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Contextual bandit environment

Formally, a contextual bandit is the following interactive learning process:

Fort=0—->T1T-—-1

1. Learner sees context x, ~ v, Independent of any previous data

7, policy learned from

2. Learner pullsarm a, = n(x,) € { 1,..., K} 1 data seen o far

3. Learner observes reward r, ~ v(“f)(xt) from arm a, in context x,

Note that if the context distribution v, always returns the same value (e.g., 0), then
the contextual bandit reduces to the original multi-armed bandit
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UCB algorithm conceptually identical as long as || finite:

7(x,) = arg max A% (x )+ /InQTK | 2| /8)/2NP(x,)
k

« Added x, argument to ﬂgk) and Nt(k) since we now keep track of the sample
mean and number of arm pulls separately for each value of the context

« Added || inside the log because our union bound argument is now over
all arm mean estimates ,u(k)(x) of which there are K| | instead of just K

But when || is really big (or even infinite), this will be really bad!

Solution: share information across contexts x,, i.e., don’t treat vP(x) and v (x") as
completely different distributions which have nothing to do with one another

Example: showing an ad on a NYT article on politics vs a NYT article on sports:
Not /dentical readership, but still both on NYT, so probably still similar readership!
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Modeling in contextual bandits

Need a model for 4 ®(x), e.g., a linear model: u®(x) = Hka

E.g., placing ads on NYT or WSJ (encoded as O or 1 in the first entry of x), for articles
on => x € {0,1 }2

2| =4 = w/o linear model, need to learn 4 different u®)(x) values for each arm k

2

With linear model there are just 2 parameters: the two entries of 0, € |

Lower dimension makes learning easier, but model could be wrong/biased
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Linear model fitting

Linear model for rewards: //t(k)(x) — 1 9W

Least squares estimator: H(k) = arg min 2 (r — xT6’)21 {a.=k)
Hele

Minimize squared error over time points when arm k selected

—1

—1] B
9§"> = Z XX, o=ty i S Y
7=0 7=0 \
(XY X
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Uncertainty quantification

For UCB, recall that we need confidence bounds on
the expected reward of each arm (given context x,)

Hoeffding was the main tool so far, but it used the fact that our estimate for the
expected reward was a sample mean of the rewards we’d seen so far in the same
setting (action, context)

With a model, we can use rewards we’ve seen in other settings — better estimation

But not using sample mean as estimator, so need something other than Hoeftding

Chebyshev’s inequality: for a mean-zero random variable Y,
Y| < B\/E[Y?] with probability > 1 — 1/
Apply to x,' égk) — x, O
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Chebyshev confidence bounds + intuition
Chebyshev: x,! 0" < xtTé’(k) + Dy /xtT(A(k)) X, W|th probability > 1 — 1/4°

AW = x 1, _
Intuition: f z; wie - la=k)

UCB term 1: X, oo large when context and coetfficient estimate aligned

UCB term 2: xtT (At(k))_lxt (Z(k)) X,, where

N(k)

1 1
Z(k) = —A(k) = x.x!
N(k) Nt(k) g

matrix of contexts when arm k chosen

1y, =) is the empirical covariance

Large when Nt(k) small or x, not aligned with historical data
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r—1
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LinUCB algorithm

Regularization makes At(k) invertible

Fort=0—->T1T-—-1 » / A

—1
1. Vk, define At(k) = Z x.x!' 1 (a=k) T A and Hgk) — (At(k))_1 Z XL —p
7=0) 7=0)

2. Observe context X, and choose a, = arg max {xtTé’gk) + Cx /xtT(At(k))_lxt}
k

3. Observe reward 7, ~ 1\%(x,)

¢, similar to log term in (non-lin)UCB, in that it depends logarithmically on

i. 1/0 (0 is probability you want the bound to hold with)
i. 7and d implicitly via det(A™)

Can prove é(\ﬁ’ ) regret bound
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Real-world RL Is hard.
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Real-world RL Is hard.
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The Supply Chain Problem

e Supply Chain is about buying, storing, and
transporting goods.

 There is a lot of historical “off-policy” data

* e.g. Amazon, ...
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The Supply Chain Problem

* Supply Chain is about buying, storing, and
transporting goods.

e There is a lot of historical data

e e.g. Amazon, ...

 |[oday: how can we use this data to solve the
inventory management problem?

e counterfactual issues?

14
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Outline

Can we use historical data to solve inventory management problems
iIn supply chain?

e How to use historical data?

 Moving to real-world inventory management problems

e Real world results

Deep Inventory Management

Dhruv Madeka
d 70

Amazon, maded@amazon.com

Kari Torkkola

Amazon, karito@amazon.com

Largely based on this paper: WL
arxiv/2210.03137 e bt

mazon, foster@amazon.com
Sham M. Kakade
1 5 Amazon, Harvard University, shamisme@amazon.com
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Warm up: Vehicle Routing

when using historical data might be ok

O [Paul G. Allen Center for Computer Scien:

),

© [CorePower Yoga, 300 3rd Ave W, Seattle

K

Add destination

Leave now

Send directions to your phone

via Denny Way

Fastest route now due to traffic
conditions

Details

via Aurora Ave N
Lighter traffic than usual

via NE 40th St and Aurora Ave N

Explore CorePower Yoga

0000

Restaurants Hotels Gas stations Parking Lots

17

Options

20 min

5.8 miles

20 min

5.7 miles

20 min

5.9 miles

More

NE 4510 ST

[d Meyerv g' VY Ml YV WVIiINWw E ' UXT V
< 3 = %
%2 g § 6 ; The Q_H@. =
% z a > fm) 20 min UnivefSity of Center
% z % SIS W sfﬁn‘g‘ton for Urba
ol » iy v Horticultt
40th(St -
| Qac"«c‘swL_’\i : :
< ' |
%@ N3othst FREMONT K H \l JPaullG. Allen Center
%, S " & 20 mi \_//For Computer Science...
nse Seattle Pacific. ™ %6t ¢ F & tm 20 min =
- ) remont Troll o 5.9 miles I -
University S @Husky Stadium
W Bertona St Y
2 9 N 3sth 1/ @
> Ve, University of Wénington
2 RS NP Medical Center
NORTH St PORTAGE BAY. }
QL ENFANNE Gas Works - ‘%
L Park
%3 Ilk@é‘&
z
=3 A S
= Gl
q W McGraw St ~
g Boston St 1) o EBoston & ,‘, Ji I/ \AL‘\y\l
1 | Z s - 7 L)
5 3 e EAST QUEEN 3 OGS WeEiington
z z ANNE 5 W m Interlaken ) ,/l?arkNH
5 ® [t} Arhor:
< < > : Volunteer Park — po \AfPﬂreP}m
Y i Conservatory ARBORE\'TL“J{IVI%‘ /
() Y \'l\\\\
WEST QUEEN z N \\ \ Y:\\‘\
e QUEEN ANNE 5 WESTLAKE 3 )
P < Y A= /
o a Volunteer Park o A V 'x?
e% = Swé\eittll\éf\
Kerry Park 7 = Japa‘ges'e\
% & z Gardeny.\ WASH|
% % mpic Pl 45 m E Aloha St )\ | P/
(S
4 SOUTH LAKE
Roy St UNION CAPITOL HILL STEVENS K
W Mercer St Mercer St N w
B Sea}tle Center / 2 3 166 I L MADISON ¢
> a2 TR 5 8 L] 2 > VALLEY =
5z T 5 52 o 2 m @®
S e z z 2 3 3
CorePower Yoga - J_ z = = MILLER PARK
B Edwa\rds Park Space Needle f 5 oeWay EJomnst +
» A ETyAW3 -
K
Olympic .~ <, T @ A
Sculpture Park ;4 __ 5% 3 it




Warm up: Vehicle Routing

when using historical data might be ok

* We want a good policy for routing

a single car.
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Warm up: Vehicle Routing

(when using historical data might be ok)

* We want a good policy for routing
a single car.

Policy x: features -> directions
features: time of day, holiday indicators,
current traffic, sports games,

accidents, location, weather,
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* We want a good policy for routing

Warm up: Vehicle Routing

(when using historical data might be ok)

a single car.

Policy x: features -> directions
features: time of day, holiday indicators,
current traffic, sports games,

accidents, location, weather,

Historical Data:

@) (Paul G. Allen Center for Computer Scien J

: g

© LCorePower Yoga, 300 3rd Ave W, Seattle

@ Add destination
Leave now = Options

-a Send directions to your phone

(= via Denny Way 20 min
Fastest route now due to traffic 5.8 miles
conditions
Details

(= viaAuroraAveN 20 min
Lighter traffic than usual 5.7 miles

(= viaNE 40th Stand AuroraAve N 20 min

5.9 miles
Explore CorePower Yoga
Restaurants Hotels Gas stations Parking Lots More

suppose we have logged historical data of features

Backtesting policies:

 Key idea: a single route minimally affects traffic
 Counterfactual: with the historical data, we can see what would have happened with

another policy.
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Warm up 2: Fleet Routing

e We want to route a whole fleet
of self-driving taxis.

e Policy & features -> directions
 features: customer demand, time,
holiday indicators, current traffic, sports games,
accidents, location, weather...

* Historical Data:
suppose we have logged historical data of features

* Backtesting policies:
 Key idea: a small fleet route may have small affects on traffic.
 Counterfactual: with the historical data, we can see what would have happened with
another policy.

18
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 Current order doesn’t
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backtest!
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Price= $2
Time Inventory Demand Order Revenue
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Backtesting a policy

Time Inventory Demand Order Revenue
0 100 20 40
0 80 19- 40 —10--40
1 90- 120 20 40
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Backtesting a policy

Price= $2
Time Inventory Demand Order Revenue
0 100 20 - 40  Current order doesn’t
impact future demand.
0 80 - | 10 &0 10 -0 * This allows us to
4+ (R/'// backtest!
1 90- 720&//20 - 40
- 29
1 20 100 % - 5020 50-20
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Backtesting a policy

Time Inventory Demand Order Revenue
0 100 20 - 40
0 80 : 19- ¢0 —19--40
1 90- 7 20 20 - 40
1 20 100 - 5020 50 -20
2 120 60 - 120
2 60 - 10 -10

20

Price= $2
Cost= $1

Current order doesn'’t
impact future demand.

This allows us to

backtest!

Empirically, backlog due to
unmet demand does not look
significant.’

1. See Verhoef et al (2006)
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Formalization of the Supply Chain Problem

Exogenous MDPs: Growing literature around a class of MDPs where a large part of the state is driven by
an exogenous noise process [Efroni et al 2021, Sinclair et al 2022]
The supply chain problem as an ExoMDP:

» Action a,: how much you buy
e Exogenous random variables: evolving under Pr and not dependent on our actions
(Demand;,, Price,, Cost;, Lead Time,, Covariates;) := s,
« Known controllable part (inventory) /,: (known) evolution is dependent on our action.
e [, =max(/_,+a,_,—D,0) (and suppose we start at /).
» Immediate reward is the profits: 7(s,. /,, a,) := Price, X min(Demand,, /,) — Cost, X a,
Learning setting:
 Offline Data: We observe N historical trajectories, where each sequence is sampled sy, ..., s ~ Pr
 Goal: maximize our over H step cumulative reward:

 H .
Vi) = E, Z }/tr (Stv L, at)
S |
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Why is it an interesting RL problem?



Why is it an interesting RL problem?

* | ots of time dependence!
* |f you buy too much, you’re left with the inventory for months!
* Your actions (orders) affect the state at a random time later

* Tons of correlation across time (Demand, Price, Cost, Seasonality, etc)

22
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What do ExoMDPs buy us?

We can backtest (assuming the “controllable” dynamics are known)
and avoid the counterfactual/causality issue!
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What do ExoMDPs buy us?

We can backtest (assuming the “controllable” dynamics are known)
and avoid the counterfactual/causality issue!

Theorem: RL in ExoMDPs is as easy as Supervised Learning
Suppose we have K policies I1 = {x, ...7m%}, and we have N sampled exogenous

paths. Then we can accurately backtest up to nearly K ~ N policies.
Formally, for 0 € (0,1), with pr. greater than 1 — 6 - we have that for all 7z € 11:

. loo(K/
| Vo(m) — V()| < H\/ og(R70)

N
(assuming the reward 7, is bounded by 1).
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What do ExoMDPs buy us?

We can backtest (assuming the “controllable” dynamics are known)
and avoid the counterfactual/causality issue!

Theorem: RL in ExoMDPs is as easy as Supervised Learning
Suppose we have K policies I1 = {x, ...7m%}, and we have N sampled exogenous

paths. Then we can accurately backtest up to nearly K ~ N policies.
Formally, for 0 € (0,1), with pr. greater than 1 — 6 - we have that for all 7z € 11:

. loe(K/oO
| Vo(a) = V()| < H\/ og(R70)

N
(assuming the reward 7, is bounded by 1).

* |mplications:
* We can optimize a neural policy on the past data.

* |n the usual RL setting (not exogenous), we would have an amplification factor of (at least)
min{2", K}, using historical data due to the counterfactual issue.
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Real-world Issue: Censored Demand

e When demand > inventory, what customers see:




Real-world Issue: Censored Demand

« When demand > inventory, what customers see:

$19.99
& FREE Shipping

Get it Tue, Jan 29 - Thu, Jan 31,
or

Get it Fri, Jan 25 - Fri, Jan 25 if
you choose paid Local Express
Shipping at checkout

In stock on January 23,

Ships from and sold by Vertellis.

Qty: 1 v

$19.99 + Free Shipping

‘ Add to Cart
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Real-world Issue: Censored Demand

« When demand > inventory, what customers see:

$19.99
& FREE Shippi BTy New $18.96
| in | ‘

Getit T ‘:p 299 Thu. Jan 31 Qty: 1 List Price:
et it Tue, Jan 29 - Thu, Jan 31, ,

or $29-99
Get it Fri, Jan 25 - Fri, Jan 25 if Save: $11.03 (37%)
you choose paid Local Express FREE Shipping on orders over $35.

Shipping at checkout .
Temporarily out of stock.
In stock on January 23, Order now and we'll deliver when

available. Details -
Ships from and sold by Amazon.com.
Gift-wrap available.

Qty: 1 v
! ‘ Addto. Geut |

$19.99 + Free Shipping Sign in to turn on 1-click ordering

Ships from and sold by Vertellis.

} Add to Cart I
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$19.99
& FREE Shipping
Get it Tue, Jan 29 - Thu, Jan 31,

Get it Fri, Jan 25 - Fri, Jan 25 if
you choose paid Local Express
Shipping at checkout

In stock on January 23,
2019.

order ILNOwW.

Ships from and sold by Vertellis.

Qty: 1

$19.99 + Free Shipping

Add to Cart

Real-world Issue: Censored Demand

« When demand > inventory, what customers see:

Buy New $18.96
Qty: 1 List Price:

Save: $11.03 (37%)
FREE Shipping on orders over $35.
Temporarily out of stock.
Order now and we'll deliver when
available. Details -~

Ships from and sold by Amazon.com.
Gift-wrap available.

| Add to Cart |

Sign in to turn on 1-click ordering

25

We only observe sales not the demand:
Sales := min(Demand, Inventory)

Can we still backtest?



Our historical data is then censored....

Sales := min(Demand, Inventor
( Y) Price= $2



Our historical data is then censored....

Sales := min(Demand, Inventory)

Time

Inventory

True Demand

Sales

Order

Revenue

10

10

20

Price= $2



Our historical data is then censored....

Sales := min(Demand, Inventor
( Y) Price= $2

i Cost= $1
Time Inventory |True Demand Sales Order Revenue
T 10 ?? 10 - 20
. $19.99
: & FREE Shipping Buy New ?1 896
Get it Tue, Jan 29 - Thu, Jan 31, —— Qty: |1 3 List HH
OF e ek
" Get it Fri, Jan 25 - Fri, Jan 25 if oave: $11.03 (37%)
you choose paid Local Express FREE Shlpplng on orders over $35.

Shipping at checkout .
_ Temporarily out of stock.
. In stock on January 23, Order now and we'll deliver when
available. Details -

Ships from and sold by Amazon.com.
Gift-wrap available.

Jraer 1t now.
Ships from and sold by Vertellis.

Qty: v f
ty: 1 — Add to Cart }

$19.99 + Free Shipping Sign in to turn on 1-click ordering

| Add to Cart —
26




Our historical data is then censored....

Sales := min(Demand, Inventor
( Y) Price= $2

Time Inventory |True Demand Sales Order Revenue Cost= $1
T 10 ?? 10 - 20 If we could fill in the
missing demand,
$19.99 then we could still
& FREE Shipping Buy New $18.96
Qty: [ 1 3 List Price: backtest!

Get it Tue, Jan 29 - Thu, Jan 31, -
or

it Fri ; : Save: $11.03 (37%)
Get it Fri, Jan 25 - Fri, Jan 25 if
you choose paid Local Express FREE Shipping on orders over $35.
Shipping at checkout .
Temporarily out of stock.
In stock on January 23, Order now and we'll deliver when

2019. available. Details -
ERRERES WX Ruthee. Ships from and sold by Amazon.com.
Gift-wrap available.

Q1 v — } Add to Cart ‘

$19.99 + Free Shipping Sign in to turn on 1-click ordering

Ships from and sold by Vertellis.

‘ Add to Cart | —
26




We have many observed historical covariates

Buy New $18.96
Qty: |1 3 List Price

- N
" a"
e - g g

Save: $11.03 (37%)
FREE Shipping on orders over $35.

" Sales, Wet
Sales, Web Site, Glance Views, Product Text, Order now and well deliver wher
ReVIGWS Ships from and sold by Amazon.com.

Gift-wrap available.

Add to Cart

 Example: the #times customers look at an item
gives us info about the unobserved demand.

Sign in to turn on 1-click ordering

* Let’s forecast the missing variables from the observed covariates!
[P(Missing Data | Observed Data)
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Uncensoring the data....

Sales := min(Demand, Inventor
( 2 Price= $2

Cost= $1

Buy Ne $18.96
Qty: 1 ¢ List Price:

Save: $11.03 (37%)
FREE Shipping on orders over $35.
Temporarily out of stock.
Order now and we'll deliver when
available. Details ~

Ships from and sold by Amazon.com.
Gift-wrap available.

\ Add to Cart |

Sign in to turn on 1-click ordering
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Uncensoring the data....

Sales := min(Demand, Inventory)

28

Time Inventory |True Demand Sales Order Revenue
T 10 40 10 - 20
$18.96
Qty: 1 List Price

s -

L Jp— r;;‘!*] N1 (A7 \
oave L | JJ 7 | D)

FREE Shipping on orders over $35.

Temporarily out of stock.
Order now and we'll deliver when
available. Details

Ships from and sold by Amazon.com.
Gift-wrap available.

Add to Cart

Sign in to turn on 1-click ordering

Price= $2
Cost= $1



Uncensoring the data....

Sales := min(Demand, Inventory)

28

Time Inventory |True Demand Sales Order Revenue
T 10 40 10 : 20
Buy Ne $18.96
Qty: | 1 List Price:
Save: $11.03 (37%)

FREE Shipping on orders over $35.

Temporarily out of stock.
Order now and we'll deliver when

available. Details ~

Ships from and sold by Amazon.com.

Gift-wrap available.

=

Add to Cart

Sign in to turn on 1-click ordering

Price= $2
Cost= $1
Key idea:

Use covariates
(e.g. glance
views) to forecast
missing demand,
vendor lead
times, etc
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What do ExoMDPs buy us?

We can backtest (even with censored data) and avoid the counterfactual/causality issue!
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Theorem: If we can accurately forecast the missing (exo) variables (i.e. our SL error is
small), then we can backtest accurately.

(with only additive error increase based on our SL error).
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What do ExoMDPs buy us?

We can backtest (even with censored data) and avoid the counterfactual/causality issue!

Theorem: If we can accurately forecast the missing (exo) variables (i.e. our SL error is
small), then we can backtest accurately.

(with only additive error increase based on our SL error).

- i i \N
Setting: we have N sampled sequences {sl, S5 ...SH}izl,
where M; and O, are the missing and observed exogenous variables in sequence I.

Forecast: P | = f);(Ml- | 0.) is our forecast of P' = Pr(M,| O,).

I ¢ -
Assume: With pr. 1, forecasting has low error: N Z TotalVar(IP’, P ’) < €sup:

=1
Guarantee: Forany o € (0,1), with pr. greater than 1 — 9, for all # € 11:

. log(K/0o)
| Vo(m) = Vo(m) | < H (Gsup "‘\/ N )
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The Simulator

* (Collection of historical trajectories:

1 million products m

104 weeks of data per product
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The Simulator

* (Collection of historical trajectories:
* 1 million products m
104 weeks of data per product

* Uncensoring:
 Vendor Lead Times

* Policy gradient methods in a “gym”:
e “gym” < backtesting <> simulator

(note the “simulator” isn’t a good world model). m
* The policy can depend on many features.

(seasonality, holiday indicators, demand history,

product details, text features)

31



Sim to Real Transfer

 Sim: the backtest of DirectBackprop improves on Newsvendor.
 Real: DirectBackprop significantly reduces inventory without significantly reducing

Real World

total revenue.

Periodwise Reward Statistics by Policy

e Metrics % change

Inventory Level -12+46
e Revenue 2.6%




RLHF



RL from Human Feedback (RLHF)

Step 1 Step 2 Step 3
Collect demonstration data, Collect comparison data, Optimize a policy against
and train a supervised policy. and train a reward model. the reward model using

reinforcement learning.

A promptis A prompt and A new prompt -
sampled from our St several model - is sampled from |
xplain the moon Explain the moon Write a story
prompt dataset. landing to a 6 year old outputs are landing to a 6 year old the dataset. about frogs
sampled. |
: i A B | i
A Iabeler Explain gravity. Explain war... The pollcy ppo
. 0
demonstrates the @ | c | @ generates LI\
desired OUtpUt [ satellite of . the moan... an OUtDUt' w
. : “ y,
behaVIOF. Some people went Y +
to the maon.. A labeler ranks
* the outputs from @ e
: : best to worst.
This data is used = 0-60-0-0 v
to fine-tune GPT-3 5 e The reward model o
with supervised Nl calculates a 2
T ‘ o o o
|earning. [ Th d _ d reward for w
SIEIE to train our 2 {
o & 0
reward model. \.\52{/ The reward is
0-0-0-0 used to update Iy
the policy

> using PPO.
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Summary:

Today: adding context to bandits requires SL but makes it much more useful

* RL gives a helpful set of tools.
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« We hope you enjoyed the course!
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Extensions

1. Can always replace contexts x, with any fixed (vector-valued) function ¢(x,)
E.g., if believe rewards quadratic in scalar x,, could make ¢(x,) = (x,, xtz)

2. Instead of fitting different A% for each arm, we could assume the mean reward
IS linear in some function of both the context and the action, I.e.,

_rNyat(xt)[r] — ¢(Xt? at)TH

This is what problem 3 of HW 1 (which we cut) was about; it’s helpful
especially when K is large, since in that case there are a lot of OW to fit

Both cases allow a version of lInUCB by extension of the same ideas: fit coefficients
via least squares and use Chebyshev-like uncertainty quantification to get UCB
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1. Vk, define A, = Z d(x,a)p(x,a) +Al and 6, =A"" Z P(x,,a)r,
7=0 =0

2. Observe x, & choose a, = arg max { P(x,, k)Té’t + ca/ P(x,, k)TAt_1¢(xt, k) }
k

3. Observe reward 7, ~ 1\%(x,)

Comments:
. There is only one A, and @, (not one per arm), so more info shared across k

ii. Good for large K, but step 2’s argmax may be hard
. The other formulation, with separate At(k) and Hgk), IS called disjointed
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Continuous bandit action spaces

In bandits / contextual bandits, we have always treated the action space as discrete

This Is because we to some extent treated each arm separately, necessitating trying
each arm at least a fixed number of times before real learning could begin

But now with the new combined formulation, there is sufficient sharing across actions
that we can learn 0, and its UCB without sampling all arms

This means that in principle, we can now consider continuous action spaces!

This is the power of having a strong model for

=, an(x)L 7], and a neural network

would serve a similar purpose in place of the combined linear model (UQ less clear)

But in principle, there is no “free lunch”, i.e., the hardness of the problem now
transfers over to choosing a good model (a bad model will lead to bad performance)
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