Optimal Control Theory and the Linear Quadratic Regulator

Lucas Janson and Sham Kakade
CS/Stat 184: Introduction to Reinforcement Learning Fall 2023

Today

- Feedback from last lecture
- Recap
- General optimal control problem
- The linear quadratic regulator (LQR) problem
- Optimal control solution to LQR

Feedback from feedback forms

1. Thank you to everyone who filled out the forms!
2.

Today

- Feedback from last lecture
- Recap
- General optimal control problem
- The linear quadratic regulator (LQR) problem
- Optimal control solution to LQR

Recap

Bellman Consistency and the Bellman Equations

- Theorem: Every policy π satisfies the Bellman consistency conditions:
- $V^{\pi}(s)=r(s, \pi(s))+\gamma \mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, \pi(s))}\left[V^{\pi}\left(s^{\prime}\right)\right]$
- A function $V: S \rightarrow R$ satisfies the Bellman equations if

$$
V(s)=\max _{a}\left\{r(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)}\left[V\left(s^{\prime}\right)\right]\right\}, \forall s
$$

- Theorem:
- V satisfies the Bellman equations if and only if $V=V^{\star}$.

Value Iteration Algorithm:

1. Initialization: $V^{0}(s)=0, \forall s$
2. For $t=0, \ldots T-1$

$$
V^{t+1}(s)=\max _{a}\left\{r(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, a\right) V^{t}\left(s^{\prime}\right)\right\}, \forall s
$$

3. Return: $V^{T}(S)$

$$
\pi(s)=\arg \max _{a}\left\{r(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)} V^{T}\left(s^{\prime}\right)\right\}
$$

-For $V \in \mathbb{R}^{|S|}$, define $\mathscr{T}: \mathbb{R}^{|S|} \mapsto \mathbb{R}^{|S|}$, where

$$
(\mathscr{T} V)(s):=\max _{a}\left[r(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(s, a)} V\left(s^{\prime}\right)\right]
$$

- Bellman equations: $V=\mathscr{T} V$
- Value iteration: $V^{t+1} \leftarrow \mathscr{T} V^{t}$

Convergence of Value Iteration:

- The "infinity norm": For any vector $x \in R^{d}$, define $|x|_{\infty}=\max _{i}\left|x_{i}\right|$
- Theorem: Given any V, V^{\prime}, we have: $\left\|\mathscr{T} V-\mathscr{T} V^{\prime}\right\|_{\infty} \leq \gamma\left\|V-V^{\prime}\right\|_{\infty}$
- Corollary: If we set $T=\frac{1}{1-\gamma} \ln \left(\frac{1}{\epsilon(1-\gamma)}\right)$ iterations,

VI will return a value V^{T} s.t. $\left\|V^{T}-V^{\star}\right\|_{\infty} \leq \epsilon$.

- VI then has computational complexity $O\left(|S|^{2}|A| T\right)$.

Policy Iteration (PI)

- Initialization: choose a policy $\pi^{0}: S \mapsto A$
- For $t=0,1, \ldots T-1$

1. Policy Evaluation: given π^{t}, compute $Q^{\pi^{t}}(s, a)$:
2. Policy Improvement: set $\pi^{t+1}(s):=\arg \max Q^{\pi^{t}}(s, a)$

Policy Iteration (PI)

- Initialization: choose a policy $\pi^{0}: S \mapsto A$
- For $t=0,1, \ldots T-1$

1. Policy Evaluation: given π^{t}, compute $Q^{\pi^{t}}(s, a)$:
2. Policy Improvement: set $\pi^{t+1}(s):=\arg \max Q^{\pi^{t}}(s, a)$

- Computing $Q^{\pi^{t}}$
- Computing $V^{\pi^{t}}: O\left(S^{\wedge} 3\right)$ with linear system solving
- Computing $Q^{\pi^{t}}$ with $V^{\pi^{t}}: \mathrm{O}\left(\mathrm{S}^{\wedge} 2 \mathrm{~A}\right)$ using $Q^{\pi}(s, a)=r(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)}\left[V^{\pi}\left(s^{\prime}\right)\right]$

Per iteration complexity: $O\left(S^{\wedge} 3+S^{\wedge} 2 A\right)$

Convergence of Policy Iteration:

- Theorem: PI has two properties:
- montone improvement: $V^{\pi^{t+1}}(s) \geq V^{\pi^{t}}(s)$
- "contraction": $\left\|V^{\pi^{t+1}}-V^{\star}\right\|_{\infty} \leq \gamma\left\|V^{\pi^{t}}-V^{\star}\right\|_{\infty}$
- Corollary: If we set $T=\frac{1}{1-\gamma} \ln \left(\frac{1}{\epsilon(1-\gamma)}\right)$ iterations,

PI will return a policy π^{t+1} s.t. $\left\|V^{\pi^{t+1}}-V^{\star}\right\|_{\infty} \leq \epsilon$

- with total computational complexity $O\left(\left(|S|^{3}+|S|^{2}|A|\right) T\right)$.

Recap

Recap

- For discrete MDPs, we covered some great algorithms for computing the optimal policy

Recap

-For discrete MDPs, we covered some great algorithms for computing the optimal policy

- But all algorithms scale polynomially in the size of the state and action spaces... what if one or both are infinite?

Recap

-For discrete MDPs, we covered some great algorithms for computing the optimal policy

- But all algorithms scale polynomially in the size of the state and action spaces... what if one or both are infinite?
- In this unit (next 2 lectures), we will discuss computation of good/optimal policies in continuous/infinite state and action spaces

Today

- Feedback from last lecture
- Recap
- General optimal control problem
- The linear quadratic regulator (LQR) problem
- Optimal control solution to LQR

Robotics and Controls

Example: CartPole

Example: CartPole

State: position and velocity of the cart, angle and angular velocity of the pole

Example: CartPole

State: position and velocity of the cart, angle and angular velocity of the pole

Control=action: force on the cart

Example: CartPole

State: position and velocity of the cart, angle and angular velocity of the pole

Control=action: force on the cart
WARNING!
Notation change for controls lectures only:
States are x (instead of s)
Actions are called "controls" and are u (instead of a)

Example: CartPole

State: position and velocity of the cart, angle and angular velocity of the pole

Control=action: force on the cart
WARNING!
Notation change for controls lectures only:
States are x (instead of S)
Actions are called "controls" and are u (instead of a)
Goal: stabilizing around the point $\left(x=x^{\star}, u=0\right)$

Example: CartPole

State: position and velocity of the cart, angle and angular velocity of the pole

Control=action: force on the cart

WARNING!

Notation change for controls lectures only:

$$
\text { States are } x \text { (instead of } S \text {) }
$$

Actions are called "controls" and are u (instead of a)
Goal: stabilizing around the point $\left(x=x^{\star}, u=0\right)$

$$
c\left(x_{h}, u_{h}\right)=u_{h}^{\top} R u_{h}+\left(x_{h}-x^{\star}\right)^{\top} Q\left(x_{h}-x^{\star}\right)
$$

Example: CartPole

State: position and velocity of the cart, angle and angular velocity of the pole

Control=action: force on the cart

WARNING!

Notation change for controls lectures only:

$$
\text { States are } x \text { (instead of } S \text {) }
$$

Actions are called "controls" and are u (instead of a)
Goal: stabilizing around the point $\left(x=x^{\star}, u=0\right)$

$$
c\left(x_{h}, u_{h}\right)=u_{h}^{\top} R u_{h}+\left(x_{h}-x^{\star}\right)^{\top} Q\left(x_{h}-x^{\star}\right)
$$

Optimal control:

$$
\min _{\pi_{0}, \ldots, \pi_{H-1}: X \rightarrow U} \mathbb{E}\left[\sum_{h=0}^{H-1} c\left(x_{h}, u_{h}\right)\right] \text { s.t. } x_{h+1}=f\left(x_{h}, u_{h}\right), x_{0} \sim \mu_{0}
$$

Example: CartPole

State: position and velocity of the cart, angle and angular velocity of the pole

Control=action: force on the cart

WARNING!

Notation change for controls lectures only:

$$
\text { States are } x \text { (instead of } s \text {) }
$$

Actions are called "controls" and are u (instead of a)
Goal: stabilizing around the point $\left(x=x^{\star}, u=0\right)$

$$
c\left(x_{h}, u_{h}\right)=u_{h}^{\top} R u_{h}+\left(x_{h}-x^{\star}\right)^{\top} Q\left(x_{h}-x^{\star}\right)
$$

Optimal control:

$$
\min _{\pi_{0}, \ldots, \pi_{H-1}: X \rightarrow U} \mathbb{E}\left[\sum_{h=0}^{H-1} c\left(x_{h}, u_{h}\right)\right] \text { s.t. } x_{h+1}=f\left(x_{h}, u_{h}\right), x_{0} \sim \mu_{0}
$$

More Generally: Optimal Control

More Generally: Optimal Control

General dynamical system is described as $x_{h+1}=f_{h}\left(x_{h}, u_{h}, w_{h}\right)$, where

More Generally: Optimal Control

General dynamical system is described as $x_{h+1}=f_{h}\left(x_{h}, u_{h}, w_{h}\right)$, where

- $x_{h} \in \mathbb{R}^{d}$ is the state which starts at initial value $x_{0} \sim \mu_{0}$,

More Generally: Optimal Control

General dynamical system is described as $x_{h+1}=f_{h}\left(x_{h}, u_{h}, w_{h}\right)$, where

- $x_{h} \in \mathbb{R}^{d}$ is the state which starts at initial value $x_{0} \sim \mu_{0}$,
- $u_{h} \in \mathbb{R}^{k}$ is the control (action),

More Generally: Optimal Control

General dynamical system is described as $x_{h+1}=f_{h}\left(x_{h}, u_{h}, w_{h}\right)$, where

- $x_{h} \in \mathbb{R}^{d}$ is the state which starts at initial value $x_{0} \sim \mu_{0}$,
- $u_{h} \in \mathbb{R}^{k}$ is the control (action),
- w_{h} is the noise/disturbance,

More Generally: Optimal Control

General dynamical system is described as $x_{h+1}=f_{h}\left(x_{h}, u_{h}, w_{h}\right)$, where

- $x_{h} \in \mathbb{R}^{d}$ is the state which starts at initial value $x_{0} \sim \mu_{0}$,
- $u_{h} \in \mathbb{R}^{k}$ is the control (action),
- w_{h} is the noise/disturbance,
- f_{h} is a function (the dynamics) that determines the next state $x_{h+1} \in \mathbb{R}^{d}$

More Generally: Optimal Control

General dynamical system is described as $x_{h+1}=f_{h}\left(x_{h}, u_{h}, w_{h}\right)$, where

- $x_{h} \in \mathbb{R}^{d}$ is the state which starts at initial value $x_{0} \sim \mu_{0}$,
- $u_{h} \in \mathbb{R}^{k}$ is the control (action),
- w_{h} is the noise/disturbance,
- f_{h} is a function (the dynamics) that determines the next state $x_{h+1} \in \mathbb{R}^{d}$

Objective is to find control policy π_{h} which minimizes the total cost (horizon H),

More Generally: Optimal Control

General dynamical system is described as $x_{h+1}=f_{h}\left(x_{h}, u_{h}, w_{h}\right)$, where

- $x_{h} \in \mathbb{R}^{d}$ is the state which starts at initial value $x_{0} \sim \mu_{0}$,
- $u_{h} \in \mathbb{R}^{k}$ is the control (action),
- w_{h} is the noise/disturbance,
- f_{h} is a function (the dynamics) that determines the next state $x_{h+1} \in \mathbb{R}^{d}$

Objective is to find control policy π_{h} which minimizes the total cost (horizon H),

$$
\begin{aligned}
& \text { minimize } \mathbb{E}\left[c_{H}\left(x_{H}\right)+\sum_{h=0}^{H-1} c_{h}\left(x_{h}, u_{h}\right)\right] \\
& \text { s.t. } x_{h+1}=f_{h}\left(x_{h}, u_{h}, w_{h}\right), u_{h}=\pi_{h}\left(x_{h}\right), x_{0} \sim \mu_{0}
\end{aligned}
$$

More Generally: Optimal Control

General dynamical system is described as $x_{h+1}=f_{h}\left(x_{h}, u_{h}, w_{h}\right)$, where

- $x_{h} \in \mathbb{R}^{d}$ is the state which starts at initial value $x_{0} \sim \mu_{0}$,
- $u_{h} \in \mathbb{R}^{k}$ is the control (action),
- w_{h} is the noise/disturbance,
- f_{h} is a function (the dynamics) that determines the next state $x_{h+1} \in \mathbb{R}^{d}$

Objective is to find control policy π_{h} which minimizes the total cost (horizon H),

$$
\begin{aligned}
& \text { minimize } \mathbb{E} {\left[c_{H}\left(x_{H}\right)+\sum_{h=0}^{H-1} c_{h}\left(x_{h}, u_{h}\right)\right] } \\
& \text { s.t. } x_{h+1}=f_{h}\left(x_{h}, u_{h}, w_{h}\right), u_{h}=\pi_{h}\left(x_{h}\right), x_{0} \sim \mu_{0}
\end{aligned}
$$

- Randomness (in the dynamics) enters via w_{h}, e.g., $w_{h} \sim \mathcal{N}(0, \Sigma)$

More Generally: Optimal Control

General dynamical system is described as $x_{h+1}=f_{h}\left(x_{h}, u_{h}, w_{h}\right)$, where

- $x_{h} \in \mathbb{R}^{d}$ is the state which starts at initial value $x_{0} \sim \mu_{0}$,
- $u_{h} \in \mathbb{R}^{k}$ is the control (action),
- w_{h} is the noise/disturbance,
- f_{h} is a function (the dynamics) that determines the next state $x_{h+1} \in \mathbb{R}^{d}$

Objective is to find control policy π_{h} which minimizes the total cost (horizon H),

$$
\begin{aligned}
& \text { minimize } \mathbb{E}\left[c_{H}\left(x_{H}\right)+\sum_{h=0}^{H-1} c_{h}\left(x_{h}, u_{h}\right)\right] \\
& \text { s.t. } x_{h+1}=f_{h}\left(x_{h}, u_{h}, w_{h}\right), u_{h}=\pi_{h}\left(x_{h}\right), x_{0} \sim \mu_{0}
\end{aligned}
$$

- Randomness (in the dynamics) enters via w_{h}, e.g., $w_{h} \sim \mathcal{N}(0, \Sigma)$
- Note c_{H} separated out because by convention there is no u_{H}

Discretize to finite state/action spaces?

$$
x \in \mathbb{R}^{d}, u \in \mathbb{R}^{k}
$$

Discretize to finite state/action spaces?

$$
x \in \mathbb{R}^{d}, u \in \mathbb{R}^{k}
$$

Idea: Round states and controls onto an ϵ-grid of their spaces; then use tools from finite MDPs

Discretize to finite state/action spaces?

$$
x \in \mathbb{R}^{d}, u \in \mathbb{R}^{k}
$$

Idea: Round states and controls onto an ϵ-grid of their spaces; then use tools from finite MDPs

$$
\text { E.g., if } \epsilon=0.01 \text {, round } x \text { and } u \text { to } 2 \text { decimal places }
$$

Discretize to finite state/action spaces?

$$
x \in \mathbb{R}^{d}, u \in \mathbb{R}^{k}
$$

Idea: Round states and controls onto an ϵ-grid of their spaces; then use tools from finite MDPs

$$
\text { E.g., if } \epsilon=0.01 \text {, round } x \text { and } u \text { to } 2 \text { decimal places }
$$

Assuming state/control spaces are bounded, this makes both finite

Discretize to finite state/action spaces?

$$
x \in \mathbb{R}^{d}, u \in \mathbb{R}^{k}
$$

Idea: Round states and controls onto an ϵ-grid of their spaces; then use tools from finite MDPs

$$
\text { E.g., if } \epsilon=0.01 \text {, round } x \text { and } u \text { to } 2 \text { decimal places }
$$

Assuming state/control spaces are bounded, this makes both finite
Recall: VI/PI computation times scaled polynomially in $|S|$ and $|A|$

Discretize to finite state/action spaces?

$$
x \in \mathbb{R}^{d}, u \in \mathbb{R}^{k}
$$

Idea: Round states and controls onto an ϵ-grid of their spaces; then use tools from finite MDPs

$$
\text { E.g., if } \epsilon=0.01 \text {, round } x \text { and } u \text { to } 2 \text { decimal places }
$$

Assuming state/control spaces are bounded, this makes both finite
Recall: VI/PI computation times scaled polynomially in $|S|$ and $|A|$ But curse of dimensionality means $|S|$ and $|A|$ will scale like $(1 / \epsilon)^{d}$

Discretize to finite state/action spaces?

$$
x \in \mathbb{R}^{d}, u \in \mathbb{R}^{k}
$$

Idea: Round states and controls onto an ϵ-grid of their spaces; then use tools from finite MDPs

$$
\text { E.g., if } \epsilon=0.01 \text {, round } x \text { and } u \text { to } 2 \text { decimal places }
$$

Assuming state/control spaces are bounded, this makes both finite
Recall: VI/PI computation times scaled polynomially in $|S|$ and $|A|$ But curse of dimensionality means $|S|$ and $|A|$ will scale like $(1 / \epsilon)^{d}$ E.g., $\epsilon=0.01, d=k=10$ gives $|S|^{2}|A|$ on the order of $10^{60} \ldots$

Discretize to finite state/action spaces?

$$
x \in \mathbb{R}^{d}, u \in \mathbb{R}^{k}
$$

Idea: Round states and controls onto an ϵ-grid of their spaces; then use tools from finite MDPs

$$
\text { E.g., if } \epsilon=0.01 \text {, round } x \text { and } u \text { to } 2 \text { decimal places }
$$

Assuming state/control spaces are bounded, this makes both finite
Recall: VI/PI computation times scaled polynomially in $|S|$ and $|A|$ But curse of dimensionality means $|S|$ and $|A|$ will scale like $(1 / \epsilon)^{d}$ E.g., $\epsilon=0.01, d=k=10$ gives $|S|^{2}|A|$ on the order of $10^{60} \ldots$

Even the idea of discretizing relies on continuity (i.e., rounding nearby values to the same grid point only works if system treats them nearly the same),

Discretize to finite state/action spaces?

$$
x \in \mathbb{R}^{d}, u \in \mathbb{R}^{k}
$$

Idea: Round states and controls onto an ϵ-grid of their spaces; then use tools from finite MDPs

$$
\text { E.g., if } \epsilon=0.01 \text {, round } x \text { and } u \text { to } 2 \text { decimal places }
$$

Assuming state/control spaces are bounded, this makes both finite
Recall: VI/PI computation times scaled polynomially in $|S|$ and $|A|$ But curse of dimensionality means $|S|$ and $|A|$ will scale like $(1 / \epsilon)^{d}$ E.g., $\epsilon=0.01, d=k=10$ gives $|S|^{2}|A|$ on the order of $10^{60} \ldots$

Even the idea of discretizing relies on continuity (i.e., rounding nearby values to the same grid point only works if system treats them nearly the same),

So why not rely on this more formally by assuming smoothness/structure on the dynamics f and cost c ?

Today

- Feedback from last lecture
- Recap
- General optimal control problem
- The linear quadratic regulator (LQR) problem
- Optimal control solution to LQR

The Linear Quadratic Regulator (LQR)

The Linear Quadratic Regulator (LQR)

$$
\text { Linear dynamics: } x_{h+1}=f\left(x_{h}, u_{h}, w_{h}\right)=A x_{h}+B u_{h}+w_{h}
$$

The Linear Quadratic Regulator (LQR)

Linear dynamics: $x_{h+1}=f\left(x_{h}, u_{h}, w_{h}\right)=A x_{h}+B u_{h}+w_{h}$
Quadratic cost function: $c\left(x_{h}, u_{h}\right)=x_{h}^{\top} Q x_{h}+u_{h}^{\top} R u_{h}, \quad c_{H}\left(x_{H}\right)=x_{H}^{\top} Q x_{H}$

The Linear Quadratic Regulator (LQR)

Linear dynamics: $x_{h+1}=f\left(x_{h}, u_{h}, w_{h}\right)=A x_{h}+B u_{h}+w_{h}$
Quadratic cost function: $c\left(x_{h}, u_{h}\right)=x_{h}^{\top} Q x_{h}+u_{h}^{\top} R u_{h}, \quad c_{H}\left(x_{H}\right)=x_{H}^{\top} Q x_{H}$
Gaussian noise: $w_{h} \sim \mathcal{N}(0, \Sigma)$

The Linear Quadratic Regulator (LQR)

$$
\text { Linear dynamics: } x_{h+1}=f\left(x_{h}, u_{h}, w_{h}\right)=A x_{h}+B u_{h}+w_{h}
$$

Quadratic cost function: $c\left(x_{h}, u_{h}\right)=x_{h}^{\top} Q x_{h}+u_{h}^{\top} R u_{h}, \quad c_{H}\left(x_{H}\right)=x_{H}^{\top} Q x_{H}$

$$
\text { Gaussian noise: } w_{h} \sim \mathcal{N}(0, \Sigma)
$$

- Why not linear for c ? Want it bounded below so we can minimize it

The Linear Quadratic Regulator (LQR)

$$
\text { Linear dynamics: } x_{h+1}=f\left(x_{h}, u_{h}, w_{h}\right)=A x_{h}+B u_{h}+w_{h}
$$

Quadratic cost function: $c\left(x_{h}, u_{h}\right)=x_{h}^{\top} Q x_{h}+u_{h}^{\top} R u_{h}, \quad c_{H}\left(x_{H}\right)=x_{H}^{\top} Q x_{H}$

Gaussian noise: $w_{h} \sim \mathcal{N}(0, \Sigma)$

- Why not linear for c ? Want it bounded below so we can minimize it
- $Q \in \mathbb{R}^{d \times d}$ and $R \in \mathbb{R}^{k \times k}$ are positive definite matrices

The Linear Quadratic Regulator (LQR)

$$
\text { Linear dynamics: } x_{h+1}=f\left(x_{h}, u_{h}, w_{h}\right)=A x_{h}+B u_{h}+w_{h}
$$

Quadratic cost function: $c\left(x_{h}, u_{h}\right)=x_{h}^{\top} Q x_{h}+u_{h}^{\top} R u_{h}, \quad c_{H}\left(x_{H}\right)=x_{H}^{\top} Q x_{H}$

Gaussian noise: $w_{h} \sim \mathcal{N}(0, \Sigma)$

- Why not linear for c ? Want it bounded below so we can minimize it
- $Q \in \mathbb{R}^{d \times d}$ and $R \in \mathbb{R}^{k \times k}$ are positive definite matrices
- $A \in \mathbb{R}^{d \times d}, B \in \mathbb{R}^{d \times k}, \Sigma \in \mathbb{R}^{d \times d}$ determine the dynamics

The Linear Quadratic Regulator (LQR)

$$
\text { Linear dynamics: } x_{h+1}=f\left(x_{h}, u_{h}, w_{h}\right)=A x_{h}+B u_{h}+w_{h}
$$

Quadratic cost function: $c\left(x_{h}, u_{h}\right)=x_{h}^{\top} Q x_{h}+u_{h}^{\top} R u_{h}, \quad c_{H}\left(x_{H}\right)=x_{H}^{\top} Q x_{H}$

Gaussian noise: $w_{h} \sim \mathcal{N}(0, \Sigma)$

- Why not linear for c ? Want it bounded below so we can minimize it
- $Q \in \mathbb{R}^{d \times d}$ and $R \in \mathbb{R}^{k \times k}$ are positive definite matrices
- $A \in \mathbb{R}^{d \times d}, B \in \mathbb{R}^{d \times k}, \Sigma \in \mathbb{R}^{d \times d}$ determine the dynamics
- Note lack of subscripts on c (except at H) and f : time-homogeneous

Is LQR useful?

Is LQR useful?

Surprisingly yes, despite its simplicity!

Is LQR useful?

Surprisingly yes, despite its simplicity!
Any smooth dynamics function is locally approximately linear, and any smooth function with a minimum is locally approximately quadratic near its minimum

Is LQR useful?

Surprisingly yes, despite its simplicity!

Any smooth dynamics function is locally approximately linear, and any smooth function with a minimum is locally approximately quadratic near its minimum
E.g., think of heating/cooling a room: if done right, temperature should rarely deviate much from a fixed value, and shouldn't have to do too much heating or cooling, i.e., states and controls stay local to some fixed points!

Is LQR useful?

Surprisingly yes, despite its simplicity!

Any smooth dynamics function is locally approximately linear, and any smooth function with a minimum is locally approximately quadratic near its minimum
E.g., think of heating/cooling a room: if done right, temperature should rarely deviate much from a fixed value, and shouldn't have to do too much heating or cooling, i.e., states and controls stay local to some fixed points!

In fact, because the LQR model is so well-studied in control theory, many humanengineered systems are designed to be approximately linear where possible

Is LQR useful?

Surprisingly yes, despite its simplicity!
Any smooth dynamics function is locally approximately linear, and any smooth function with a minimum is locally approximately quadratic near its minimum
E.g., think of heating/cooling a room: if done right, temperature should rarely deviate much from a fixed value, and shouldn't have to do too much heating or cooling, i.e., states and controls stay local to some fixed points!

In fact, because the LQR model is so well-studied in control theory, many humanengineered systems are designed to be approximately linear where possible

That said, it is indeed far too simple for many more complex (nonlinear) systems, though next lecture we will see how to extend it to some nonlinear systems to get surprisingly good solutions

Example: 1-d Vehicle

Robot moving in 1-d by choosing to apply force u_{h} left (negative) or right (positive)

Example: 1-d Vehicle

Robot moving in 1-d by choosing to apply force u_{h} left (negative) or right (positive)
Newton: Force $=$ mass \times acceleration, so if vehicle mass $=m$, acceleration $=\frac{u_{h}}{m}$

Example: 1-d Vehicle

Robot moving in 1-d by choosing to apply force u_{h} left (negative) or right (positive) Newton: Force $=$ mass \times acceleration, so if vehicle mass $=m$, acceleration $=\frac{u_{h}}{m}$ If time steps are separated by δ (small), then we can approximate acceleration (derivative of velocity) by finite difference of velocities v_{h} :

$$
\text { acceleration }_{h}=\frac{v_{h}-v_{h-1}}{\delta}=\frac{u_{h}}{m}
$$

Example: 1-d Vehicle

Robot moving in 1-d by choosing to apply force u_{h} left (negative) or right (positive) Newton: Force $=$ mass \times acceleration, so if vehicle mass $=m$, acceleration $=\frac{u_{h}}{m}$ If time steps are separated by δ (small), then we can approximate acceleration (derivative of velocity) by finite difference of velocities v_{h} :

$$
\text { acceleration }_{h}=\frac{v_{h}-v_{h-1}}{\delta}=\frac{u_{h}}{m}
$$

Same trick to approximate velocity (derivative of position) via positions p_{h} :

$$
v_{h}=\frac{\dot{p}_{h}-p_{h-1}}{\delta}
$$

Example: 1-d Vehicle

Robot moving in 1-d by choosing to apply force u_{h} left (negative) or right (positive) Newton: Force $=$ mass \times acceleration, so if vehicle mass $=m$, acceleration $=\frac{u_{h}}{m}$ If time steps are separated by δ (small), then we can approximate acceleration (derivative of velocity) by finite difference of velocities v_{h} :

$$
\text { acceleration }_{h}=\frac{v_{h}-v_{h-1}}{\delta}=\frac{u_{h}}{m}
$$

Same trick to approximate velocity (derivative of position) via positions p_{h} :

$$
v_{h}=\frac{p_{h}-p_{h-1}}{\delta}
$$

So if state $x_{h}=\left(p_{h}, v_{h}\right)$, we basically get linear dynamics!

LQR Value and Q functions

LQR Value and Q functions

Given a policy $\pi=\left(\pi_{0}, \ldots, \pi_{h-1}\right)$, define the value function $V_{h}^{\pi}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ as:

$$
V_{h}^{\pi}(x)=\mathbb{E}\left[x_{H}^{\top} Q x_{H}+\sum_{i=h}^{H-1}\left(x_{i}^{\top} Q x_{i}+u_{i}^{\top} R u_{i}\right) \mid u_{i}=\pi_{i}\left(x_{i}\right) \forall i \geq h, x_{h}=x\right]
$$

LQR Value and Q functions

Given a policy $\pi=\left(\pi_{0}, \ldots, \pi_{h-1}\right)$, define the value function $V_{h}^{\pi}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ as:

$$
V_{h}^{\pi}(x)=\mathbb{E}\left[x_{H}^{\top} Q x_{H}+\sum_{i=h}^{H-1}\left(x_{i}^{\top} Q x_{i}+u_{i}^{\top} R u_{i}\right) \mid u_{i}=\pi_{i}\left(x_{i}\right) \forall i \geq h, x_{h}=x\right]
$$

and the Q function $Q_{h}^{\pi}: \mathbb{R}^{d} \times \mathbb{R}^{k} \rightarrow \mathbb{R}$ as:
$Q_{h}^{\pi}(x, u)=\mathbb{E}\left[x_{H}^{\top} Q x_{H}+\sum_{i=h}^{H-1}\left(x_{i}^{\top} Q x_{i}+u_{i}^{\top} R u_{i}\right) \mid u_{h}=u, u_{i}=\pi_{i}\left(x_{i}\right) \forall i>h, x_{h}=x\right]$

Today

- Feedback from last lecture
- Recap
- General optimal control problem
- The linear quadratic regulator (LQR) problem
- Optimal control solution to LQR

LQR Optimal Control

LQR Optimal Control

LQR Optimal Control

$V_{h}^{\star}(x)=\min _{\pi} V_{h}^{\pi}(x)=\min _{\pi_{h}, \pi_{h+1}, \ldots, \pi_{H-1}} \mathbb{E}\left[x_{H}^{\top} Q x_{H}+\sum_{i=h}^{H-1}\left(x_{i}^{\top} Q x_{i}+u_{i}^{\top} R u_{i}\right) \mid u_{i}=\pi_{i}\left(x_{i}\right) \forall i \geq h, x_{h}=x\right]$

Theorem:

1. V_{h}^{\star} is a quadratic function, i.e., $V_{h}^{\star}(x)=x^{\top} P_{h} x+p_{h}$ for some $P_{h} \in \mathbb{R}^{d \times d}$ and $p_{h} \in \mathbb{R}^{d}$
2. The optimal policy π_{h}^{\star} is linear, i.e., $\pi_{h}^{\star}(x)=-K_{h} x$ for some $K_{h} \in \mathbb{R}^{k \times d}$
3. P_{h}, p_{h}, and K_{h} can be computed exactly

LQR Optimal Control

$$
V_{h}^{\star}(x)=\min _{\pi} V_{h}^{\pi}(x)=\min _{\pi_{h}, \pi_{h+1}, \ldots, \pi_{H-1}} \mathbb{E}\left[x_{H}^{\top} Q x_{H}+\sum_{i=h}^{H-1}\left(x_{i}^{\top} Q x_{i}+u_{i}^{\top} R u_{i}\right) \mid u_{i}=\pi_{i}\left(x_{i}\right) \forall i \geq h, x_{h}=x\right]
$$

Theorem:

1. V_{h}^{\star} is a quadratic function, i.e., $V_{h}^{\star}(x)=x^{\top} P_{h} x+p_{h}$ for some $P_{h} \in \mathbb{R}^{d \times d}$ and $p_{h} \in \mathbb{R}^{d}$
2. The optimal policy π_{h}^{\star} is linear, i.e., $\pi_{h}^{\star}(x)=-K_{h} x$ for some $K_{h} \in \mathbb{R}^{k \times d}$
3. P_{h}, p_{h}, and K_{h} can be computed exactly

We will cover the steps of the proof the theorem and derive the optimal policy along the way via dynamic programming

Key Steps in the Proof

Dynamic programming (finite-horizon), stepping backwards in time from H to 0

Key Steps in the Proof

Dynamic programming (finite-horizon), stepping backwards in time from H to 0

1. Base case: Show that $V_{H}^{\star}(x)$ is quadratic

Key Steps in the Proof

Dynamic programming (finite-horizon), stepping backwards in time from H to 0

1. Base case: Show that $V_{H}^{\star}(x)$ is quadratic
2. Inductive hypothesis: Assuming $V_{h+1}^{\star}(x)$ is quadratic,
a) Show that $Q_{h}^{\star}(x, u)$ is quadratic (in both x and u)
b) Derive the optimal policy $\pi_{h}^{\star}(x)=\arg \min Q_{h}^{\star}(x, u)$, and show that it's linear
c) Show $V_{h}^{\star}(x)$ is quadratic

Key Steps in the Proof

Dynamic programming (finite-horizon), stepping backwards in time from H to 0

1. Base case: Show that $V_{H}^{\star}(x)$ is quadratic
2. Inductive hypothesis: Assuming $V_{h+1}^{\star}(x)$ is quadratic,
a) Show that $Q_{h}^{\star}(x, u)$ is quadratic (in both x and u)
b) Derive the optimal policy $\pi_{h}^{\star}(x)=\arg \min Q_{h}^{\star}(x, u)$, and show that it's linear
c) Show $V_{h}^{\star}(x)$ is quadratic
3. Conclusion: $V_{h}^{\star}(x)$ is quadratic and $\pi_{h}^{\star}(x)$ is linear and we'll have their formulas

Base case at H

Base case at H

Recall the value function at a given h is:

$$
V_{h}^{\pi}(x)=\mathbb{E}\left[x_{H}^{\top} Q x_{H}+\sum_{i=h}^{H-1}\left(x_{i}^{\top} Q x_{i}+u_{i}^{\top} R u_{i}\right) \mid u_{i}=\pi_{i}\left(x_{i}\right) \forall i \geq h, x_{h}=x\right]
$$

Base case at H

Recall the value function at a given h is:

$$
V_{h}^{\pi}(x)=\mathbb{E}\left[x_{H}^{\top} Q x_{H}+\sum_{i=h}^{H-1}\left(x_{i}^{\top} Q x_{i}+u_{i}^{\top} R u_{i}\right) \mid u_{i}=\pi_{i}\left(x_{i}\right) \forall i \geq h, x_{h}=x\right]
$$

For V_{H}^{π}, everything disappears except first term $x_{H}^{\top} Q x_{H}=x^{\top} Q x$:

$$
V_{H}^{\star}(x)=x^{\top} Q x
$$

Base case at H

Recall the value function at a given h is:

$$
V_{h}^{\pi}(x)=\mathbb{E}\left[x_{H}^{\top} Q x_{H}+\sum_{i=h}^{H-1}\left(x_{i}^{\top} Q x_{i}+u_{i}^{\top} R u_{i}\right) \mid u_{i}=\pi_{i}\left(x_{i}\right) \forall i \geq h, x_{h}=x\right]
$$

For V_{H}^{π}, everything disappears except first term $x_{H}^{\top} Q x_{H}=x^{\top} Q x$:

$$
V_{H}^{\star}(x)=x^{\top} Q x
$$

Denoting $P_{H}:=Q$ and $p_{H}:=0$, we get

$$
V_{H}^{\star}(x)=x^{\top} P_{H} x+p_{H}
$$

Base case at H

Recall the value function at a given h is:

$$
V_{h}^{\pi}(x)=\mathbb{E}\left[x_{H}^{\top} Q x_{H}+\sum_{i=h}^{H-1}\left(x_{i}^{\top} Q x_{i}+u_{i}^{\top} R u_{i}\right) \mid u_{i}=\pi_{i}\left(x_{i}\right) \forall i \geq h, x_{h}=x\right]
$$

For V_{H}^{π}, everything disappears except first term $x_{H}^{\top} Q x_{H}=x^{\top} Q x$:

$$
V_{H}^{\star}(x)=x^{\top} Q x
$$

$$
\begin{gathered}
\text { Denoting } P_{H}:=Q \text { and } p_{H}:=0 \text {, we get } \\
V_{H}^{\star}(x)=x^{\top} P_{H} x+p_{H}
\end{gathered}
$$

(P_{h} and p_{h} didn't do much here, but we're going to define them recursively in the next step)

Induction Step

Assume $V_{h+1}^{\star}(x)=x^{\top} P_{h+1} x+p_{h+1}$, for all x, where $P_{h+1} \in \mathbb{R}^{d \times d}$ and $p_{h+1} \in \mathbb{R}^{d}$

Induction Step

Assume $V_{h+1}^{\star}(x)=x^{\top} P_{h+1} x+p_{h+1}$, for all x, where $P_{h+1} \in \mathbb{R}^{d \times d}$ and $p_{h+1} \in \mathbb{R}^{d}$ $Q_{h}^{\star}(x, u)=c(x, u)+\mathbb{E}_{x^{\prime} \sim f\left(x, u, w_{h+1}\right)}\left[V_{h+1}^{\star}\left(x^{\prime}\right)\right]$

Induction Step

Assume $V_{h+1}^{\star}(x)=x^{\top} P_{h+1} x+p_{h+1}$, for all x, where $P_{h+1} \in \mathbb{R}^{d \times d}$ and $p_{h+1} \in \mathbb{R}^{d}$ $Q_{h}^{\star}(x, u)=c(x, u)+\mathbb{E}_{x^{\prime} \sim f\left(x, u, w_{h+1}\right)}\left[V_{h+1}^{\star}\left(x^{\prime}\right)\right]$
$=x^{\top} Q x+u^{\top} R u+\mathbb{E}_{x^{\prime} \sim f\left(x, u, w_{h+1}\right)}\left[V_{h+1}^{\star}\left(x^{\prime}\right)\right]$

Induction Step

Assume $V_{h+1}^{\star}(x)=x^{\top} P_{h+1} x+p_{h+1}$, for all x, where $P_{h+1} \in \mathbb{R}^{d \times d}$ and $p_{h+1} \in \mathbb{R}^{d}$

$$
\begin{aligned}
Q_{h}^{\star}(x, u) & =c(x, u)+\mathbb{E}_{x^{\prime} \sim f\left(x, u, w_{h+1}\right)}\left[V_{h+1}^{\star}\left(x^{\prime}\right)\right] \\
& =x^{\top} Q x+u^{\top} R u+\mathbb{E}_{x^{\prime} \sim f\left(x, u, w_{h+1}\right)}\left[V_{h+1}^{\star}\left(x^{\prime}\right)\right] \\
& =x^{\top} Q x+u^{\top} R u+\mathbb{E}_{w_{h+1} \sim \mathcal{N}\left(0, \sigma^{2} I\right)}\left[V_{h+1}^{\star}\left(A x+B u+w_{h+1}\right)\right]
\end{aligned}
$$

Induction Step

Assume $V_{h+1}^{\star}(x)=x^{\top} P_{h+1} x+p_{h+1}$, for all x, where $P_{h+1} \in \mathbb{R}^{d \times d}$ and $p_{h+1} \in \mathbb{R}^{d}$

$$
Q_{h}^{\star}(x, u)=c(x, u)+\mathbb{E}_{x^{\prime} \sim f\left(x, u, w_{h+1}\right)}\left[V_{h+1}^{\star}\left(x^{\prime}\right)\right]
$$

$$
=x^{\top} Q x+u^{\top} R u+\mathbb{E}_{x^{\prime} \sim f\left(x, u, w_{h+1}\right)}\left[V_{h+1}^{\star}\left(x^{\prime}\right)\right]
$$

$$
=x^{\top} Q x+u^{\top} R u+\mathbb{E}_{w_{h+1} \sim \mathcal{N}\left(0, \sigma^{2} I\right)}\left[V_{h+1}^{\star}\left(A x+B u+w_{h+1}\right)\right]
$$

$$
=x^{\top} Q x+u^{\top} R u+\mathbb{E}_{w_{h+1} \sim \mathcal{N}\left(0, \sigma^{2} I\right)}\left[\left(A x+B u+w_{h+1}\right)^{\top} P_{h+1}\left(A x+B u+w_{h+1}\right)+p_{h+1}\right]
$$

Induction Step

Assume $V_{h+1}^{\star}(x)=x^{\top} P_{h+1} x+p_{h+1}$, for all x, where $P_{h+1} \in \mathbb{R}^{d \times d}$ and $p_{h+1} \in \mathbb{R}^{d}$

$$
Q_{h}^{\star}(x, u)=c(x, u)+\mathbb{E}_{x^{\prime} \sim f\left(x, u, w_{h+1}\right)}\left[V_{h+1}^{\star}\left(x^{\prime}\right)\right]
$$

$$
=x^{\top} Q x+u^{\top} R u+\mathbb{E}_{x^{\prime} \sim f\left(x, u, w_{h+1}\right)}\left[V_{h+1}^{\star}\left(x^{\prime}\right)\right]
$$

$$
=x^{\top} Q x+u^{\top} R u+\mathbb{E}_{w_{h+1} \sim \mathcal{N}\left(0, \sigma^{2} I\right)}\left[V_{h+1}^{\star}\left(A x+B u+w_{h+1}\right)\right]
$$

$$
=x^{\top} Q x+u^{\top} R u+\mathbb{E}_{w_{h+1} \sim \mathcal{N}\left(0, \sigma^{2} I\right)}\left[\left(A x+B u+w_{h+1}\right)^{\top} P_{h+1}\left(A x+B u+w_{h+1}\right)+p_{h+1}\right]
$$

$$
=x^{\top}\left(Q+A^{\top} P_{h+1} A\right) x+u^{\top}\left(R+B^{\top} P_{h+1} B\right) u+2 x^{\top} A^{\top} P_{h+1} B u+\mathbb{E}_{w_{h+1} \sim \mathcal{N}\left(0, \sigma^{2} I\right)}\left[w_{h+1}^{\top} P_{h+1} w_{h+1}\right]+p_{h+1}
$$

Induction Step

Assume $V_{h+1}^{\star}(x)=x^{\top} P_{h+1} x+p_{h+1}$, for all x, where $P_{h+1} \in \mathbb{R}^{d \times d}$ and $p_{h+1} \in \mathbb{R}^{d}$

$$
Q_{h}^{\star}(x, u)=c(x, u)+\mathbb{E}_{x^{\prime} \sim f\left(x, u, w_{h+1}\right)}\left[V_{h+1}^{\star}\left(x^{\prime}\right)\right]
$$

$$
=x^{\top} Q x+u^{\top} R u+\mathbb{E}_{x^{\prime} \sim f\left(x, u, w_{h+1}\right)}\left[V_{h+1}^{\star}\left(x^{\prime}\right)\right]
$$

$$
=x^{\top} Q x+u^{\top} R u+\mathbb{E}_{w_{h+1} \sim \mathcal{N}\left(0, \sigma^{2} I\right)}\left[V_{h+1}^{\star}\left(A x+B u+w_{h+1}\right)\right]
$$

$$
=x^{\top} Q x+u^{\top} R u+\mathbb{E}_{w_{h+1} \sim \mathcal{N}\left(0, \sigma^{2} I\right)}\left[\left(A x+B u+w_{h+1}\right)^{\top} P_{h+1}\left(A x+B u+w_{h+1}\right)+p_{h+1}\right]
$$

$$
=x^{\top}\left(Q+A^{\top} P_{h+1} A\right) x+u^{\top}\left(R+B^{\top} P_{h+1} B\right) u+2 x^{\top} A^{\top} P_{h+1} B u+\mathbb{E}_{w_{h+1} \sim \mathcal{N}\left(0, \sigma^{2} I\right)}\left[w_{h+1}^{\top} P_{h+1} w_{h+1}\right]+p_{h+1}
$$

$$
=x^{\top}\left(Q+A^{\top} P_{h+1} A\right) x+u^{\top}\left(R+B^{\top} P_{h+1} B\right) u+2 x^{\top} A^{\top} P_{h+1} B u+\operatorname{tr}\left(\sigma^{2} P_{h+1}\right)+p_{h+1}
$$

Induction Step (continued)

$$
\begin{aligned}
Q_{h}^{\star}(x, u) & =c(x, u)+\mathbb{E}_{x^{\prime} \sim f\left(x, u, w_{h+1}\right)}\left[V_{h+1}^{\star}\left(x^{\prime}\right)\right] \\
& =x^{\top}\left(Q+A^{\top} P_{h+1} A\right) x+u^{\top}\left(R+B^{\top} P_{h+1} B\right) u+2 x^{\top} A^{\top} P_{h+1} B u+\operatorname{tr}\left(\sigma^{2} P_{h+1}\right)+p_{h+1}
\end{aligned}
$$

Induction Step (continued)

$$
\begin{aligned}
Q_{h}^{\star}(x, u) & =c(x, u)+\mathbb{E}_{x^{\prime} \sim f\left(x, u, w_{h+1}\right)}\left[V_{h+1}^{\star}\left(x^{\prime}\right)\right] \\
& =x^{\top}\left(Q+A^{\top} P_{h+1} A\right) x+u^{\top}\left(R+B^{\top} P_{h+1} B\right) u+2 x^{\top} A^{\top} P_{h+1} B u+\operatorname{tr}\left(\sigma^{2} P_{h+1}\right)+p_{h+1}
\end{aligned}
$$

$$
\pi_{h}^{\star}(x)=\underset{u}{\left.\arg \min _{u} Q_{h}^{\star}(x, u), ~\right)}
$$

Induction Step (continued)

$$
\begin{aligned}
Q_{h}^{\star}(x, u) & =c(x, u)+\mathbb{E}_{x^{\prime} \sim f\left(x, u, w_{h+1}\right)}\left[V_{h+1}^{\star}\left(x^{\prime}\right)\right] \\
& =x^{\top}\left(Q+A^{\top} P_{h+1} A\right) x+u^{\top}\left(R+B^{\top} P_{h+1} B\right) u+2 x^{\top} A^{\top} P_{h+1} B u+\operatorname{tr}\left(\sigma^{2} P_{h+1}\right)+p_{h+1}
\end{aligned}
$$

$$
\pi_{h}^{\star}(x)=\arg \min _{u} Q_{h}^{\star}(x, u)
$$

Set $\nabla_{u} Q_{h}^{\star}(x, u)=0$ and solve for u :

Induction Step (continued)

$$
\begin{aligned}
Q_{h}^{\star}(x, u) & =c(x, u)+\mathbb{E}_{x^{\prime} \sim f\left(x, u, w_{h+1}\right)}\left[V_{h+1}^{\star}\left(x^{\prime}\right)\right] \\
& =x^{\top}\left(Q+A^{\top} P_{h+1} A\right) x+u^{\top}\left(R+B^{\top} P_{h+1} B\right) u+2 x^{\top} A^{\top} P_{h+1} B u+\operatorname{tr}\left(\sigma^{2} P_{h+1}\right)+p_{h+1}
\end{aligned}
$$

$$
\pi_{h}^{\star}(x)=\arg \min _{u} Q_{h}^{\star}(x, u)
$$

Set $\nabla_{u} Q_{h}^{\star}(x, u)=0$ and solve for u :

$$
\nabla_{u} Q_{h}^{\star}(x, u)=\nabla_{u}\left[u^{\top}\left(R+B^{\top} P_{h+1} B\right) u+2 x^{\top} A^{\top} P_{h+1} B u\right]
$$

Induction Step (continued)

$$
\begin{aligned}
Q_{h}^{\star}(x, u) & =c(x, u)+\mathbb{E}_{x^{\prime} \sim f\left(x, u, w_{h+1}\right)}\left[V_{h+1}^{\star}\left(x^{\prime}\right)\right] \\
& =x^{\top}\left(Q+A^{\top} P_{h+1} A\right) x+u^{\top}\left(R+B^{\top} P_{h+1} B\right) u+2 x^{\top} A^{\top} P_{h+1} B u+\operatorname{tr}\left(\sigma^{2} P_{h+1}\right)+p_{h+1}
\end{aligned}
$$

$$
\pi_{h}^{\star}(x)=\arg \min _{u} Q_{h}^{\star}(x, u)
$$

Set $\nabla_{u} Q_{h}^{\star}(x, u)=0$ and solve for u :

$$
\begin{aligned}
\nabla_{u} Q_{h}^{\star}(x, u) & =\nabla_{u}\left[u^{\top}\left(R+B^{\top} P_{h+1} B\right) u+2 x^{\top} A^{\top} P_{h+1} B u\right] \\
& =2\left(R+B^{\top} P_{h+1} B\right) u+2 B^{\top} P_{h+1} A x
\end{aligned}
$$

Induction Step (continued)

$$
\begin{aligned}
Q_{h}^{\star}(x, u) & =c(x, u)+\mathbb{E}_{x^{\prime} \sim f\left(x, u, w_{h+1}\right)}\left[V_{h+1}^{\star}\left(x^{\prime}\right)\right] \\
& =x^{\top}\left(Q+A^{\top} P_{h+1} A\right) x+u^{\top}\left(R+B^{\top} P_{h+1} B\right) u+2 x^{\top} A^{\top} P_{h+1} B u+\operatorname{tr}\left(\sigma^{2} P_{h+1}\right)+p_{h+1}
\end{aligned}
$$

$$
\pi_{h}^{\star}(x)=\arg \min _{u} Q_{h}^{\star}(x, u)
$$

Set $\nabla_{u} Q_{h}^{\star}(x, u)=0$ and solve for u :

$$
\begin{aligned}
\nabla_{u} Q_{h}^{\star}(x, u) & =\nabla_{u}\left[u^{\top}\left(R+B^{\top} P_{h+1} B\right) u+2 x^{\top} A^{\top} P_{h+1} B u\right] \\
& =2\left(R+B^{\top} P_{h+1} B\right) u+2 B^{\top} P_{h+1} A x \\
\pi_{h}^{\star}(x) & =-\underbrace{\left(R+B^{\top} P_{h+1} B\right)^{-1} B^{\top} P_{h+1} A x}_{:=K_{h}}
\end{aligned}
$$

Induction Step (continued)

$$
\begin{aligned}
Q_{h}^{\star}(x, u) & =c(x, u)+\mathbb{E}_{x^{\prime} \sim f\left(x, u, w_{h+1}\right)}\left[V_{h+1}^{\star}\left(x^{\prime}\right)\right] \\
& =x^{\top}\left(Q+A^{\top} P_{h+1} A\right) x+u^{\top}\left(R+B^{\top} P_{h+1} B\right) u+2 x^{\top} A^{\top} P_{h+1} B u+\operatorname{tr}\left(\sigma^{2} P_{h+1}\right)+p_{h+1}
\end{aligned}
$$

$$
\pi_{h}^{\star}(x)=\arg \min _{u} Q_{h}^{\star}(x, u)
$$

Set $\nabla_{u} Q_{h}^{\star}(x, u)=0$ and solve for u :

$$
\begin{aligned}
\nabla_{u} Q_{h}^{\star}(x, u) & =\nabla_{u}\left[u^{\top}\left(R+B^{\top} P_{h+1} B\right) u+2 x^{\top} A^{\top} P_{h+1} B u\right] \\
& =2\left(R+B^{\top} P_{h+1} B\right) u+2 B^{\top} P_{h+1} A x \\
\pi_{h}^{\star}(x) & =-\underbrace{\left(R+B^{\top} P_{h+1} B\right)^{-1} B^{\top} P_{h+1} A x}_{:=K_{h}} \\
& :=-K_{h} x
\end{aligned}
$$

Concluding the Induction step:

$$
\begin{aligned}
Q_{h}^{\star}(x, u) & =x^{\top}\left(Q+A^{\top} P_{h+1} A\right) x+u^{\top}\left(R+B^{\top} P_{h+1} B\right) u+2 x^{\top} A^{\top} P_{h+1} B u+\operatorname{tr}\left(\sigma^{2} P_{h+1}\right)+p_{h+1} \\
\pi_{h}^{\star}(x) & =-\underbrace{\left(R+B^{\top} P_{h+1} B\right)^{-1} B^{\top} P_{h+1} A x}_{:=K_{h}}
\end{aligned}
$$

Concluding the Induction step:

$$
\begin{aligned}
Q_{h}^{\star}(x, u) & =x^{\top}\left(Q+A^{\top} P_{h+1} A\right) x+u^{\top}\left(R+B^{\top} P_{h+1} B\right) u+2 x^{\top} A^{\top} P_{h+1} B u+\operatorname{tr}\left(\sigma^{2} P_{h+1}\right)+p_{h+1} \\
\pi_{h}^{\star}(x) & =-\underbrace{\left(R+B^{\top} P_{h+1} B\right)^{-1} B^{\top} P_{h+1} A x}_{:=K_{h}}
\end{aligned}
$$

$$
V_{h}^{\star}(x)=Q_{h}^{\star}\left(x, \pi_{h}^{\star}(x)\right)
$$

Concluding the Induction step:

$$
\begin{aligned}
Q_{h}^{\star}(x, u) & =x^{\top}\left(Q+A^{\top} P_{h+1} A\right) x+u^{\top}\left(R+B^{\top} P_{h+1} B\right) u+2 x^{\top} A^{\top} P_{h+1} B u+\operatorname{tr}\left(\sigma^{2} P_{h+1}\right)+p_{h+1} \\
\pi_{h}^{\star}(x) & =-\underbrace{\left(R+B^{\top} P_{h+1} B\right)^{-1} B^{\top} P_{h+1} A x}_{:=K_{h}}
\end{aligned}
$$

$$
\begin{aligned}
V_{h}^{\star}(x) & =Q_{h}^{\star}\left(x, \pi_{h}^{\star}(x)\right) \\
& =x^{\top}\left(Q+A^{\top} P_{h+1} A\right) x+x^{\top} K_{h}^{\top}\left(R+B^{\top} P_{h+1} B\right) K_{h} x-2 x^{\top} A^{\top} P_{h+1} B K_{h} x+\operatorname{tr}\left(\sigma^{2} P_{h+1}\right)+p_{h+1}
\end{aligned}
$$

Concluding the Induction step:

$$
\begin{aligned}
Q_{h}^{\star}(x, u) & =x^{\top}\left(Q+A^{\top} P_{h+1} A\right) x+u^{\top}\left(R+B^{\top} P_{h+1} B\right) u+2 x^{\top} A^{\top} P_{h+1} B u+\operatorname{tr}\left(\sigma^{2} P_{h+1}\right)+p_{h+1} \\
\pi_{h}^{\star}(x) & =-\underbrace{\left(R+B^{\top} P_{h+1} B\right)^{-1} B^{\top} P_{h+1} A x}_{:=K_{h}}
\end{aligned}
$$

$$
\begin{aligned}
V_{h}^{\star}(x) & =Q_{h}^{\star}\left(x, \pi_{h}^{\star}(x)\right) \\
& =x^{\top}\left(Q+A^{\top} P_{h+1} A\right) x+x^{\top} K_{h}^{\top}\left(R+B^{\top} P_{h+1} B\right) K_{h} x-2 x^{\top} A^{\top} P_{h+1} B K_{h} x+\operatorname{tr}\left(\sigma^{2} P_{h+1}\right)+p_{h+1}
\end{aligned}
$$

Collecting the quadratic and constant terms together, $V_{h}^{\star}(x)=x^{\top} P_{h} x+p_{h}$, where:

Concluding the Induction step:

$$
\begin{aligned}
Q_{h}^{\star}(x, u) & =x^{\top}\left(Q+A^{\top} P_{h+1} A\right) x+u^{\top}\left(R+B^{\top} P_{h+1} B\right) u+2 x^{\top} A^{\top} P_{h+1} B u+\operatorname{tr}\left(\sigma^{2} P_{h+1}\right)+p_{h+1} \\
\pi_{h}^{\star}(x) & =-\underbrace{\left(R+B^{\top} P_{h+1} B\right)^{-1} B^{\top} P_{h+1} A x}_{:=K_{h}}
\end{aligned}
$$

$$
\begin{aligned}
V_{h}^{\star}(x) & =Q_{h}^{\star}\left(x, \pi_{h}^{\star}(x)\right) \\
& =x^{\top}\left(Q+A^{\top} P_{h+1} A\right) x+x^{\top} K_{h}^{\top}\left(R+B^{\top} P_{h+1} B\right) K_{h} x-2 x^{\top} A^{\top} P_{h+1} B K_{h} x+\operatorname{tr}\left(\sigma^{2} P_{h+1}\right)+p_{h+1}
\end{aligned}
$$

Collecting the quadratic and constant terms together, $V_{h}^{\star}(x)=x^{\top} P_{h} x+p_{h}$, where:

$$
\begin{aligned}
& P_{h}=Q+A^{\top} P_{h+1} A-A^{\top} P_{h+1} B\left(R+B^{\top} P_{h+1} B\right)^{-1} B^{\top} P_{h+1} A \\
& p_{h}=\operatorname{tr}\left(\sigma^{2} P_{h+1}\right)+p_{h+1}
\end{aligned}
$$

Concluding the Induction step:

$$
\begin{aligned}
Q_{h}^{\star}(x, u) & =x^{\top}\left(Q+A^{\top} P_{h+1} A\right) x+u^{\top}\left(R+B^{\top} P_{h+1} B\right) u+2 x^{\top} A^{\top} P_{h+1} B u+\operatorname{tr}\left(\sigma^{2} P_{h+1}\right)+p_{h+1} \\
\pi_{h}^{\star}(x) & =-\underbrace{\left(R+B^{\top} P_{h+1} B\right)^{-1} B^{\top} P_{h+1} A x}_{:=K_{h}}
\end{aligned}
$$

$$
\begin{aligned}
V_{h}^{\star}(x) & =Q_{h}^{\star}\left(x, \pi_{h}^{\star}(x)\right) \\
& =x^{\top}\left(Q+A^{\top} P_{h+1} A\right) x+x^{\top} K_{h}^{\top}\left(R+B^{\top} P_{h+1} B\right) K_{h} x-2 x^{\top} A^{\top} P_{h+1} B K_{h} x+\operatorname{tr}\left(\sigma^{2} P_{h+1}\right)+p_{h+1}
\end{aligned}
$$

Collecting the quadratic and constant terms together, $V_{h}^{\star}(x)=x^{\top} P_{h} x+p_{h}$, where:

$$
\begin{aligned}
& P_{h}=Q+A^{\top} P_{h+1} A-A^{\top} P_{h+1} B\left(R+B^{\top} P_{h+1} B\right)^{-1} B^{\top} P_{h+1} A \longleftarrow \text { Ricatti Equation } \\
& p_{h}=\operatorname{tr}\left(\sigma^{2} P_{h+1}\right)+p_{h+1}
\end{aligned}
$$

Summary:

Summary:

$$
V_{H}^{\star}(x)=x^{\top} Q x, \text { define } P_{H}=Q, p_{H}=0
$$

Summary:

$$
V_{H}^{\star}(x)=x^{\top} Q x, \text { define } P_{H}=Q, p_{H}=0
$$

We have shown that $V_{h}^{\star}(x)=x^{\top} P_{h} x+p_{h}$, where:

$$
\begin{aligned}
& P_{h}=Q+A^{\top} P_{h+1} A-A^{\top} P_{h+1} B\left(R+B^{\top} P_{h+1} B\right)^{-1} B^{\top} P_{h+1} A \\
& p_{h}=\operatorname{tr}\left(\sigma^{2} P_{h+1}\right)+p_{h+1}
\end{aligned}
$$

Summary:

$$
V_{H}^{\star}(x)=x^{\top} Q x, \text { define } P_{H}=Q, p_{H}=0
$$

We have shown that $V_{h}^{\star}(x)=x^{\top} P_{h} x+p_{h}$, where:

$$
\begin{aligned}
& P_{h}=Q+A^{\top} P_{h+1} A-A^{\top} P_{h+1} B\left(R+B^{\top} P_{h+1} B\right)^{-1} B^{\top} P_{h+1} A \\
& p_{h}=\operatorname{tr}\left(\sigma^{2} P_{h+1}\right)+p_{h+1}
\end{aligned}
$$

Along the way, we also have shown that $\pi_{h}^{\star}(x)=-K_{h} x$, where:

$$
K_{h}=\left(R+B^{\top} P_{h+1} B\right)^{-1} B^{\top} P_{h+1} A
$$

Summary:

$$
V_{H}^{\star}(x)=x^{\top} Q x, \text { define } P_{H}=Q, p_{H}=0
$$

We have shown that $V_{h}^{\star}(x)=x^{\top} P_{h} x+p_{h}$, where:

$$
\begin{aligned}
& P_{h}=Q+A^{\top} P_{h+1} A-A^{\top} P_{h+1} B\left(R+B^{\top} P_{h+1} B\right)^{-1} B^{\top} P_{h+1} A \\
& p_{h}=\operatorname{tr}\left(\sigma^{2} P_{h+1}\right)+p_{h+1}
\end{aligned}
$$

Along the way, we also have shown that $\pi_{h}^{\star}(x)=-K_{h} x$, where:

$$
K_{h}=\left(R+B^{\top} P_{h+1} B\right)^{-1} B^{\top} P_{h+1} A
$$

Optimal policy has nothing to do with initial distribution μ_{0} or the noise σ^{2} !

Today

- Feedback from last lecture
- Recap
- General optimal control problem
- The linear quadratic regulator (LQR) problem
- Optimal control solution to LQR

Summary:

- Optimal control: Find optimal policy in MDP with continuous state/action spaces
- Linear quadratic regulator (LQR) is canonical problem in optimal control - Linear dynamics, Gaussian errors, quadratic costs
- Optimal value and policy follow from dynamic programming

Attendance:

bit.ly/3RcTC9T

Feedback:
bit.ly/3RHtlxy

