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Feedback from feedback forms

1. Thank you to everyone who filled out the forms!

2.
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Bellman Consistency and the Bellman Equations
• Theorem: Every policy  satisfies the Bellman consistency conditions:


•  

 

• A function  satisfies the Bellman equations if 
	 , 


• Theorem:  


• V satisfies the Bellman equations if and only if .

π
Vπ(s) = r(s, π(s)) + γ𝔼s′ ∼P(⋅|s,π(s))[Vπ(s′ )]

V : S → R
V(s) = max

a {r(s, a) + γ𝔼s′ ∼P(⋅|s,a)[V(s′ )]} ∀s

V = V⋆
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Value Iteration Algorithm:
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1. Initialization: ,  

2. For   

, 


3. Return: 

      

V0(s) = 0 ∀s
t = 0,…T − 1

Vt+1(s) = max
a {r(s, a) + γ∑

s′ ∈S

P(s′ |s, a)Vt(s′ )} ∀s

VT(s)
π(s) = arg max

a {r(s, a) + γ𝔼s′ ∼P(⋅|s,a)VT(s′ )}

•For , define , where 
	 	 


•  Bellman equations: 

•  Value iteration: 

V ∈ ℝ|S| 𝒯 : ℝ|S| ↦ ℝ|S|

(𝒯V)(s) := max
a [r(s, a) + γ𝔼s′ ∼P(s,a)V(s′ )]

V = 𝒯V
Vt+1 ← 𝒯Vt



Convergence of Value Iteration:
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• The “infinity norm”: For any vector , define 


• Theorem: Given any , we have:  
 

• Corollary: If we set  iterations, 

VI will return a value  s.t. . 

• VI then has computational complexity .

x ∈ Rd |x |∞ = max
i

|xi |

V, V′ ∥𝒯V − 𝒯V′ ∥∞ ≤ γ∥V − V′ ∥∞

T =
1

1 − γ
ln( 1

ϵ(1 − γ) )
VT ∥VT − V⋆∥∞ ≤ ϵ

O( |S |2 |A |T)



Policy Iteration (PI)
• Initialization: choose a policy 


• For 

1. Policy Evaluation: 	    given , compute :

2. Policy Improvement:   set 

π0 : S ↦ A
t = 0,1,…T − 1

πt Qπt(s, a)
πt+1(s) := arg max

a
Qπt(s, a)
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Policy Iteration (PI)
• Initialization: choose a policy 


• For 

1. Policy Evaluation: 	    given , compute :

2. Policy Improvement:   set 

π0 : S ↦ A
t = 0,1,…T − 1

πt Qπt(s, a)
πt+1(s) := arg max

a
Qπt(s, a)

• Computing Qπt

• Computing : O(S^3) with linear system solving Vπt

• Computing  with :  O(S^2 A) using Qπt Vπt Qπ(s, a) = r(s, a) + γ𝔼s′ ∼P(⋅|s,a) [Vπ(s′ )]
   Per iteration complexity: O(S^3 + S^2 A)
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Convergence of Policy Iteration:
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• Theorem: PI has two properties:


• montone improvement: 


• “contraction”:   
 

• Corollary: If we set  iterations, 

PI will return a policy  s.t. 


• with total computational complexity .

Vπt+1(s) ≥ Vπt(s)
∥Vπt+1 − V⋆∥∞ ≤ γ∥Vπt − V⋆∥∞

T =
1

1 − γ
ln( 1

ϵ(1 − γ) )
πt+1 ∥Vπt+1 − V⋆∥∞ ≤ ϵ

O(( |S |3 + |S |2 |A |)T)
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Recap

•For discrete MDPs, we covered some great algorithms for computing the 
optimal policy
•But all algorithms scale polynomially in the size of the state and action 
spaces… what if one or both are infinite?
• In this unit (next 2 lectures), we will discuss computation of good/optimal 
policies in continuous/infinite state and action spaces
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•  is a function (the dynamics) that determines the next state fh xh+1 ∈ ℝd

Objective is to find control policy  which minimizes the total cost (horizon  ),πh H

minimize 𝔼[cH(xH) +
H−1

∑
h=0

ch(xh, uh)]
s.t. xh+1 = fh(xh, uh, wh), uh = πh(xh), x0 ∼ μ0

• Randomness (in the dynamics) enters via , e.g., wh wh ∼ 𝒩(0,Σ)
• Note  separated out because by convention there is no cH uH
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Discretize to finite state/action spaces?
x ∈ ℝd, u ∈ ℝk

16

Idea: Round states and controls onto an -grid of their spaces; then use tools from finite MDPsϵ

E.g., if , round  and  to 2 decimal placesϵ = 0.01 x u

Assuming state/control spaces are bounded, this makes both finite

Recall: VI/PI computation times scaled polynomially in  and |S | |A |

But curse of dimensionality means  and  will scale like |S | |A | (1/ϵ)d

E.g., ,  gives  on the order of …ϵ = 0.01 d = k = 10 |S |2 |A | 1060

Even the idea of discretizing relies on continuity (i.e., rounding nearby values to the same grid point only 
works if system treats them nearly the same), 

So why not rely on this more formally by assuming smoothness/structure on the dynamics  and cost ?f c
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The Linear Quadratic Regulator (LQR)

18

Linear dynamics: xh+1 = f(xh, uh, wh) = Axh + Buh + wh

• Why not linear for ? Want it bounded below so we can minimize itc
•  and  are positive definite matricesQ ∈ ℝd×d R ∈ ℝk×k

• , ,  determine the dynamicsA ∈ ℝd×d B ∈ ℝd×k Σ ∈ ℝd×d

• Note lack of subscripts on  (except at  ) and : time-homogeneousc H f

Quadratic cost function: c(xh, uh) = x⊤
h Qxh + u⊤

h Ruh, cH(xH) = x⊤
HQxH

Gaussian noise: wh ∼ 𝒩(0,Σ)
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Is LQR useful?

19

Surprisingly yes, despite its simplicity!

Any smooth dynamics function is locally approximately linear, and any smooth 
function with a minimum is locally approximately quadratic near its minimum

In fact, because the LQR model is so well-studied in control theory, many human-
engineered systems are designed to be approximately linear where possible

E.g., think of heating/cooling a room: if done right, temperature should rarely deviate 
much from a fixed value, and shouldn’t have to do too much heating or cooling, i.e., 

states and controls stay local to some fixed points!

That said, it is indeed far too simple for many more complex (nonlinear) systems, 
though next lecture we will see how to extend it to some nonlinear systems to get 

surprisingly good solutions



Example: 1-d Vehicle 

20

Robot moving in 1-d by choosing to apply force  left (negative) or right (positive)uh



Example: 1-d Vehicle 

20

Robot moving in 1-d by choosing to apply force  left (negative) or right (positive)uh

Newton: Force = mass  acceleration, so if vehicle mass = , acceleration = × m
uh

m



Example: 1-d Vehicle 

20

Robot moving in 1-d by choosing to apply force  left (negative) or right (positive)uh

Newton: Force = mass  acceleration, so if vehicle mass = , acceleration = × m
uh

m
If time steps are separated by  (small), then we can approximate acceleration 

(derivative of velocity) by finite difference of velocities :

δ

vh

accelerationh =
vh − vh−1

δ
=

uh

m



Example: 1-d Vehicle 

20

Robot moving in 1-d by choosing to apply force  left (negative) or right (positive)uh

Newton: Force = mass  acceleration, so if vehicle mass = , acceleration = × m
uh

m
If time steps are separated by  (small), then we can approximate acceleration 

(derivative of velocity) by finite difference of velocities :

δ

vh

accelerationh =
vh − vh−1

δ
=

uh

m
Same trick to approximate velocity (derivative of position) via positions :
ph

vh =
ph − ph−1

δ



Example: 1-d Vehicle 
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Robot moving in 1-d by choosing to apply force  left (negative) or right (positive)uh

Newton: Force = mass  acceleration, so if vehicle mass = , acceleration = × m
uh

m
If time steps are separated by  (small), then we can approximate acceleration 

(derivative of velocity) by finite difference of velocities :

δ

vh

accelerationh =
vh − vh−1

δ
=

uh

m
Same trick to approximate velocity (derivative of position) via positions :
ph

vh =
ph − ph−1

δ
So if state , we basically get linear dynamics!xh = (ph, vh)
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Given a policy , define the value function  as:
π = (π0, …, πh−1) Vπ
h : ℝd → ℝ

Vπ
h (x) = 𝔼[x⊤

HQxH +
H−1

∑
i=h

(x⊤
i Qxi + u⊤

i Rui) ui = πi(xi) ∀i ≥ h, xh = x]

and the Q function  as:
Qπ
h : ℝd × ℝk → ℝ

Qπ
h (x, u) = 𝔼[x⊤

HQxH +
H−1

∑
i=h

(x⊤
i Qxi + u⊤

i Rui) uh = u, ui = πi(xi) ∀i > h, xh = x]
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V⋆
h (x) = min

π
Vπ

h (x) = min
πh, πh+1,…, πH−1

𝔼[x⊤
HQxH +

H−1

∑
i=h

(x⊤
i Qxi + u⊤

i Rui) ui = πi(xi) ∀i ≥ h, xh = x]
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LQR Optimal Control

V⋆
h (x) = min

π
Vπ

h (x) = min
πh, πh+1,…, πH−1

𝔼[x⊤
HQxH +

H−1

∑
i=h

(x⊤
i Qxi + u⊤

i Rui) ui = πi(xi) ∀i ≥ h, xh = x]

Theorem: 

1.  is a quadratic function, i.e.,  for some  and 

2. The optimal policy  is linear, i.e.,  for some 

3. , , and  can be computed exactly

V⋆
h V⋆

h (x) = x⊤Phx + ph Ph ∈ ℝd×d ph ∈ ℝd

π⋆
h π⋆

h (x) = − Khx Kh ∈ ℝk×d

Ph ph Kh
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LQR Optimal Control

V⋆
h (x) = min

π
Vπ

h (x) = min
πh, πh+1,…, πH−1

𝔼[x⊤
HQxH +

H−1

∑
i=h

(x⊤
i Qxi + u⊤

i Rui) ui = πi(xi) ∀i ≥ h, xh = x]

Theorem: 

1.  is a quadratic function, i.e.,  for some  and 

2. The optimal policy  is linear, i.e.,  for some 

3. , , and  can be computed exactly

V⋆
h V⋆

h (x) = x⊤Phx + ph Ph ∈ ℝd×d ph ∈ ℝd

π⋆
h π⋆

h (x) = − Khx Kh ∈ ℝk×d

Ph ph Kh

We will cover the steps of the proof the theorem and derive the optimal policy along the way via dynamic 
programming
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b) Derive the optimal policy , and show that it’s linear


c) Show  is quadratic

V⋆
h+1(x)

Q⋆
h (x, u) x u

π⋆
h (x) = arg min

u
Q⋆

h (x, u)

V⋆
h (x)

3. Conclusion:  is quadratic and  is linear and we’ll have their formulasV⋆
h (x) π⋆

h (x)
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For , everything disappears except first term :Vπ
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(  and  didn’t do much here, but we’re going to define them recursively in the next step)Ph ph
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Along the way, we also have shown that , where: π⋆
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Optimal policy has nothing to do with initial distribution  or the noise ! μ0 σ2
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Today

30

• Feedback from last lecture


• Recap


• General optimal control problem


• The linear quadratic regulator (LQR) problem


• Optimal control solution to LQR



Summary:

Feedback: 

bit.ly/3RHtlxy
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Attendance: 
bit.ly/3RcTC9T

• Optimal control: Find optimal policy in MDP with continuous state/action spaces

• Linear quadratic regulator (LQR) is canonical problem in optimal control


-Linear dynamics, Gaussian errors, quadratic costs

-Optimal value and policy follow from dynamic programming

http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

