotonic improvement:

Given the previous nominal control $\bar{u}^i_0,\ldots,\bar{u}^i_{H-1},$ and the latest computed controls $\bar{u}_0,\ldots,\bar{u}_{H-1}$

We want to find $\alpha \in [0,1]$ such that $\bar{u}_h^{i+1} := \alpha \, \bar{u}_h^i + (1-\alpha)\bar{u}_h$ has the smallest cost,

- 1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians
 - 2. Still want to use finite differences to approximate derivatives
 - 3. We want to use line-search to get monotonic improvement:

Given the previous nominal control $\bar{u}^i_0,\ldots,\bar{u}^i_{H-1},$ and the latest computed controls $\bar{u}_0,\ldots,\bar{u}_{H-1}$

We want to find $\alpha \in [0,1]$ such that $\bar{u}_h^{i+1} := \alpha \, \bar{u}_h^i + (1-\alpha)\bar{u}_h$ has the smallest cost,

$$\min_{\alpha \in [0,1]} \sum_{h=0}^{H-1} c(x_h, \bar{u}_h^{i+1})$$

s.t.
$$x_{h+1} = f(x_h, \bar{u}_h^{i+1}), \quad \bar{u}_h^{i+1} = \alpha \bar{u}_h^i + (1 - \alpha)\bar{u}_h, \quad x_0 = \bar{x}_0$$

- 1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians
 - 2. Still want to use finite differences to approximate derivatives
 - 3. We want to use line-search to get monotonic improvement:

Given the previous nominal control $\bar{u}^i_0,\ldots,\bar{u}^i_{H-1},$ and the latest computed controls $\bar{u}_0,\ldots,\bar{u}_{H-1}$

We want to find $\alpha \in [0,1]$ such that $\bar{u}_h^{i+1} := \alpha \, \bar{u}_h^i + (1-\alpha)\bar{u}_h$ has the smallest cost,

$$\min_{\alpha \in [0,1]} \sum_{h=0}^{H-1} c(x_h, \bar{u}_h^{i+1})$$

s.t.
$$x_{h+1} = f(x_h, \bar{u}_h^{i+1}), \quad \bar{u}_h^{i+1} = \alpha \bar{u}_h^i + (1 - \alpha)\bar{u}_h, \quad x_0 = \bar{x}_0$$

Why is this tractable?

- 1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians
 - 2. Still want to use finite differences to approximate derivatives
 - 3. We want to use line-search to get monotonic improvement:

Given the previous nominal control $\bar{u}^i_0,\ldots,\bar{u}^i_{H-1},$ and the latest computed controls $\bar{u}_0,\ldots,\bar{u}_{H-1}$

We want to find $\alpha \in [0,1]$ such that $\bar{u}_h^{i+1} := \alpha \, \bar{u}_h^i + (1-\alpha)\bar{u}_h$ has the smallest cost,

$$\min_{\alpha \in [0,1]} \sum_{h=0}^{H-1} c(x_h, \bar{u}_h^{i+1})$$

s.t.
$$x_{h+1} = f(x_h, \bar{u}_h^{i+1}), \quad \bar{u}_h^{i+1} = \alpha \bar{u}_h^i + (1 - \alpha)\bar{u}_h, \quad x_0 = \bar{x}_0$$

Why is this tractable? because it is 1-dimensional!

Local Linearization:

Approximate an LQR at the balance (goal) position (x^*, u^*) and then solve the approximated LQR

Local Linearization:

Approximate an LQR at the balance (goal) position (x^*, u^*) and then solve the approximated LQR

Computes an approximately globally optimal solution for a small class of nonlinear control problems

Local Linearization:

Approximate an LQR at the balance (goal) position (x^*, u^*) and then solve the approximated LQR

Computes an approximately globally optimal solution for a small class of nonlinear control problems

Iterative LQR

Iterate between:

(1) forming an LQR around the current nominal trajectory, (2) computing a new nominal trajectory using the optimal policy of the LQR

Local Linearization:

Approximate an LQR at the balance (goal) position (x^*, u^*) and then solve the approximated LQR

Computes an approximately globally optimal solution for a small class of nonlinear control problems

Iterative LQR

Iterate between:

(1) forming an LQR around the current nominal trajectory, (2) computing a new nominal trajectory using the optimal policy of the LQR

Computes a locally optimal (in policy space) solution for a large class of nonlinear control problems

Today

- Feedback from last lecture
- Recap
 - Multi-armed bandit problem statement
 - Baseline approaches: pure exploration and pure greedy
 - Explore-then-commit

Setting:

We have K many arms; label them 1, ..., K

Setting:

We have K many arms; label them 1, ..., K

Each arm has a <u>unknown</u> reward distribution, i.e., $\nu_k \in \Delta([0,1])$, w/ mean $\mu_k = \mathbb{E}_{r \sim \nu_{\nu}}[r]$

Setting:

We have K many arms; label them 1, ..., K

Each arm has a <u>unknown</u> reward distribution, i.e., $\nu_k \in \Delta([0,1])$, w/ mean $\mu_k = \mathbb{E}_{r \sim \nu_{\nu}}[r]$

Example: ν_k is a Bernoulli distribution w/ mean $\mu_k = \mathbb{P}_{r \sim \nu_k}(r=1)$

Setting:

We have K many arms; label them 1, ..., K

Each arm has a <u>unknown</u> reward distribution, i.e., $\nu_k \in \Delta([0,1])$, w/ mean $\mu_k = \mathbb{E}_{r \sim \nu_k}[r]$

Example: ν_k is a Bernoulli distribution w/ mean $\mu_k = \mathbb{P}_{r \sim \nu_k}(r=1)$

Every time we pull arm k, we observe an i.i.d reward $r = \begin{cases} 1 & \text{w/ prob } \mu_k \\ 0 & \text{w/ prob } 1 - \mu_k \end{cases}$

Arms correspond to Ads

Reward is 1 if user clicks on ad

A learning system aims to maximize clicks in the long run:

Arms correspond to Ads

Reward is 1 if user clicks on ad

A learning system aims to maximize clicks in the long run:

1. Try an Ad (pull an arm)

Arms correspond to Ads

Reward is 1 if user clicks on ad

Arms correspond to Ads

Reward is 1 if user clicks on ad

A learning system aims to maximize clicks in the long run:

- 1. Try an Ad (pull an arm)
- 2. **Observe** if it is clicked (see a zero-one **reward**)

Arms correspond to Ads

Reward is 1 if user clicks on ad

A learning system aims to maximize clicks in the long run:

- 1. Try an Ad (pull an arm)
- 2. **Observe** if it is clicked (see a zero-one **reward**)
- 3. **Update**: Decide what ad to recommend for next round

Arms correspond to messages sent to users

Reward is, e.g., 1 if user exercised after seeing message

A learning system aims to maximize fitness in the long run:

Arms correspond to messages sent to users

Reward is, e.g., 1 if user exercised after seeing message

A learning system aims to maximize fitness in the long run:

1. Send a message (pull an arm)

Arms correspond to messages sent to users

Reward is, e.g., 1 if user exercised after seeing message

Arms correspond to messages sent to users

Reward is, e.g., 1 if user exercised after seeing message

A learning system aims to maximize fitness in the long run:

- 1. Send a message (pull an arm)
- 2. **Observe** if user exercises (see a zero-one **reward**)

Arms correspond to messages sent to users

Reward is, e.g., 1 if user exercised after seeing message

A learning system aims to maximize fitness in the long run:

- 1. Send a message (pull an arm)
- 2. **Observe** if user exercises (see a zero-one **reward**)
- 3. **Update**: Decide what message to send next round

MAB sequential process

More formally, we have the following interactive learning process:

For
$$t = 0 \rightarrow T - 1$$

MAB sequential process

More formally, we have the following interactive learning process:

For
$$t = 0 \rightarrow T - 1$$

1. Learner pulls arm $a_t \in \{1, ..., K\}$

More formally, we have the following interactive learning process:

For
$$t = 0 \rightarrow T - 1$$

(based on historical information)

1. Learner pulls arm $a_t \in \{1, ..., K\}$

More formally, we have the following interactive learning process:

For
$$t = 0 \rightarrow T - 1$$

(based on historical information)

- 1. Learner pulls arm $a_t \in \{1, ..., K\}$
- 2. Learner observes an i.i.d reward $r_t \sim \nu_{a_t}$ of arm a_t

More formally, we have the following interactive learning process:

For
$$t = 0 \rightarrow T - 1$$

(based on historical information)

- 1. Learner pulls arm $a_t \in \{1, ..., K\}$
- 2. Learner observes an i.i.d reward $r_t \sim \nu_{a_t}$ of arm a_t

Note: each iteration, we do not observe rewards of arms that we did not try

More formally, we have the following interactive learning process:

For
$$t = 0 \rightarrow T - 1$$

(based on historical information)

- 1. Learner pulls arm $a_t \in \{1, ..., K\}$
- 2. Learner observes an i.i.d reward $r_t \sim \nu_{a_t}$ of arm a_t

Note: each iteration, we do not observe rewards of arms that we did not try **Note**: there is no state *s*; rewards from a given arm are i.i.d. (data NOT i.i.d.!)

Optimal policy when reward distributions known is trivial: $\mu^* := \max_{k \in [K]} \mu_k$

Optimal policy when reward distributions known is trivial: $\mu^* := \max_{k \in [K]} \mu_k$

$$\mathsf{Regret}_T = T\mu^* - \sum_{t=0}^{T-1} \mu_{a_t}$$

Optimal policy when reward distributions known is trivial: $\mu^* := \max_{k \in [K]} \mu_k$

$$Regret_{T} = T\mu^{\star} - \sum_{t=0}^{T-1} \mu_{a_{t}}$$

Total expected reward if we pulled best arm over T rounds

Optimal policy when reward distributions known is trivial: $\mu^* := \max_{k \in [K]} \mu_k$

$$Regret_{T} = T\mu^{\star} - \sum_{t=0}^{T-1} \mu_{a_{t}}$$

Total expected reward if we pulled best arm over T rounds

Total expected reward of the arms we pulled over T rounds

Optimal policy when reward distributions known is trivial: $\mu^* := \max_{k \in [K]} \mu_k$

$$Regret_{T} = T\mu^{\star} - \sum_{t=0}^{T-1} \mu_{a_{t}}$$

Total expected reward if we pulled best arm over T rounds

Total expected reward of the arms we pulled over T rounds

Goal: want $Regret_T$ as small as possible

Optimal policy when reward distributions known is trivial: $\mu^* := \max_{k \in [K]} \mu_k$

$$\operatorname{Regret}_T = T\mu^* - \sum_{t=0}^{T-1} \mu_{a_t} \qquad \text{Why not sum the } r_t?$$

Total expected reward if we pulled best arm over T rounds

Total expected reward of the arms we pulled over T rounds

Goal: want $Regret_T$ as small as possible

Why is MAB hard?

Exploration-Exploitation Tradeoff:

Why is MAB hard?

Exploration-Exploitation Tradeoff:

Every round, we need to ask ourselves:

Should we pull the arm that currently appears best now (exploit; immediate payoff)? Or pull another arm, in order to potentially learn it is better (explore; payoff later)?

Today

- Feedback from last lecture
- Recap
- Multi-armed bandit problem statement
 - Baseline approaches: pure exploration and pure greedy
 - Explore-then-commit

Naive baseline: pure exploration

Algorithm: at each round choose an arm uniformly at random from among $\{1, ..., K\}$

Naive baseline: pure exploration

Algorithm: at each round choose an arm uniformly at random from among $\{1, ..., K\}$

Clearly no learning taking place!

Naive baseline: pure exploration

Algorithm: at each round choose an arm uniformly at random

Algorithm: at each round choose an arm uniformly at random from among
$$\{1,\ldots,K\}$$

Clearly no learning taking place!

$$\mathbb{E}[\mathsf{Regret}_T] = \mathbb{E}\left[T\mu^\star - \sum_{t=0}^{T-1} \mu_{a_t}\right] = T\left(\mu^\star - \bar{\mu}\right) = \Omega(T)$$

$$\bar{\mu} = \frac{1}{K} \sum_{k=1}^K \mu_k$$

Baseline: pure greedy

Algorithm: try each arm once, and then commit to the one that has the **highest observed** reward

Baseline: pure greedy

Algorithm: try each arm once, and then commit to the one that has the **highest observed** reward

Q: what could go wrong?

Baseline: pure greedy

Algorithm: try each arm once, and then commit to the one that has the **highest observed** reward

Q: what could go wrong?

A bad arm (i.e., low μ_k) may generate a high reward by chance (or vice versa)!

More concretely, let's say we have two arms:

```
Reward distribution for arm 1: \nu_1 = Bernoulli(\mu_1 = 0.6)
```

Reward distribution for arm 2: ν_2 = Bernoulli(μ_2 = 0.4)

More concretely, let's say we have two arms:

```
Reward distribution for arm 1: \nu_1 = Bernoulli(\mu_1 = 0.6)
```

Reward distribution for arm 2: ν_2 = Bernoulli(μ_2 = 0.4)

Clearly the first arm is better!

More concretely, let's say we have two arms:

Reward distribution for arm 1: ν_1 = Bernoulli(μ_1 = 0.6)

Reward distribution for arm 2: ν_2 = Bernoulli(μ_2 = 0.4)

Clearly the first arm is better!

First
$$a_0 = 1$$
, $a_1 = 2$:

More concretely, let's say we have two arms:

Reward distribution for arm 1: ν_1 = Bernoulli(μ_1 = 0.6)

Reward distribution for arm 2: ν_2 = Bernoulli(μ_2 = 0.4)

Clearly the first arm is better!

$$(1 - \mu_1)\mu_2 = (1 - 0.6) \times 0.4$$

First
$$a_0 = 1$$
, $a_1 = 2$:

More concretely, let's say we have two arms:

Reward distribution for arm 1: ν_1 = Bernoulli(μ_1 = 0.6)

Reward distribution for arm 2: ν_2 = Bernoulli(μ_2 = 0.4)

Clearly the first arm is better!

$$(1 - \mu_1)\mu_2 = (1 - 0.6) \times 0.4$$

First
$$a_0 = 1$$
, $a_1 = 2$:

$$\mathbb{E}[\mathsf{Regret}_T] \ge (T-2) \times \mathbb{P}(\mathsf{select\ arm\ 2\ for\ all\ } t > 1) \times (\mathsf{regret\ of\ arm\ 2})$$

More concretely, let's say we have two arms:

Reward distribution for arm 1: ν_1 = Bernoulli(μ_1 = 0.6)

Reward distribution for arm 2: ν_2 = Bernoulli(μ_2 = 0.4)

Clearly the first arm is better!

$$(1 - \mu_1)\mu_2 = (1 - 0.6) \times 0.4$$

First
$$a_0 = 1$$
, $a_1 = 2$:

$$\mathbb{E}[\mathsf{Regret}_T] \ge (T-2) \times \mathbb{P}(\mathsf{select\ arm\ 2\ for\ all\ } t > 1) \times (\mathsf{regret\ of\ arm\ 2})$$
$$= (T-2) \times .16 \times 0.2 = \Omega(T)$$

More concretely, let's say we have two arms:

Reward distribution for arm 1: ν_1 = Bernoulli(μ_1 = 0.6)

Reward distribution for arm 2: ν_2 = Bernoulli(μ_2 = 0.4)

Clearly the first arm is better!

$$(1 - \mu_1)\mu_2 = (1 - 0.6) \times 0.4$$

First
$$a_0 = 1$$
, $a_1 = 2$:

with probability 16%, we observe reward pair $(r_0, r_1) = (0, 1)$

$$\mathbb{E}[\mathsf{Regret}_T] \ge (T-2) \times \mathbb{P}(\mathsf{select\ arm\ 2\ for\ all\ } t > 1) \times (\mathsf{regret\ of\ arm\ 2})$$
$$= (T-2) \times .16 \times 0.2 = \Omega(T)$$

¹⁸ Same rate as pure exploration!

Today

- Feedback from last lecture
- Recap
- Multi-armed bandit problem statement
- Baseline approaches: pure exploration and pure greedy
 - Explore-then-commit

Lesson from pure greedy: exploring each arm once is not enough

Lesson from pure greedy: exploring each arm once is not enough Lesson from pure exploration: exploring each arm too much is bad too

Lesson from pure greedy: exploring each arm once is not enough Lesson from pure exploration: exploring each arm too much is bad too

Let's allow both, and see how best to trade them off

Lesson from pure greedy: exploring each arm once is not enough Lesson from pure exploration: exploring each arm too much is bad too

Let's allow both, and see how best to trade them off

Plan: (1) try each arm <u>multiple</u> times, (2) compute the empirical mean of each arm, (3) commit to the one that has the highest empirical mean

Explore-Then-Commit (ETC)

Explore-Then-Commit (ETC)

Algorithm hyper parameter $N_{\rm e} < T/K$ (we assume T >> K)

Explore-Then-Commit (ETC)

 $N_{\rm e} = \underline{\text{N}}$ umber of $\underline{\text{e}}$ xplorations

Algorithm hyper parameter $N_{\rm e} < T/K$ (we assume T >> K)

 $N_{\rm e} = N_{\rm umber}$ of explorations

Algorithm hyper parameter $N_{\rm e} < T/K$ (we assume T >> K)

For k = 1, ..., K: (Exploration phase)

 $N_{\rm e} = \underline{\text{N}}$ umber of $\underline{\text{e}}$ xplorations

Algorithm hyper parameter $N_{\rm e} < T/K$ (we assume T >> K)

For k = 1, ..., K: (Exploration phase)

Pull arm k $N_{\rm e}$ times to observe $\{r_i^{(k)}\}_{i=1}^{N_{\rm e}} \sim \nu_k$

 $N_{\rm e} = N_{\rm umber}$ of explorations

Algorithm hyper parameter $N_{\rm e} < T/K$ (we assume T >> K)

For
$$k = 1, ..., K$$
: (Exploration phase)

Pull arm
$$k$$
 $N_{\rm e}$ times to observe $\{r_i^{(k)}\}_{i=1}^{N_{\rm e}} \sim \nu_k$
Calculate arm k's empirical mean: $\hat{\mu}_k = \frac{1}{N_{\rm e}} \sum_{i=1}^{N_{\rm e}} r_i^{(k)}$

 $N_{\rm e} = N_{\rm umber}$ of explorations

Algorithm hyper parameter $N_{\rm e} < T/K$ (we assume T >> K)

For
$$k = 1, ..., K$$
: (Exploration phase)

Pull arm k $N_{\rm e}$ times to observe $\{r_i^{(k)}\}_{i=1}^{N_{\rm e}} \sim \nu_k$ Calculate arm k's empirical mean: $\hat{\mu}_k = \frac{1}{N_{\rm e}} \sum_{i=1}^{N_{\rm e}} r_i^{(k)}$

For
$$t = N_{\mathbf{e}}K, ..., (T-1)$$
: (Exploitation phase)

 $N_{\rm e} = \underline{\text{N}}$ umber of $\underline{\text{e}}$ xplorations

Algorithm hyper parameter $N_{\rm e} < T/K$ (we assume T >> K)

For
$$k = 1, ..., K$$
: (Exploration phase)

Pull arm k $N_{\rm e}$ times to observe $\{r_i^{(k)}\}_{i=1}^{N_{\rm e}} \sim \nu_k$ Calculate arm k's empirical mean: $\hat{\mu}_k = \frac{1}{N_{\rm e}} \sum_{i=1}^{N_{\rm e}} r_i^{(k)}$

For
$$t = N_e K, ..., (T-1)$$
: (Exploitation phase)

Pull the best empirical arm $a_t = \arg\max_{i \in [K]} \hat{\mu}_i$

 $N_{\rm e} = \underline{\text{N}}$ umber of $\underline{\text{e}}$ xplorations

Algorithm hyper parameter $N_{\rm e} < T/K$ (we assume T >> K)

For k = 1, ..., K: (Exploration phase)

Pull arm k $N_{\rm e}$ times to observe $\{r_i^{(k)}\}_{i=1}^{N_{\rm e}} \sim \nu_k$ Calculate arm k's empirical mean: $\hat{\mu}_k = \frac{1}{N_{\rm e}} \sum_{i=1}^{N_{\rm e}} r_i^{(k)}$

For $t = N_eK, ..., (T-1)$: (Exploitation phase)

Pull the best empirical arm $a_t = \arg\max_{i \in [K]} \hat{\mu}_i$

1. Calculate regret during exploration stage

- 1. Calculate regret during exploration stage
- 2. Quantify error of arm mean estimates at end of exploration stage

- 1. Calculate regret during exploration stage
- 2. Quantify error of arm mean estimates at end of exploration stage
- 3. Using step 2, calculate regret during exploitation stage

- 1. Calculate regret during exploration stage
- 2. Quantify error of arm mean estimates at end of exploration stage
- 3. Using step 2, calculate regret during exploitation stage (Actually, will only be able to upper-bound total regret in steps 1-3)

- 1. Calculate regret during exploration stage
- 2. Quantify error of arm mean estimates at end of exploration stage
- 3. Using step 2, calculate regret during exploitation stage (Actually, will only be able to upper-bound total regret in steps 1-3)
- 4. Minimize our upper-bound over $N_{\rm e}$

Hoeffding inequality

Hoeffding inequality

Given N i.i.d samples $\{r_i\}_{i=1}^N \sim \nu \in \Delta([0,1])$ with mean μ , let $\hat{\mu} := \frac{1}{N} \sum_{i=1}^N r_i$.

Then with probability at least $1 - \delta$,

$$|\hat{\mu} - \mu| \leq \sqrt{\frac{\ln(2/\delta)}{2N}}$$

Hoeffding inequality

Given N i.i.d samples $\{r_i\}_{i=1}^N \sim \nu \in \Delta([0,1])$ with mean μ , let $\hat{\mu} := \frac{1}{N} \sum_{i=1}^N r_i$.

Then with probability at least $1 - \delta$,

$$|\hat{\mu} - \mu| \leq \sqrt{\frac{\ln(2/\delta)}{2N}}$$

• Why is this useful? Quantify error of arm mean estimates at end of exploration stage (if all estimates are close, arm we commit to must be close to best)

Hoeffding inequality

Given N i.i.d samples
$$\{r_i\}_{i=1}^N \sim \nu \in \Delta([0,1])$$
 with mean μ , let $\hat{\mu} := \frac{1}{N} \sum_{i=1}^N r_i$.

Then with probability at least $1 - \delta$,

$$|\hat{\mu} - \mu| \leq \sqrt{\frac{\ln(2/\delta)}{2N}}$$

- Why is this useful? Quantify error of arm mean estimates at end of exploration stage (if all estimates are close, arm we commit to must be close to best)
- Why is this true? Full proof beyond course scope, but intuition easier...

Hoeffding inequality: sample mean of N i.i.d. samples on [0,1] satisfies

$$\left| \hat{\mu} - \mu \right| \le \sqrt{\frac{\ln(2/\delta)}{2N}} \text{ w/p } 1 - \delta$$

Hoeffding inequality: sample mean of N i.i.d. samples on [0,1] satisfies

$$\left|\hat{\mu} - \mu\right| \le \sqrt{\frac{\ln(2/\delta)}{2N}} \text{ w/p } 1 - \delta$$

Hoeffding inequality: sample mean of N i.i.d. samples on [0,1] satisfies

$$\left|\hat{\mu} - \mu\right| \le \sqrt{\frac{\ln(2/\delta)}{2N}} \text{ w/p } 1 - \delta$$

Think of as finite-sample (and conservative) version of Central Limit Theorem (CLT):

• CLT $\Rightarrow \hat{\mu} - \mu \approx$ Gaussian w/ mean 0 and standard deviation $\propto \sqrt{1/N}$

Hoeffding inequality: sample mean of N i.i.d. samples on [0,1] satisfies

$$\left|\hat{\mu} - \mu\right| \le \sqrt{\frac{\ln(2/\delta)}{2N}} \text{ w/p } 1 - \delta$$

- CLT $\Rightarrow \hat{\mu} \mu \approx$ Gaussian w/ mean 0 and standard deviation $\propto \sqrt{1/N}$
- CLT standard deviation explains the Hoeffding denominator

Hoeffding inequality: sample mean of N i.i.d. samples on [0,1] satisfies

$$\left| \hat{\mu} - \mu \right| \le \sqrt{\frac{\ln(2/\delta)}{2N}} \text{ w/p } 1 - \delta$$

- CLT \Rightarrow $\hat{\mu} \mu \approx$ Gaussian w/ mean 0 and standard deviation $\propto \sqrt{1/N}$
- CLT standard deviation explains the Hoeffding denominator
- Numerator is because Gaussian has double-exponential tails, i.e., probability of a deviation from the mean by x scales roughly like e^{-x^2} , which, when inverted (i.e., set $\delta = e^{-x^2}$ and solve for x) gives $x = \sqrt{\ln(1/\delta)}$

Hoeffding inequality: sample mean of N i.i.d. samples on [0,1] satisfies

$$\left| \hat{\mu} - \mu \right| \le \sqrt{\frac{\ln(2/\delta)}{2N}} \text{ w/p } 1 - \delta$$

- CLT $\Rightarrow \hat{\mu} \mu \approx$ Gaussian w/ mean 0 and standard deviation $\propto \sqrt{1/N}$
- CLT standard deviation explains the Hoeffding denominator
- Numerator is because Gaussian has double-exponential tails, i.e., probability of a deviation from the mean by x scales roughly like e^{-x^2} , which, when inverted (i.e., set $\delta = e^{-x^2}$ and solve for x) gives $x = \sqrt{\ln(1/\delta)}$
- Don't worry too much about the extra 2's... CLT is only approximate!

1. Calculate regret during exploration stage

1. Calculate regret during exploration stage

$$Regret_{N_{\mathbf{e}}K} \leq N_{\mathbf{e}}K$$
 with probability 1

1. Calculate regret during exploration stage

$$Regret_{N_{\mathbf{e}}K} \leq N_{\mathbf{e}}K$$
 with probability 1

2. Quantify error of arm mean estimates at end of exploration stage

1. Calculate regret during exploration stage

$$Regret_{N_{\mathbf{e}}K} \leq N_{\mathbf{e}}K$$
 with probability 1

- 2. Quantify error of arm mean estimates at end of exploration stage
 - a) Hoeffding $\Rightarrow \mathbb{P}\left(|\hat{\mu}_k \mu_k| \le \sqrt{\ln(2/\delta)/2N_{\text{e}}}\right) \ge 1 \delta$

1. Calculate regret during exploration stage

$$Regret_{N_{\mathbf{e}}K} \leq N_{\mathbf{e}}K$$
 with probability 1

- 2. Quantify error of arm mean estimates at end of exploration stage
 - a) Hoeffding $\Rightarrow \mathbb{P}\left(|\hat{\mu}_k \mu_k| \le \sqrt{\ln(2/\delta)/2N_{\text{e}}}\right) \ge 1 \delta$
 - b) Recall Union/Boole/Bonferroni bound: $\mathbb{P}(\text{any of } A_1, ..., A_K) \leq \sum_{k=1}^{\infty} \mathbb{P}(A_k)$

1. Calculate regret during exploration stage

$$Regret_{N_{\mathbf{e}}K} \leq N_{\mathbf{e}}K$$
 with probability 1

2. Quantify error of arm mean estimates at end of exploration stage

a) Hoeffding
$$\Rightarrow \mathbb{P}\left(|\hat{\mu}_k - \mu_k| \leq \sqrt{\ln(2/\delta)/2N_{\mathrm{e}}}\right) \geq 1 - \underbrace{\delta}_{\mathbb{P}(\forall k, A_1^c, \dots, A_K^c) \geq 1 - \sum\limits_{k=1}^K \mathbb{P}(A_k)}$$
 b) Recall Union/Boole/Bonferroni bound: $\mathbb{P}(\text{any of } A_1, \dots, A_K) \leq \sum_{k=1}^K \mathbb{P}(A_k)$

1. Calculate regret during exploration stage

$$Regret_{N_{\mathbf{e}}K} \leq N_{\mathbf{e}}K$$
 with probability 1

- 2. Quantify error of arm mean estimates at end of exploration stage
 - a) Hoeffding $\Rightarrow \mathbb{P}\left(|\hat{\mu}_k \mu_k| \leq \sqrt{\ln(2/\delta)/2N_{\mathrm{e}}}\right) \geq 1 \delta_{\mathbb{P}(\forall k, A_1^c, \dots, A_K^c) \geq 1 \sum_{k=1}^K \mathbb{P}(A_k)}$ b) Recall Union/Boole/Bonferroni bound: $\mathbb{P}(\text{any of } A_1, \dots, A_K) \leq \sum_{k=1}^K \mathbb{P}(A_k)$

 - c) $\delta \to \delta/K$, Union bound with $A_k = \left\{ |\hat{\mu}_k \mu_k| > \sqrt{\ln(2K/\delta)/2N_e} \right\}$, and Hoeffding:

1. Calculate regret during exploration stage

$$Regret_{N_{\mathbf{e}}K} \leq N_{\mathbf{e}}K$$
 with probability 1

- 2. Quantify error of arm mean estimates at end of exploration stage
 - a) Hoeffding $\Rightarrow \mathbb{P}\left(|\hat{\mu}_k \mu_k| \leq \sqrt{\ln(2/\delta)/2N_{\mathrm{e}}}\right) \geq 1 \delta_{\mathbb{P}(\forall k, A_1^c, \dots, A_K^c) \geq 1 \sum_{k=1}^K \mathbb{P}(A_k)}$ b) Recall Union/Boole/Bonferroni bound: $\mathbb{P}(\text{any of } A_1, \dots, A_K) \leq \sum_{k=1}^K \mathbb{P}(A_k)$

 - c) $\delta \to \delta/K$, Union bound with $A_k = \left\{ |\hat{\mu}_k \mu_k| > \sqrt{\ln(2K/\delta)/2N_e} \right\}$, and Hoeffding:

$$\Rightarrow \mathbb{P}\left(\forall k, |\hat{\mu}_k - \mu_k| \leq \sqrt{\ln(2K/\delta)/2N_e}\right) \geq 1 - \delta$$

2. Quantify error of arm mean estimates at end of exploration stage:

2. Quantify error of arm mean estimates at end of exploration stage:

$$\mathbb{P}\left(\forall k, |\hat{\mu}_k - \mu_k| \le \sqrt{\ln(2K/\delta)/2N_{\mathsf{e}}}\right) \ge 1 - \delta$$

2. Quantify error of arm mean estimates at end of exploration stage:

$$\mathbb{P}\left(\forall k, |\hat{\mu}_k - \mu_k| \le \sqrt{\ln(2K/\delta)/2N_{\mathsf{e}}}\right) \ge 1 - \delta$$

3. Using step 2, calculate regret during exploitation stage:

2. Quantify error of arm mean estimates at end of exploration stage:

$$\mathbb{P}\left(\forall k, |\hat{\mu}_k - \mu_k| \le \sqrt{\ln(2K/\delta)/2N_{\mathsf{e}}}\right) \ge 1 - \delta$$

3. Using step 2, calculate regret during exploitation stage:

Denote (apparent) best arm after exploration stage by \hat{k} and actual best arm by k^\star

2. Quantify error of arm mean estimates at end of exploration stage:

$$\mathbb{P}\left(\forall k, |\hat{\mu}_k - \mu_k| \le \sqrt{\ln(2K/\delta)/2N_{\mathsf{e}}}\right) \ge 1 - \delta$$

- 3. Using step 2, calculate regret during exploitation stage:
- Denote (apparent) best arm after exploration stage by \hat{k} and actual best arm by k^* regret at each step of exploitation phase = $\mu_{k^*} \mu_{\hat{k}}$

2. Quantify error of arm mean estimates at end of exploration stage:

$$\mathbb{P}\left(\forall k, |\hat{\mu}_k - \mu_k| \le \sqrt{\ln(2K/\delta)/2N_{\mathsf{e}}}\right) \ge 1 - \delta$$

3. Using step 2, calculate regret during exploitation stage:

Denote (apparent) best arm after exploration stage by \hat{k} and actual best arm by k^* regret at each step of exploitation phase = $\mu_{k^*} - \mu_{\hat{k}}$

$$= \mu_{k^*} + (\hat{\mu}_{k^*} - \hat{\mu}_{k^*}) - \mu_{\hat{k}} + (\hat{\mu}_{\hat{k}} - \hat{\mu}_{\hat{k}})$$

2. Quantify error of arm mean estimates at end of exploration stage:

$$\mathbb{P}\left(\forall k, |\hat{\mu}_k - \mu_k| \le \sqrt{\ln(2K/\delta)/2N_{\mathsf{e}}}\right) \ge 1 - \delta$$

3. Using step 2, calculate regret during exploitation stage:

Denote (apparent) best arm after exploration stage by \hat{k} and actual best arm by k^\star

regret at each step of exploitation phase =
$$\mu_{k^*} - \mu_{\hat{k}}$$

$$= \mu_{k^*} + (\hat{\mu}_{k^*} - \hat{\mu}_{k^*}) - \mu_{\hat{k}} + (\hat{\mu}_{\hat{k}} - \hat{\mu}_{\hat{k}})$$

$$= (\mu_{k^*} - \hat{\mu}_{k^*}) + (\hat{\mu}_{\hat{k}} - \mu_{\hat{k}}) + (\hat{\mu}_{k^*} - \hat{\mu}_{\hat{k}})$$

$$= (\mu_{k^*} - \hat{\mu}_{k^*}) + (\hat{\mu}_{\hat{k}} - \mu_{\hat{k}}) + (\hat{\mu}_{k^*} - \hat{\mu}_{\hat{k}})$$

2. Quantify error of arm mean estimates at end of exploration stage:

$$\mathbb{P}\left(\forall k, |\hat{\mu}_k - \mu_k| \le \sqrt{\ln(2K/\delta)/2N_{\mathsf{e}}}\right) \ge 1 - \delta$$

3. Using step 2, calculate regret during exploitation stage:

Denote (apparent) best arm after exploration stage by \hat{k} and actual best arm by k^* regret at each step of exploitation phase = $\mu_{k^*} - \mu_{\hat{k}}$

$$\begin{split} &= \mu_{k^{\star}} + (\hat{\mu}_{k^{\star}} - \hat{\mu}_{k^{\star}}) - \mu_{\hat{k}} + (\hat{\mu}_{\hat{k}} - \hat{\mu}_{\hat{k}}) \\ &= (\mu_{k^{\star}} - \hat{\mu}_{k^{\star}}) + (\hat{\mu}_{\hat{k}} - \mu_{\hat{k}}) + (\hat{\mu}_{k^{\star}} - \hat{\mu}_{\hat{k}}) \\ &\leq \sqrt{\ln(2K/\delta)/2N_{\mathsf{e}}} + \sqrt{\ln(2K/\delta)/2N_{\mathsf{e}}} + 0 \quad \text{w/p } 1 - \delta \end{split}$$

2. Quantify error of arm mean estimates at end of exploration stage:

$$\mathbb{P}\left(\forall k, |\hat{\mu}_k - \mu_k| \le \sqrt{\ln(2K/\delta)/2N_{\mathsf{e}}}\right) \ge 1 - \delta$$

3. Using step 2, calculate regret during exploitation stage:

Denote (apparent) best arm after exploration stage by \hat{k} and actual best arm by k^* regret at each step of exploitation phase = $\mu_{k^*} - \mu_{\hat{k}}$

$$= \mu_{k^{\star}} + (\hat{\mu}_{k^{\star}} - \hat{\mu}_{k^{\star}}) - \mu_{\hat{k}} + (\hat{\mu}_{\hat{k}} - \hat{\mu}_{\hat{k}})$$

$$= (\mu_{k^{\star}} - \hat{\mu}_{k^{\star}}) + (\hat{\mu}_{\hat{k}} - \mu_{\hat{k}}) + (\hat{\mu}_{k^{\star}} - \hat{\mu}_{\hat{k}})$$

$$\leq \sqrt{\ln(2K/\delta)/2N_{\text{e}}} + \sqrt{\ln(2K/\delta)/2N_{\text{e}}} + 0 \quad \text{w/p } 1 - \delta$$

$$= \sqrt{2\ln(2K/\delta)/N_{\text{e}}}$$

2. Quantify error of arm mean estimates at end of exploration stage:

$$\mathbb{P}\left(\forall k, |\hat{\mu}_k - \mu_k| \le \sqrt{\ln(2K/\delta)/2N_{\mathsf{e}}}\right) \ge 1 - \delta$$

3. Using step 2, calculate regret during exploitation stage:

Denote (apparent) best arm after exploration stage by \hat{k} and actual best arm by k^* regret at each step of exploitation phase = $\mu_{k^*} - \mu_{\hat{k}}$

$$\begin{split} &= \mu_{k^{\star}} + (\hat{\mu}_{k^{\star}} - \hat{\mu}_{k^{\star}}) - \mu_{\hat{k}} + (\hat{\mu}_{\hat{k}} - \hat{\mu}_{\hat{k}}) \\ &= (\mu_{k^{\star}} - \hat{\mu}_{k^{\star}}) + (\hat{\mu}_{\hat{k}} - \mu_{\hat{k}}) + (\hat{\mu}_{k^{\star}} - \hat{\mu}_{\hat{k}}) \\ &\leq \sqrt{\ln(2K/\delta)/2N_{\mathbf{e}}} + \sqrt{\ln(2K/\delta)/2N_{\mathbf{e}}} + 0 \quad \text{w/p } 1 - \delta \\ &= \sqrt{2\ln(2K/\delta)/N_{\mathbf{e}}} \end{split}$$

 \Rightarrow total regret during exploitation $\leq T\sqrt{2\ln(2K/\delta)/N_{\rm e}}$ w/p $1-\delta$

4. From steps 1-3: with probability $1 - \delta$,

$$\operatorname{Regret}_T \leq N_{\mathbf{e}}K + T\sqrt{2\ln(2K/\delta)/N_{\mathbf{e}}}$$

4. From steps 1-3: with probability $1-\delta$,

$$\operatorname{Regret}_T \leq N_{\mathbf{e}}K + T\sqrt{2\ln(2K/\delta)/N_{\mathbf{e}}}$$

Take any $N_{\rm e}$ so that $N_{\rm e} \to \infty$ and $N_{\rm e}/T \to 0$ (e.g., $N_{\rm e} = \sqrt{T}$): sublinear regret!

4. From steps 1-3: with probability $1-\delta$,

$$\operatorname{Regret}_T \leq N_{\mathbf{e}}K + T\sqrt{2\ln(2K/\delta)/N_{\mathbf{e}}}$$

Take any $N_{\rm e}$ so that $N_{\rm e} \to \infty$ and $N_{\rm e}/T \to 0$ (e.g., $N_{\rm e} = \sqrt{T}$): sublinear regret!

Minimize over N_e : (won't bore you with algebra)

optimal
$$N_{\rm e} = \left(\frac{T\sqrt{\ln(2K/\delta)/2}}{K}\right)^{2/3}$$

4. From steps 1-3: with probability $1 - \delta$,

$$\operatorname{Regret}_T \leq N_{\mathbf{e}}K + T\sqrt{2\ln(2K/\delta)/N_{\mathbf{e}}}$$

Take any $N_{\rm e}$ so that $N_{\rm e} \to \infty$ and $N_{\rm e}/T \to 0$ (e.g., $N_{\rm e} = \sqrt{T}$): sublinear regret!

Minimize over N_e : (won't bore you with algebra)

optimal
$$N_{\rm e} = \left(\frac{T\sqrt{\ln(2K/\delta)/2}}{K}\right)^{2/3}$$

(A bit more algebra to plug optimal $N_{\rm e}$ into Regret_T equation above)

$$\Rightarrow \operatorname{Regret}_{T} \leq 3T^{2/3}(K \ln(2K/\delta)/2)^{1/3} = o(T)$$

Today

- Feedback from last lecture
- Recap
- Multi-armed bandit problem statement
- Baseline approaches: pure exploration and pure greedy
- Explore-then-commit

Summary:

- Multi-armed bandits (or MAB or just bandits)
 - Exemplify exploration vs exploitation
 - Pure greedy not much better than pure exploration (linear regret)
 - Explore then commit obtains sublinear regret

Attendance:

bit.ly/3RcTC9T

Feedback:

bit.ly/3RHtlxy

