
Multi-Armed Bandits  
 

Lucas Janson and Sham Kakade 
CS/Stat 184: Introduction to Reinforcement Learning  

Fall 2023

1

Today

• Feedback from last lecture

• Recap

• Multi-armed bandit problem statement

• Baseline approaches: pure exploration and pure greedy

• Explore-then-commit

2

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

2.

3

Today

• Feedback from last lecture

• Recap

• Multi-armed bandit problem statement

• Baseline approaches: pure exploration and pure greedy

• Explore-then-commit

4

Iterative LQR (iLQR)

For i = 0,1,…

Initialize (how might we do this?)ū0
0, …, ū0

H−1,
Generate nominal trajectory: x̄0

0 = x̄0, ū0
0, …, ū0

h, x̄0
h+1 = f(x̄0

h, ū0
h), …, x̄0

H−1, ū0
H−1

For each , linearize at :
h f(x, u) (x̄i
h, ūi

h)
fh(x, u) ≈ f(x̄i

h, ūi
h) + ∇x f(x̄i

h, ūi
h)(x − x̄i

h) + ∇u f(x̄i
h, ūi

h)(u − ūi
h)

For each , quadratize at :
h ch(x, u) (x̄i
h, ūi

h)

ch(x, u) ≈ 1
2 [x − x̄i

h

u − ūi
h]

⊤

[
∇2

xc(x̄i
h, ūi

h)∇2
x,uc(x̄i

h, ūi
h)

∇2
u,xc(x̄i

h, ūi
h)∇2

uc(x̄i
h, ūi

h)] [x − x̄i
h

u − ūi
h]

+[x − x̄i
h

u − ūi
h]

⊤

[∇xc(x̄i
h, ūi

h)
∇uc(x̄i

h, ūi
h)] + c(x̄i

h, ūi
h)

Formulate time-dependent LQR and compute its optimal control πi
0, …, πi

H−1
Set new nominal trajectory: x̄i+1

0 = x̄0, ūi+1
h = πi

h(x̄i+1
h), and x̄i+1

h+1 = f(x̄i+1
h , ūi+1

h)

Recall ; denote x0 ∼ μ0 &x0∼μ0
[x0] = x̄0

Note this is true , not approximationf5

Note that although true is stationary,
its approximation is not

f
fh

per
Her :

#(d2k + k3)

Practical Considerations of Iterative LQR:

6

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

6

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

2. Still want to use finite differences to approximate derivatives

6

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

3. We want to use line-search to get monotonic improvement:

2. Still want to use finite differences to approximate derivatives

6

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

3. We want to use line-search to get monotonic improvement:

Given the previous nominal control and the latest computed controls ūi
0, …, ūi

H−1, ū0, …, ūH−1

2. Still want to use finite differences to approximate derivatives

6

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

3. We want to use line-search to get monotonic improvement:

Given the previous nominal control and the latest computed controls ūi
0, …, ūi

H−1, ū0, …, ūH−1

We want to find such that has the smallest cost, α ∈ [0,1] ūi+1
h := α ūi

h + (1 − α)ūh

2. Still want to use finite differences to approximate derivatives

6

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

3. We want to use line-search to get monotonic improvement:

Given the previous nominal control and the latest computed controls ūi
0, …, ūi

H−1, ū0, …, ūH−1

We want to find such that has the smallest cost, α ∈ [0,1] ūi+1
h := α ūi

h + (1 − α)ūh

min
α∈[0,1]

H−1

∑
h=0

c(xh, ūi+1
h)

s.t. xh+1 = f(xh, ūi+1
h), ūi+1

h = αūi
h + (1 − α)ūh, x0 = x̄0

2. Still want to use finite differences to approximate derivatives

6

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

3. We want to use line-search to get monotonic improvement:

Given the previous nominal control and the latest computed controls ūi
0, …, ūi

H−1, ū0, …, ūH−1

We want to find such that has the smallest cost, α ∈ [0,1] ūi+1
h := α ūi

h + (1 − α)ūh

min
α∈[0,1]

H−1

∑
h=0

c(xh, ūi+1
h)

s.t. xh+1 = f(xh, ūi+1
h), ūi+1

h = αūi
h + (1 − α)ūh, x0 = x̄0

2. Still want to use finite differences to approximate derivatives

Why is this tractable?
6

Practical Considerations of Iterative LQR:

1. We still want to use the eigen-decomposition trick to ensure positive definite Hessians

3. We want to use line-search to get monotonic improvement:

Given the previous nominal control and the latest computed controls ūi
0, …, ūi

H−1, ū0, …, ūH−1

We want to find such that has the smallest cost, α ∈ [0,1] ūi+1
h := α ūi

h + (1 − α)ūh

min
α∈[0,1]

H−1

∑
h=0

c(xh, ūi+1
h)

s.t. xh+1 = f(xh, ūi+1
h), ūi+1

h = αūi
h + (1 − α)ūh, x0 = x̄0

2. Still want to use finite differences to approximate derivatives

Why is this tractable?
6

because it is 1-dimensional!

Summary of LQR extended to nonlinear control:

7

Summary of LQR extended to nonlinear control:

Local Linearization:
Approximate an LQR at the balance (goal) position and then solve the approximated LQR(x⋆, u⋆)

7

Summary of LQR extended to nonlinear control:

Local Linearization:
Approximate an LQR at the balance (goal) position and then solve the approximated LQR(x⋆, u⋆)

7

Computes an approximately globally optimal solution for a small class of nonlinear control problems

Summary of LQR extended to nonlinear control:

Local Linearization:
Approximate an LQR at the balance (goal) position and then solve the approximated LQR(x⋆, u⋆)

Iterative LQR
Iterate between:

(1) forming an LQR around the current nominal trajectory,

(2) computing a new nominal trajectory using the optimal policy of the LQR

7

Computes an approximately globally optimal solution for a small class of nonlinear control problems

Summary of LQR extended to nonlinear control:

Local Linearization:
Approximate an LQR at the balance (goal) position and then solve the approximated LQR(x⋆, u⋆)

Iterative LQR
Iterate between:

(1) forming an LQR around the current nominal trajectory,

(2) computing a new nominal trajectory using the optimal policy of the LQR

7

Computes an approximately globally optimal solution for a small class of nonlinear control problems

Computes a locally optimal (in policy space) solution for a large class of nonlinear control problems

Today

• Feedback from last lecture

• Recap

• Multi-armed bandit problem statement

• Baseline approaches: pure exploration and pure greedy

• Explore-then-commit

8

Intro to Multi-armed bandits (MAB)
Setting:

We have K many arms; label them 1,…, K

9

Intro to Multi-armed bandits (MAB)
Setting:

We have K many arms; label them 1,…, K
Each arm has a unknown reward distribution, i.e., ,

w/ mean
νk ∈ Δ([0,1])

μk = &r∼νk
[r]

9

Intro to Multi-armed bandits (MAB)
Setting:

We have K many arms; label them 1,…, K
Each arm has a unknown reward distribution, i.e., ,

w/ mean
νk ∈ Δ([0,1])

μk = &r∼νk
[r]

Example: is a Bernoulli distribution w/ mean νk μk = ℙr∼νk
(r = 1)

9

Intro to Multi-armed bandits (MAB)
Setting:

We have K many arms; label them 1,…, K
Each arm has a unknown reward distribution, i.e., ,

w/ mean
νk ∈ Δ([0,1])

μk = &r∼νk
[r]

Example: is a Bernoulli distribution w/ mean νk μk = ℙr∼νk
(r = 1)

Every time we pull arm , we observe an i.i.d reward k r = {1 w/ prob μk
0 w/ prob 1 − μk

9

Application: online advertising

Arms correspond to Ads

Reward is 1 if user clicks on ad
10

Application: online advertising

Arms correspond to Ads

Reward is 1 if user clicks on ad

A learning system aims to
maximize clicks in the long run:

10

Application: online advertising

Arms correspond to Ads

Reward is 1 if user clicks on ad

A learning system aims to
maximize clicks in the long run:

1. Try an Ad (pull an arm)

10

Application: online advertising

Arms correspond to Ads

Reward is 1 if user clicks on ad

A learning system aims to
maximize clicks in the long run:

1. Try an Ad (pull an arm)

2. Observe if it is clicked
(see a zero-one reward)

10

Application: online advertising

Arms correspond to Ads

Reward is 1 if user clicks on ad

A learning system aims to
maximize clicks in the long run:

1. Try an Ad (pull an arm)

2. Observe if it is clicked
(see a zero-one reward)

3. Update: Decide what ad
to recommend for next
round

10

Application: mobile health

Arms correspond to messages sent to users

Reward is, e.g., 1 if user exercised
after seeing message

11

Application: mobile health

Arms correspond to messages sent to users

Reward is, e.g., 1 if user exercised
after seeing message

A learning system aims to
maximize fitness in the long run:

11

Application: mobile health

Arms correspond to messages sent to users

Reward is, e.g., 1 if user exercised
after seeing message

A learning system aims to
maximize fitness in the long run:

1. Send a message (pull an arm)

11

Application: mobile health

Arms correspond to messages sent to users

Reward is, e.g., 1 if user exercised
after seeing message

A learning system aims to
maximize fitness in the long run:

1. Send a message (pull an arm)

2. Observe if user exercises
(see a zero-one reward)

11

Application: mobile health

Arms correspond to messages sent to users

Reward is, e.g., 1 if user exercised
after seeing message

A learning system aims to
maximize fitness in the long run:

1. Send a message (pull an arm)

2. Observe if user exercises
(see a zero-one reward)

3. Update: Decide what
message to send next round

11

MAB sequential process

More formally, we have the following interactive learning process:

For t = 0 → T − 1

12

MAB sequential process

More formally, we have the following interactive learning process:

For t = 0 → T − 1
1. Learner pulls arm at ∈ {1,…, K}

12

MAB sequential process

More formally, we have the following interactive learning process:

For t = 0 → T − 1
1. Learner pulls arm at ∈ {1,…, K}

(based on historical information)

12

MAB sequential process

More formally, we have the following interactive learning process:

For t = 0 → T − 1
1. Learner pulls arm at ∈ {1,…, K}

2. Learner observes an i.i.d reward of arm rt ∼ νat
at

(based on historical information)

12

MAB sequential process

More formally, we have the following interactive learning process:

For t = 0 → T − 1
1. Learner pulls arm at ∈ {1,…, K}

2. Learner observes an i.i.d reward of arm rt ∼ νat
at

(based on historical information)

Note: each iteration, we do not observe rewards of arms that we did not try

12

MAB sequential process

More formally, we have the following interactive learning process:

For t = 0 → T − 1
1. Learner pulls arm at ∈ {1,…, K}

2. Learner observes an i.i.d reward of arm rt ∼ νat
at

(based on historical information)

Note: each iteration, we do not observe rewards of arms that we did not try
Note: there is no state ; rewards from a given arm are i.i.d. (data NOT i.i.d.!)s

12

MAB learning objective

13

MAB learning objective
Optimal policy when reward distributions known is trivial: μ⋆ := max

k∈[K]
μk

13

MAB learning objective

RegretT = Tμ⋆ −
T−1

∑
t=0

μat

Optimal policy when reward distributions known is trivial: μ⋆ := max
k∈[K]

μk

13

MAB learning objective

RegretT = Tμ⋆ −
T−1

∑
t=0

μat

Total expected reward if we
pulled best arm over T rounds

Optimal policy when reward distributions known is trivial: μ⋆ := max
k∈[K]

μk

13

MAB learning objective

RegretT = Tμ⋆ −
T−1

∑
t=0

μat

Total expected reward if we
pulled best arm over T rounds

Total expected reward of the
arms we pulled over T rounds

Optimal policy when reward distributions known is trivial: μ⋆ := max
k∈[K]

μk

13

MAB learning objective

RegretT = Tμ⋆ −
T−1

∑
t=0

μat

Total expected reward if we
pulled best arm over T rounds

Total expected reward of the
arms we pulled over T rounds

Goal: want as small as possibleRegretT

Optimal policy when reward distributions known is trivial: μ⋆ := max
k∈[K]

μk

13

MAB learning objective

RegretT = Tμ⋆ −
T−1

∑
t=0

μat

Total expected reward if we
pulled best arm over T rounds

Total expected reward of the
arms we pulled over T rounds

Goal: want as small as possibleRegretT

Optimal policy when reward distributions known is trivial: μ⋆ := max
k∈[K]

μk

13

Why not sum the ?rt

Why is MAB hard?

Exploration-Exploitation Tradeoff:

14

Why is MAB hard?

Exploration-Exploitation Tradeoff:

Every round, we need to ask ourselves:

Should we pull the arm that currently appears best now (exploit; immediate payoff)?

Or pull another arm, in order to potentially learn it is better (explore; payoff later)?

14

Today

• Feedback from last lecture

• Recap

• Multi-armed bandit problem statement

• Baseline approaches: pure exploration and pure greedy

• Explore-then-commit

15

Naive baseline: pure exploration

Algorithm: at each round choose an arm uniformly at random
from among {1,…, K}

16

Naive baseline: pure exploration

Algorithm: at each round choose an arm uniformly at random
from among {1,…, K}

Clearly no learning taking place!

16

Naive baseline: pure exploration

Algorithm: at each round choose an arm uniformly at random
from among {1,…, K}

Clearly no learning taking place!

&[RegretT] = & [Tμ⋆ −
T−1

∑
t=0

μat] = T (μ⋆ − μ̄) = Ω(T)

μ̄ = 1
K

K

∑
k=1

μk

16

grows
ini

Baseline: pure greedy

Algorithm: try each arm once, and then commit to the one that
has the highest observed reward

17

Baseline: pure greedy

Algorithm: try each arm once, and then commit to the one that
has the highest observed reward

Q: what could go wrong?

17

Baseline: pure greedy

Algorithm: try each arm once, and then commit to the one that
has the highest observed reward

Q: what could go wrong?

A bad arm (i.e., low) may generate a high reward by chance (or vice versa)!μk

17

Example: pure greedy
More concretely, let’s say we have two arms:

Reward distribution for arm 1: = Bernoulliν1 (μ1 = 0.6)
Reward distribution for arm 2: = Bernoulliν2 (μ2 = 0.4)

18

Example: pure greedy
More concretely, let’s say we have two arms:

Reward distribution for arm 1: = Bernoulliν1 (μ1 = 0.6)

Clearly the first arm is better!
Reward distribution for arm 2: = Bernoulliν2 (μ2 = 0.4)

18

Example: pure greedy
More concretely, let’s say we have two arms:

Reward distribution for arm 1: = Bernoulliν1 (μ1 = 0.6)

Clearly the first arm is better!

First , :

with probability 16%, we observe reward pair

a0 = 1 a1 = 2
(r0,r1) = (0,1)

Reward distribution for arm 2: = Bernoulliν2 (μ2 = 0.4)

18

Example: pure greedy
More concretely, let’s say we have two arms:

Reward distribution for arm 1: = Bernoulliν1 (μ1 = 0.6)

Clearly the first arm is better!

First , :

with probability 16%, we observe reward pair

a0 = 1 a1 = 2
(r0,r1) = (0,1)

Reward distribution for arm 2: = Bernoulliν2 (μ2 = 0.4)

(1 − μ1)μ2 = (1 − 0.6) × 0.4

18

Example: pure greedy
More concretely, let’s say we have two arms:

Reward distribution for arm 1: = Bernoulliν1 (μ1 = 0.6)

Clearly the first arm is better!

First , :

with probability 16%, we observe reward pair

a0 = 1 a1 = 2
(r0,r1) = (0,1)

Reward distribution for arm 2: = Bernoulliν2 (μ2 = 0.4)

(1 − μ1)μ2 = (1 − 0.6) × 0.4

 (regret of arm 2)#[RegretT] ≥ (T − 2) × ℙ(select arm 2 for all t > 1) ×

18

Example: pure greedy
More concretely, let’s say we have two arms:

Reward distribution for arm 1: = Bernoulliν1 (μ1 = 0.6)

Clearly the first arm is better!

First , :

with probability 16%, we observe reward pair

a0 = 1 a1 = 2
(r0,r1) = (0,1)

Reward distribution for arm 2: = Bernoulliν2 (μ2 = 0.4)

(1 − μ1)μ2 = (1 − 0.6) × 0.4

 (regret of arm 2)#[RegretT] ≥ (T − 2) × ℙ(select arm 2 for all t > 1) ×
= (T − 2) × .16 × 0.2 = Ω(T)

18

Example: pure greedy
More concretely, let’s say we have two arms:

Reward distribution for arm 1: = Bernoulliν1 (μ1 = 0.6)

Clearly the first arm is better!

First , :

with probability 16%, we observe reward pair

a0 = 1 a1 = 2
(r0,r1) = (0,1)

Reward distribution for arm 2: = Bernoulliν2 (μ2 = 0.4)

(1 − μ1)μ2 = (1 − 0.6) × 0.4

 (regret of arm 2)#[RegretT] ≥ (T − 2) × ℙ(select arm 2 for all t > 1) ×
= (T − 2) × .16 × 0.2 = Ω(T)

Same rate as pure exploration!18

Today

• Feedback from last lecture

• Recap

• Multi-armed bandit problem statement

• Baseline approaches: pure exploration and pure greedy

• Explore-then-commit

19

Lessons learned

20

Lessons learned
Lesson from pure greedy: exploring each arm once is not enough

20

Lessons learned
Lesson from pure greedy: exploring each arm once is not enough

Lesson from pure exploration: exploring each arm too much is bad too

20

Lessons learned
Lesson from pure greedy: exploring each arm once is not enough

Let’s allow both, and see how best to trade them off

Lesson from pure exploration: exploring each arm too much is bad too

20

Lessons learned
Lesson from pure greedy: exploring each arm once is not enough

Let’s allow both, and see how best to trade them off

Plan: (1) try each arm multiple times, (2) compute the empirical mean of each arm, (3)
commit to the one that has the highest empirical mean

Lesson from pure exploration: exploring each arm too much is bad too

20

Explore-Then-Commit (ETC)

21

Explore-Then-Commit (ETC)
Algorithm hyper parameter (we assume >>)Ne < T/K T K

21

Explore-Then-Commit (ETC)
Algorithm hyper parameter (we assume >>)Ne < T/K T K

Number of explorationsNe =

21

Explore-Then-Commit (ETC)
Algorithm hyper parameter (we assume >>)Ne < T/K T K

For : k = 1,…, K (Exploration phase)

Number of explorationsNe =

21

Explore-Then-Commit (ETC)
Algorithm hyper parameter (we assume >>)Ne < T/K T K

Pull arm times to observe k Ne {r(k)
i }Ne

i=1 ∼ νk

For : k = 1,…, K (Exploration phase)

Number of explorationsNe =

21

Explore-Then-Commit (ETC)
Algorithm hyper parameter (we assume >>)Ne < T/K T K

Pull arm times to observe k Ne {r(k)
i }Ne

i=1 ∼ νk

Calculate arm k’s empirical mean: ̂μk = 1
Ne

Ne
∑
i=1

r(k)
i

For : k = 1,…, K (Exploration phase)

Number of explorationsNe =

21

Explore-Then-Commit (ETC)
Algorithm hyper parameter (we assume >>)Ne < T/K T K

Pull arm times to observe k Ne {r(k)
i }Ne

i=1 ∼ νk

Calculate arm k’s empirical mean: ̂μk = 1
Ne

Ne
∑
i=1

r(k)
i

For : k = 1,…, K (Exploration phase)

For : t = NeK, …, (T − 1) (Exploitation phase)

Number of explorationsNe =

21

Explore-Then-Commit (ETC)
Algorithm hyper parameter (we assume >>)Ne < T/K T K

Pull arm times to observe k Ne {r(k)
i }Ne

i=1 ∼ νk

Calculate arm k’s empirical mean: ̂μk = 1
Ne

Ne
∑
i=1

r(k)
i

For : k = 1,…, K (Exploration phase)

For : t = NeK, …, (T − 1) (Exploitation phase)

Pull the best empirical arm at = arg max
i∈[K]

̂μi

Number of explorationsNe =

21

Explore-Then-Commit (ETC)
Algorithm hyper parameter (we assume >>)Ne < T/K T K

Pull arm times to observe k Ne {r(k)
i }Ne

i=1 ∼ νk

Calculate arm k’s empirical mean: ̂μk = 1
Ne

Ne
∑
i=1

r(k)
i

For : k = 1,…, K (Exploration phase)

For : t = NeK, …, (T − 1) (Exploitation phase)

Pull the best empirical arm at = arg max
i∈[K]

̂μi

Q: how to set ?Ne

Number of explorationsNe =

21

Regret Analysis Strategy

22

Regret Analysis Strategy

1. Calculate regret during exploration stage

22

Regret Analysis Strategy

1. Calculate regret during exploration stage
2. Quantify error of arm mean estimates at end of exploration stage

22

Regret Analysis Strategy

1. Calculate regret during exploration stage
2. Quantify error of arm mean estimates at end of exploration stage
3. Using step 2, calculate regret during exploitation stage

22

Regret Analysis Strategy

1. Calculate regret during exploration stage
2. Quantify error of arm mean estimates at end of exploration stage
3. Using step 2, calculate regret during exploitation stage

(Actually, will only be able to upper-bound total regret in steps 1-3)

22

Regret Analysis Strategy

1. Calculate regret during exploration stage
2. Quantify error of arm mean estimates at end of exploration stage
3. Using step 2, calculate regret during exploitation stage

(Actually, will only be able to upper-bound total regret in steps 1-3)

4. Minimize our upper-bound over Ne

22

But First… An Important Inequality
Hoeffding inequality

23

But First… An Important Inequality
Hoeffding inequality

Given N i.i.d samples with mean , let

Then with probability at least ,

{ri}N
i=1 ∼ ν ∈ Δ([0,1]) μ ̂μ := 1

N

N

∑
i=1

ri .

1 − δ

̂μ − μ ≤ ln(2/δ)
2N

23

But First… An Important Inequality
Hoeffding inequality

Given N i.i.d samples with mean , let

Then with probability at least ,

{ri}N
i=1 ∼ ν ∈ Δ([0,1]) μ ̂μ := 1

N

N

∑
i=1

ri .

1 − δ

̂μ − μ ≤ ln(2/δ)
2N

•Why is this useful? Quantify error of arm mean estimates at end of exploration
stage (if all estimates are close, arm we commit to must be close to best)

23

But First… An Important Inequality
Hoeffding inequality

Given N i.i.d samples with mean , let

Then with probability at least ,

{ri}N
i=1 ∼ ν ∈ Δ([0,1]) μ ̂μ := 1

N

N

∑
i=1

ri .

1 − δ

̂μ − μ ≤ ln(2/δ)
2N

•Why is this useful? Quantify error of arm mean estimates at end of exploration
stage (if all estimates are close, arm we commit to must be close to best)

•Why is this true? Full proof beyond course scope, but intuition easier…
23

Intuition Behind Hoeffding
Hoeffding inequality: sample mean of i.i.d. samples on satisfies

 w/p

N [0,1]

̂μ − μ ≤ ln(2/δ)
2N

1 − δ

24

Intuition Behind Hoeffding
Hoeffding inequality: sample mean of i.i.d. samples on satisfies

 w/p

N [0,1]

̂μ − μ ≤ ln(2/δ)
2N

1 − δ

Think of as finite-sample (and conservative) version of Central Limit Theorem (CLT):

24

Intuition Behind Hoeffding
Hoeffding inequality: sample mean of i.i.d. samples on satisfies

 w/p

N [0,1]

̂μ − μ ≤ ln(2/δ)
2N

1 − δ

Think of as finite-sample (and conservative) version of Central Limit Theorem (CLT):
•CLT Gaussian w/ mean 0 and standard deviation⇒ ̂μ − μ ≈ ∝ 1/N

24

Intuition Behind Hoeffding
Hoeffding inequality: sample mean of i.i.d. samples on satisfies

 w/p

N [0,1]

̂μ − μ ≤ ln(2/δ)
2N

1 − δ

Think of as finite-sample (and conservative) version of Central Limit Theorem (CLT):
•CLT Gaussian w/ mean 0 and standard deviation⇒ ̂μ − μ ≈ ∝ 1/N
•CLT standard deviation explains the Hoeffding denominator

24

Intuition Behind Hoeffding
Hoeffding inequality: sample mean of i.i.d. samples on satisfies

 w/p

N [0,1]

̂μ − μ ≤ ln(2/δ)
2N

1 − δ

Think of as finite-sample (and conservative) version of Central Limit Theorem (CLT):
•CLT Gaussian w/ mean 0 and standard deviation⇒ ̂μ − μ ≈ ∝ 1/N
•CLT standard deviation explains the Hoeffding denominator
•Numerator is because Gaussian has double-exponential tails, i.e., probability of
a deviation from the mean by scales roughly like , which, when inverted
(i.e., set and solve for) gives

x e−x2

δ = e−x2 x x = ln(1/δ)
24

Intuition Behind Hoeffding
Hoeffding inequality: sample mean of i.i.d. samples on satisfies

 w/p

N [0,1]

̂μ − μ ≤ ln(2/δ)
2N

1 − δ

Think of as finite-sample (and conservative) version of Central Limit Theorem (CLT):
•CLT Gaussian w/ mean 0 and standard deviation⇒ ̂μ − μ ≈ ∝ 1/N
•CLT standard deviation explains the Hoeffding denominator
•Numerator is because Gaussian has double-exponential tails, i.e., probability of
a deviation from the mean by scales roughly like , which, when inverted
(i.e., set and solve for) gives

x e−x2

δ = e−x2 x x = ln(1/δ)
•Don’t worry too much about the extra ’s… CLT is only approximate!2

24

Back to Regret Analysis of ETC

25

Back to Regret Analysis of ETC
1. Calculate regret during exploration stage

25

Back to Regret Analysis of ETC
1. Calculate regret during exploration stage

 with probability 1RegretNeK ≤ NeK

25

Back to Regret Analysis of ETC
1. Calculate regret during exploration stage

 with probability 1RegretNeK ≤ NeK

2. Quantify error of arm mean estimates at end of exploration stage

25

Back to Regret Analysis of ETC
1. Calculate regret during exploration stage

 with probability 1RegretNeK ≤ NeK

2. Quantify error of arm mean estimates at end of exploration stage

a) Hoeffding ⇒ ℙ (| ̂μk − μk | ≤ ln(2/δ)/2Ne) ≥ 1 − δ

25

Back to Regret Analysis of ETC
1. Calculate regret during exploration stage

 with probability 1RegretNeK ≤ NeK

2. Quantify error of arm mean estimates at end of exploration stage

a) Hoeffding ⇒ ℙ (| ̂μk − μk | ≤ ln(2/δ)/2Ne) ≥ 1 − δ

b) Recall Union/Boole/Bonferroni bound: ℙ(any of A1, …, AK) ≤
K

∑
k=1

ℙ(Ak)

25

Back to Regret Analysis of ETC
1. Calculate regret during exploration stage

 with probability 1RegretNeK ≤ NeK

2. Quantify error of arm mean estimates at end of exploration stage

a) Hoeffding ⇒ ℙ (| ̂μk − μk | ≤ ln(2/δ)/2Ne) ≥ 1 − δ

b) Recall Union/Boole/Bonferroni bound: ℙ(any of A1, …, AK) ≤
K

∑
k=1

ℙ(Ak)
ℙ(∀k, Ac

1, …, Ac
K) ≥ 1 −

K

∑
k=1

ℙ(Ak)

⇔

25

Back to Regret Analysis of ETC
1. Calculate regret during exploration stage

 with probability 1RegretNeK ≤ NeK

2. Quantify error of arm mean estimates at end of exploration stage

a) Hoeffding ⇒ ℙ (| ̂μk − μk | ≤ ln(2/δ)/2Ne) ≥ 1 − δ

b) Recall Union/Boole/Bonferroni bound: ℙ(any of A1, …, AK) ≤
K

∑
k=1

ℙ(Ak)

c) , Union bound with , and Hoeffding:δ → δ/K Ak = { | ̂μk − μk | > ln(2K/δ)/2Ne}

ℙ(∀k, Ac
1, …, Ac

K) ≥ 1 −
K

∑
k=1

ℙ(Ak)

⇔

25

Back to Regret Analysis of ETC
1. Calculate regret during exploration stage

 with probability 1RegretNeK ≤ NeK

2. Quantify error of arm mean estimates at end of exploration stage

a) Hoeffding ⇒ ℙ (| ̂μk − μk | ≤ ln(2/δ)/2Ne) ≥ 1 − δ

b) Recall Union/Boole/Bonferroni bound: ℙ(any of A1, …, AK) ≤
K

∑
k=1

ℙ(Ak)

c) , Union bound with , and Hoeffding:δ → δ/K Ak = { | ̂μk − μk | > ln(2K/δ)/2Ne}
⇒ ℙ (∀k, | ̂μk − μk | ≤ ln(2K/δ)/2Ne) ≥ 1 − δ

ℙ(∀k, Ac
1, …, Ac

K) ≥ 1 −
K

∑
k=1

ℙ(Ak)

⇔

25

Regret Analysis of ETC (cont’d)

26

Regret Analysis of ETC (cont’d)
2. Quantify error of arm mean estimates at end of exploration stage:

26

Regret Analysis of ETC (cont’d)
2. Quantify error of arm mean estimates at end of exploration stage:

ℙ (∀k, | ̂μk − μk | ≤ ln(2K/δ)/2Ne) ≥ 1 − δ

26

Regret Analysis of ETC (cont’d)
2. Quantify error of arm mean estimates at end of exploration stage:

ℙ (∀k, | ̂μk − μk | ≤ ln(2K/δ)/2Ne) ≥ 1 − δ

3. Using step 2, calculate regret during exploitation stage:

26

Regret Analysis of ETC (cont’d)
2. Quantify error of arm mean estimates at end of exploration stage:

ℙ (∀k, | ̂μk − μk | ≤ ln(2K/δ)/2Ne) ≥ 1 − δ

3. Using step 2, calculate regret during exploitation stage:

Denote (apparent) best arm after exploration stage by and actual best arm by ̂k k⋆

26

Regret Analysis of ETC (cont’d)
2. Quantify error of arm mean estimates at end of exploration stage:

ℙ (∀k, | ̂μk − μk | ≤ ln(2K/δ)/2Ne) ≥ 1 − δ

3. Using step 2, calculate regret during exploitation stage:

Denote (apparent) best arm after exploration stage by and actual best arm by ̂k k⋆

regret at each step of exploitation phase = μk⋆ − μ ̂k

26

Regret Analysis of ETC (cont’d)
2. Quantify error of arm mean estimates at end of exploration stage:

ℙ (∀k, | ̂μk − μk | ≤ ln(2K/δ)/2Ne) ≥ 1 − δ

3. Using step 2, calculate regret during exploitation stage:

Denote (apparent) best arm after exploration stage by and actual best arm by ̂k k⋆

regret at each step of exploitation phase = μk⋆ − μ ̂k
= μk⋆ + (̂μk⋆ − ̂μk⋆) − μ ̂k + (̂μ ̂k − ̂μ ̂k)

26

Regret Analysis of ETC (cont’d)
2. Quantify error of arm mean estimates at end of exploration stage:

ℙ (∀k, | ̂μk − μk | ≤ ln(2K/δ)/2Ne) ≥ 1 − δ

3. Using step 2, calculate regret during exploitation stage:

Denote (apparent) best arm after exploration stage by and actual best arm by ̂k k⋆

regret at each step of exploitation phase = μk⋆ − μ ̂k
= μk⋆ + (̂μk⋆ − ̂μk⋆) − μ ̂k + (̂μ ̂k − ̂μ ̂k)
= (μk⋆ − ̂μk⋆) + (̂μ ̂k − μ ̂k) + (̂μk⋆ − ̂μ ̂k)

26

Regret Analysis of ETC (cont’d)
2. Quantify error of arm mean estimates at end of exploration stage:

ℙ (∀k, | ̂μk − μk | ≤ ln(2K/δ)/2Ne) ≥ 1 − δ

3. Using step 2, calculate regret during exploitation stage:

Denote (apparent) best arm after exploration stage by and actual best arm by ̂k k⋆

regret at each step of exploitation phase = μk⋆ − μ ̂k
= μk⋆ + (̂μk⋆ − ̂μk⋆) − μ ̂k + (̂μ ̂k − ̂μ ̂k)
= (μk⋆ − ̂μk⋆) + (̂μ ̂k − μ ̂k) + (̂μk⋆ − ̂μ ̂k)
≤ ln(2K/δ)/2Ne + ln(2K/δ)/2Ne + 0 w/p 1 − δ

26

Regret Analysis of ETC (cont’d)
2. Quantify error of arm mean estimates at end of exploration stage:

ℙ (∀k, | ̂μk − μk | ≤ ln(2K/δ)/2Ne) ≥ 1 − δ

3. Using step 2, calculate regret during exploitation stage:

Denote (apparent) best arm after exploration stage by and actual best arm by ̂k k⋆

regret at each step of exploitation phase = μk⋆ − μ ̂k
= μk⋆ + (̂μk⋆ − ̂μk⋆) − μ ̂k + (̂μ ̂k − ̂μ ̂k)
= (μk⋆ − ̂μk⋆) + (̂μ ̂k − μ ̂k) + (̂μk⋆ − ̂μ ̂k)
≤ ln(2K/δ)/2Ne + ln(2K/δ)/2Ne + 0 w/p 1 − δ
= 2 ln(2K/δ)/Ne

26

Regret Analysis of ETC (cont’d)
2. Quantify error of arm mean estimates at end of exploration stage:

ℙ (∀k, | ̂μk − μk | ≤ ln(2K/δ)/2Ne) ≥ 1 − δ

3. Using step 2, calculate regret during exploitation stage:

Denote (apparent) best arm after exploration stage by and actual best arm by ̂k k⋆

regret at each step of exploitation phase = μk⋆ − μ ̂k
= μk⋆ + (̂μk⋆ − ̂μk⋆) − μ ̂k + (̂μ ̂k − ̂μ ̂k)
= (μk⋆ − ̂μk⋆) + (̂μ ̂k − μ ̂k) + (̂μk⋆ − ̂μ ̂k)
≤ ln(2K/δ)/2Ne + ln(2K/δ)/2Ne + 0 w/p 1 − δ
= 2 ln(2K/δ)/Ne

⇒ total regret during exploitation ≤ T 2 ln(2K/δ)/Ne w/p 1 − δ26

Regret Analysis of ETC (cont’d)

27

Regret Analysis of ETC (cont’d)
4. From steps 1-3: with probability ,1 − δ

RegretT ≤ NeK + T 2 ln(2K/δ)/Ne

27

Regret Analysis of ETC (cont’d)
4. From steps 1-3: with probability ,1 − δ

RegretT ≤ NeK + T 2 ln(2K/δ)/Ne

Take any so that and (e.g.,): sublinear regret!Ne Ne → ∞ Ne/T → 0 Ne = T

27

Regret Analysis of ETC (cont’d)
4. From steps 1-3: with probability ,1 − δ

RegretT ≤ NeK + T 2 ln(2K/δ)/Ne

Minimize over : (won’t bore you with algebra)Ne

optimal Ne = (
T ln(2K/δ)/2

K)
2/3

Take any so that and (e.g.,): sublinear regret!Ne Ne → ∞ Ne/T → 0 Ne = T

27

Regret Analysis of ETC (cont’d)
4. From steps 1-3: with probability ,1 − δ

RegretT ≤ NeK + T 2 ln(2K/δ)/Ne

Minimize over : (won’t bore you with algebra)Ne

optimal Ne = (
T ln(2K/δ)/2

K)
2/3

⇒ RegretT ≤ 3T2/3(K ln(2K/δ)/2)1/3 = o(T)
(A bit more algebra to plug optimal into Regret equation above)Ne T

Take any so that and (e.g.,): sublinear regret!Ne Ne → ∞ Ne/T → 0 Ne = T

27

Today

• Feedback from last lecture

• Recap

• Multi-armed bandit problem statement

• Baseline approaches: pure exploration and pure greedy

• Explore-then-commit

28

Summary:

Feedback:

bit.ly/3RHtlxy

29

Attendance: 
bit.ly/3RcTC9T

•Multi-armed bandits (or MAB or just bandits)

•Exemplify exploration vs exploitation

•Pure greedy not much better than pure exploration (linear regret)

•Explore then commit obtains sublinear regret

