
Wrapup: AlphaZero
+ Warmup for UCB-VI  

 
Lucas Janson and Sham Kakade 
CS/Stat 184: Introduction to Reinforcement Learning  

Fall 2023

Recap++

2

• DeepBlue v. Kasparov (1997)

• winning in chess wasn’t a good indicator of

“progress in AI”

Fascination with AI and Games…

3

MCTS:
Monte Carlo Tree Search

• AlphaBeta pessimistic approach may not lead to effective heuristics.

• MCTS: to decide on an action, we build a lookahead tree. (and repeat)  

Input: game state/node “R”; Output: single action to take at R
• For two player games

• When building the lookahead tree, we use a heuristic to estimate the “value” of

taking action “a” at any node “s”  
(no minmax values estimated).

• Applicable to “small” games.

4

ActionSelectionSubroutine

5

Input: game state (“root node”), # playouts

For rollouts

1. Obtain the -th roll-out: While CurrentNode {win, lose}

a. For player , at current state , define and define:  

b. Choose and “take” action:  

2. Update stats: For all visited states in this “roll-out”,

c. update visit counts:  

d. for winner and if was visited by :  

 (data structure: only need to keep track of stats at visited states)

Output: return the action

R N
t = 1 : N

t ∉
X ∈ {A, B} s s′ = NextState(s, a)

UCB scoret(s, a) = #wins for player X at s′

#visits to s′

+ C × log(total visits to s)
#visits to s′

̂a = arg max
a

UCB score(s, a)
s

[#visits to s′] = [#visits to s′] + 1
X s X

[#wins for X at s′] = [#wins for X at s′] + 1

̂a = arg max
a

UCB scoreN(Root Node R, a)

• Obtaining the -th rollout (steps called Selection/Expansion/Simulation):  
Start from “root R” and select successive child nodes until a the game ends.

• At state (for player), choose action leading to which maximizes:

	

t

s X a s′ = NextState(s, a)
UCB scoret(s, a) = #wins for player X at s′

#visits to s′

+ C × log(total visits to s)
#visits to s′

6

Example Diagram:

• The update step for the t-th rollout (“backpropagation”):  
Use the result of the rollout to update information in the nodes on the visited path:  

 

[#visits to s′] = [#visits to s′] + 1
[#wins for X at s′] = [#wins for X at s′] + 1

7

Example Diagram:

• Repeat all steps N times, (so we do N roll-outs)

• select the “best” action at the root node R (the game state):  

	 ̂a = arg max
a

UCB scoreN(Root Node R, a)

8

Example Diagram:

Today

9

• Recap

• Game Playing: AlphaBeta Search/Rule Based Systems

• MCTS

• AlphaZero and Self-Play

AlphaGo

10

AlphaGo

10

• Lots of moving parts:

• Imitation Learning: first, the algo estimates the values from historical games.

• It then uses an MCTS-stye lookahead with learned value functions.

• AlphaZero (2017) is a simpler more successful approach.

AlphaZero

• AlphaZero: MCTS + DeepLearning

• There is a value network and policy network:

• a value network estimating for the state of the board

• A policy network that is a probability vector over all possible actions.  

(think of as an estimate of which actions the “subroutine” selects)

• There is a termination condition for each rollout, 

e.g. each rollout is no longer than steps 

vθ(s)
pθ(a |s)

pθ(a |s)

K

11

AlphaZero: ActionSelectionSubroutine

12

AlphaZero: ActionSelectionSubroutine

12

Input: game state (“root node”), # playouts , value network , policy network R N vθ(s) pθ(a |s)

AlphaZero: ActionSelectionSubroutine

12

Input: game state (“root node”), # playouts , value network , policy network R N vθ(s) pθ(a |s)
For rollouts t = 1 : N

AlphaZero: ActionSelectionSubroutine

12

Input: game state (“root node”), # playouts , value network , policy network R N vθ(s) pθ(a |s)
For rollouts t = 1 : N

1. Obtain the -th roll-out: While CurrentNode {termination condition}t ∉
a. At current state , define and define:  s s′ = NextState(s, a)

UCB scoret(s, a) = AvValue(s′) + C ⋅ pθ(a |s) ⋅ log(total visits to s)
#visits to s′

b. Choose and “take” action:  
̂a = arg max

a
UCB scoret(s, a)

AlphaZero: ActionSelectionSubroutine

12

Input: game state (“root node”), # playouts , value network , policy network R N vθ(s) pθ(a |s)
For rollouts t = 1 : N

1. Obtain the -th roll-out: While CurrentNode {termination condition}t ∉
a. At current state , define and define:  s s′ = NextState(s, a)

UCB scoret(s, a) = AvValue(s′) + C ⋅ pθ(a |s) ⋅ log(total visits to s)
#visits to s′

b. Choose and “take” action:  
̂a = arg max

a
UCB scoret(s, a)

2. Update stats: For all visited states in this “roll-out”,s
c. Let be the terminal node in this rollout.C
d. Update counts: N(s) ← N(s) + 1
e. If state was for player A: s AvValue(s) ← N(s)

N(s) + 1 AvValue(s) + 1
N(s) + 1 vθ(C)

f. If state was for player B: same update but with s −vθ(C)

AlphaZero: ActionSelectionSubroutine

12

Input: game state (“root node”), # playouts , value network , policy network R N vθ(s) pθ(a |s)
For rollouts t = 1 : N

1. Obtain the -th roll-out: While CurrentNode {termination condition}t ∉
a. At current state , define and define:  s s′ = NextState(s, a)

UCB scoret(s, a) = AvValue(s′) + C ⋅ pθ(a |s) ⋅ log(total visits to s)
#visits to s′

b. Choose and “take” action:  
̂a = arg max

a
UCB scoret(s, a)

2. Update stats: For all visited states in this “roll-out”,s
c. Let be the terminal node in this rollout.C
d. Update counts: N(s) ← N(s) + 1
e. If state was for player A: s AvValue(s) ← N(s)

N(s) + 1 AvValue(s) + 1
N(s) + 1 vθ(C)

f. If state was for player B: same update but with s −vθ(C)
Output: return the action ̂a = arg max

a
UCB scoreN(Root Node R, a)

AlphaZero

13

AlphaZero

• Obtaining the -th rollout (steps called Selection/Expansion/Simulation): t

13

AlphaZero

• Obtaining the -th rollout (steps called Selection/Expansion/Simulation): t
• Start from “root R” (current game) and do a rollout of no more than steps.K
• At state , choose action leading to which maximizes:s a s′ = NextState(s, a)

	 	 UCB score(a) = AvValue(s′) + C ⋅ pθ(a |s) ⋅ log(total visits to s)
#visits to s'

13

AlphaZero

• Obtaining the -th rollout (steps called Selection/Expansion/Simulation): t
• Start from “root R” (current game) and do a rollout of no more than steps.K
• At state , choose action leading to which maximizes:s a s′ = NextState(s, a)

	 	 UCB score(a) = AvValue(s′) + C ⋅ pθ(a |s) ⋅ log(total visits to s)
#visits to s'

• We’ll specify soon. AverageValue(s′)

• in MCTS, this average was
#wins at s'
#visits to s'

13

14

AlphaZero

• The update step for the t-th rollout (“backpropagation”):

14

AlphaZero

• The update step for the t-th rollout (“backpropagation”):
• Suppose the Simulation ends at node after steps. C K

14

AlphaZero

• The update step for the t-th rollout (“backpropagation”):
• Suppose the Simulation ends at node after steps. C K
• Update AvValue() on all in the path from the root R to C (for player A):  

 

 
(use negative values for player B)

s s
AvValue(s) ← N(s)

N(s) + 1 AvValue(s) + 1)
N(s) + 1 vθ(C)

N(s) ← N(s) + 1

14

AlphaZero

• The update step for the t-th rollout (“backpropagation”):
• Suppose the Simulation ends at node after steps. C K
• Update AvValue() on all in the path from the root R to C (for player A):  

 

 
(use negative values for player B)

s s
AvValue(s) ← N(s)

N(s) + 1 AvValue(s) + 1)
N(s) + 1 vθ(C)

N(s) ← N(s) + 1

• Repeat all steps N times, then select “best” action at the root node R (the game state).
14

AlphaZero

AlphaZero: Learning

15

AlphaZero: Learning

15

• Input: dataset of M self-play games

AlphaZero: Learning

15

• Input: dataset of M self-play games
• The point in the dataset is of the , which says action was taken in state and the

game resulted in outcome (e.g. win=1,loose=-1, draw=0)
(st, at, Rt) at st

Rt

AlphaZero: Learning

15

• Input: dataset of M self-play games
• The point in the dataset is of the , which says action was taken in state and the

game resulted in outcome (e.g. win=1,loose=-1, draw=0)
(st, at, Rt) at st

Rt
• Supervised Learning: try learn so to predict the actions and rewards  

 
	 	

θ

Loss(θ) = ∑
t

(vθ(st) − Rt)2 − log pθ(at |st)

AlphaZero: Learning

15

• Input: dataset of M self-play games
• The point in the dataset is of the , which says action was taken in state and the

game resulted in outcome (e.g. win=1,loose=-1, draw=0)
(st, at, Rt) at st

Rt
• Supervised Learning: try learn so to predict the actions and rewards  

 
	 	

θ

Loss(θ) = ∑
t

(vθ(st) − Rt)2 − log pθ(at |st)

16

16

Comments:

17

• Question:  
When do we use rollout methods (MPC/AlphaZero) vs PG methods?

• MuZero

• Basically AlphaZero but we don’t know game rules.

• We learn the transition function as we play.

Warmup for UCB-VI

18

How we do find in an unknown MDP?π⋆

• Episodic setting with an unknown MDP:

• suppose we start at .

• We act for steps.

• Then repeat.

• How do we find ?

• How do get low regret?

• Let’s start with the setting where the MDP is deterministic.

• So both and are deterministic.

s0 ∼ μ
H

π⋆

r(s, a) P(⋅ |s, a)

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

19

-
near optimal

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

Algorithm: ExploreThenExploit

(For Det MDPs)

20

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

Algorithm: ExploreThenExploit

(For Det MDPs)

• Let’s say a state-action pair (s,a) is known if both and are known.NextState(s, a) r(s, a)

20

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

Algorithm: ExploreThenExploit

(For Det MDPs)

• Let’s say a state-action pair (s,a) is known if both and are known.NextState(s, a) r(s, a)
• When is (s,a) known at episode ?N

20

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

Algorithm: ExploreThenExploit

(For Det MDPs)

• Let’s say a state-action pair (s,a) is known if both and are known.NextState(s, a) r(s, a)
• When is (s,a) known at episode ?N
• Let be the set of known state-action pairs at episode .KN N

20

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

Algorithm: ExploreThenExploit

(For Det MDPs)

• Let’s say a state-action pair (s,a) is known if both and are known.NextState(s, a) r(s, a)
• When is (s,a) known at episode ?N
• Let be the set of known state-action pairs at episode .KN N

20

• Init: K0 = ∅

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

Algorithm: ExploreThenExploit

(For Det MDPs)

• Let’s say a state-action pair (s,a) is known if both and are known.NextState(s, a) r(s, a)
• When is (s,a) known at episode ?N
• Let be the set of known state-action pairs at episode .KN N

20

• Init: K0 = ∅
• While not terminated

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

Algorithm: ExploreThenExploit

(For Det MDPs)

• Let’s say a state-action pair (s,a) is known if both and are known.NextState(s, a) r(s, a)
• When is (s,a) known at episode ?N
• Let be the set of known state-action pairs at episode .KN N

20

• Init: K0 = ∅
• While not terminated
• If there exists , compute the shortest path to (s, a) ∉ KN π̃ (s, a)

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

Algorithm: ExploreThenExploit

(For Det MDPs)

• Let’s say a state-action pair (s,a) is known if both and are known.NextState(s, a) r(s, a)
• When is (s,a) known at episode ?N
• Let be the set of known state-action pairs at episode .KN N

20

• Init: K0 = ∅
• While not terminated
• If there exists , compute the shortest path to (s, a) ∉ KN π̃ (s, a)
• Execute visits and update π̃ (s, a) KN+1 = KN ∪ (s, a)

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

Algorithm: ExploreThenExploit

(For Det MDPs)

• Let’s say a state-action pair (s,a) is known if both and are known.NextState(s, a) r(s, a)
• When is (s,a) known at episode ?N
• Let be the set of known state-action pairs at episode .KN N

20

• Init: K0 = ∅
• While not terminated
• If there exists , compute the shortest path to (s, a) ∉ KN π̃ (s, a)
• Execute visits and update π̃ (s, a) KN+1 = KN ∪ (s, a)

• Else: terminate

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

Algorithm: ExploreThenExploit

(For Det MDPs)

• Let’s say a state-action pair (s,a) is known if both and are known.NextState(s, a) r(s, a)
• When is (s,a) known at episode ?N
• Let be the set of known state-action pairs at episode .KN N

20

• Init: K0 = ∅
• While not terminated
• If there exists , compute the shortest path to (s, a) ∉ KN π̃ (s, a)
• Execute visits and update π̃ (s, a) KN+1 = KN ∪ (s, a)

• Else: terminate
• Return: the optimal policy in the known MDP.

in our

&
"Known"

MDP
.

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1

Algorithm: ExploreThenExploit

(For Det MDPs)

• Let’s say a state-action pair (s,a) is known if both and are known.NextState(s, a) r(s, a)
• When is (s,a) known at episode ?N
• Let be the set of known state-action pairs at episode .KN N

20

• Init: K0 = ∅
• While not terminated
• If there exists , compute the shortest path to (s, a) ∉ KN π̃ (s, a)
• Execute visits and update π̃ (s, a) KN+1 = KN ∪ (s, a)

• Else: terminate
• Return: the optimal policy in the known MDP.

Theorem: Assuming , this algorithm returns an optimal policy in most ?? trajectories.H ≥ |S |

Comments:

21

Comments:

21

• Shortest path computation:  
How do we formulate this as computing an optimal policy in some modified MDP? 

Comments:

21

• Shortest path computation:  
How do we formulate this as computing an optimal policy in some modified MDP? 

• How do we modify the algorithm for general ? 
 

H

Comments:

21

• Shortest path computation:  
How do we formulate this as computing an optimal policy in some modified MDP? 

• How do we modify the algorithm for general ? 
 

H

• What is the regret of this algorithm?

(Rest of) Today

• Why we don’t want to treat MDPs as big bandits

• UCB-VI for tabular MDPs

22

Exploration in MDP: make it a bandit and do UCB?

Q: given a discrete MDP, how many unique policies we have?

23

Exploration in MDP: make it a bandit and do UCB?

Q: given a discrete MDP, how many unique policies we have?

(|A ||S|)
H

23

Exploration in MDP: make it a bandit and do UCB?

Q: given a discrete MDP, how many unique policies we have?

(|A ||S|)
H

So treating each policy as an “arm” and running UCB gives us regret Õ(|A ||S|H N)

23

Exploration in MDP: make it a bandit and do UCB?

Q: given a discrete MDP, how many unique policies we have?

(|A ||S|)
H

So treating each policy as an “arm” and running UCB gives us regret Õ(|A ||S|H N)

This seems bad, so are MDPs just super hard or can we do better?

23

An example of MDP as bandit

24

, , S = {a, b} A = {1,2} H = 2

All state transitions happen with probability 1/2 for all actions

Reward function:
r(a,1) = r(b,1) = 0
r(a,2) = r(b,2) = 1

An example of MDP as bandit

24

, , S = {a, b} A = {1,2} H = 2

All state transitions happen with probability 1/2 for all actions

Reward function:
r(a,1) = r(b,1) = 0
r(a,2) = r(b,2) = 1

Suppose we have a lot of data already on a policy that always takes action 1

and a policy that always takes action 2 (note)

π(1)

π(2) π(2) = π⋆

An example of MDP as bandit

24

, , S = {a, b} A = {1,2} H = 2

All state transitions happen with probability 1/2 for all actions

Reward function:
r(a,1) = r(b,1) = 0
r(a,2) = r(b,2) = 1

Suppose we have a lot of data already on a policy that always takes action 1

and a policy that always takes action 2 (note)

π(1)

π(2) π(2) = π⋆

What do we know about a policy which always takes action 1 in the first time step, and

always takes action 2 at the second time step?

π(3)

An example of MDP as bandit

24

, , S = {a, b} A = {1,2} H = 2

All state transitions happen with probability 1/2 for all actions

Reward function:
r(a,1) = r(b,1) = 0
r(a,2) = r(b,2) = 1

Suppose we have a lot of data already on a policy that always takes action 1

and a policy that always takes action 2 (note)

π(1)

π(2) π(2) = π⋆

What do we know about a policy which always takes action 1 in the first time step, and

always takes action 2 at the second time step?

π(3)

Everything: we have a lot of data on every state-action reward and transition!

An example of MDP as bandit

24

, , S = {a, b} A = {1,2} H = 2

All state transitions happen with probability 1/2 for all actions

Reward function:
r(a,1) = r(b,1) = 0
r(a,2) = r(b,2) = 1

Suppose we have a lot of data already on a policy that always takes action 1

and a policy that always takes action 2 (note)

π(1)

π(2) π(2) = π⋆

What do we know about a policy which always takes action 1 in the first time step, and

always takes action 2 at the second time step?

π(3)

Everything: we have a lot of data on every state-action reward and transition!

If we treat the MDP as a bandit, we treat as a new “arm” about which we know nothing…π(3)

An example of MDP as bandit

24

, , S = {a, b} A = {1,2} H = 2

All state transitions happen with probability 1/2 for all actions

Reward function:
r(a,1) = r(b,1) = 0
r(a,2) = r(b,2) = 1

Suppose we have a lot of data already on a policy that always takes action 1

and a policy that always takes action 2 (note)

π(1)

π(2) π(2) = π⋆

What do we know about a policy which always takes action 1 in the first time step, and

always takes action 2 at the second time step?

π(3)

Everything: we have a lot of data on every state-action reward and transition!

If we treat the MDP as a bandit, we treat as a new “arm” about which we know nothing…π(3)

|A ||S|H = 24 = 16

Today

25

• Why we don’t want to treat MDPs as big bandits

• UCB-VI for tabular MDPs

Recall: Value Iteration (VI)
VI = DP is a backwards in time approach for computing the optimal policy:  

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

26

Recall: Value Iteration (VI)
VI = DP is a backwards in time approach for computing the optimal policy:  

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

26

Recall: Value Iteration (VI)
VI = DP is a backwards in time approach for computing the optimal policy:  

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a)

26

Recall: Value Iteration (VI)
VI = DP is a backwards in time approach for computing the optimal policy:  

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a)

26

Recall: Value Iteration (VI)
VI = DP is a backwards in time approach for computing the optimal policy:  

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a)

V⋆
H−1 = max

a
Q⋆

H−1(s, a) = Q⋆
H−1(s, π⋆

H−1(s))

26

Recall: Value Iteration (VI)
VI = DP is a backwards in time approach for computing the optimal policy:  

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a)

V⋆
H−1 = max

a
Q⋆

H−1(s, a) = Q⋆
H−1(s, π⋆

H−1(s))

2. Assuming we have computed , i.e., assuming
we know how to perform optimally starting at , then:

V⋆
h+1, h ≤ H − 2

h + 1

26

Recall: Value Iteration (VI)
VI = DP is a backwards in time approach for computing the optimal policy:  

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a)

V⋆
H−1 = max

a
Q⋆

H−1(s, a) = Q⋆
H−1(s, π⋆

H−1(s))

2. Assuming we have computed , i.e., assuming
we know how to perform optimally starting at , then:

V⋆
h+1, h ≤ H − 2

h + 1

Q⋆
h (s, a) = r(s, a) + $s′ ∼P(s,a)V⋆

h+1(s′)

26

Recall: Value Iteration (VI)
VI = DP is a backwards in time approach for computing the optimal policy:  

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a)

V⋆
H−1 = max

a
Q⋆

H−1(s, a) = Q⋆
H−1(s, π⋆

H−1(s))

2. Assuming we have computed , i.e., assuming
we know how to perform optimally starting at , then:

V⋆
h+1, h ≤ H − 2

h + 1

Q⋆
h (s, a) = r(s, a) + $s′ ∼P(s,a)V⋆

h+1(s′)

π⋆
h (s) = arg max

a
Q⋆

h (s, a),
26

Recall: Value Iteration (VI)
VI = DP is a backwards in time approach for computing the optimal policy:  

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a)

V⋆
H−1 = max

a
Q⋆

H−1(s, a) = Q⋆
H−1(s, π⋆

H−1(s))

2. Assuming we have computed , i.e., assuming
we know how to perform optimally starting at , then:

V⋆
h+1, h ≤ H − 2

h + 1

Q⋆
h (s, a) = r(s, a) + $s′ ∼P(s,a)V⋆

h+1(s′)

π⋆
h (s) = arg max

a
Q⋆

h (s, a), V⋆
h = max

a
Q⋆

h (s, a)
26

Recall: UCB

27

For :t = 0,…, T − 1
Choose the arm with the highest upper confidence bound, i.e.,

at = arg max
k∈{1,…,K}

̂μ(k)
t + ln(2TK/δ)/2N(k)

t

Recall: UCB

27

For :t = 0,…, T − 1
Choose the arm with the highest upper confidence bound, i.e.,

at = arg max
k∈{1,…,K}

̂μ(k)
t + ln(2TK/δ)/2N(k)

t

High-level summary: estimate action quality, add exploration bonus, then argmax

UCBVI: Tabular optimism in the face of uncertainty

Inside iteration n :

28

Assume reward function knownrh(s, a)

UCBVI: Tabular optimism in the face of uncertainty

Inside iteration n :

Use all previous data to estimate transitions ̂P n
1, …, ̂P n

H−1

28

Assume reward function knownrh(s, a)

UCBVI: Tabular optimism in the face of uncertainty

Inside iteration n :

Use all previous data to estimate transitions ̂P n
1, …, ̂P n

H−1

Design reward bonus bn
h(s, a), ∀s, a, h

28

Assume reward function knownrh(s, a)

UCBVI: Tabular optimism in the face of uncertainty

Inside iteration n :

Use all previous data to estimate transitions ̂P n
1, …, ̂P n

H−1

Optimistic planning with learned model: πn = VI ({ ̂P n
h, rh + bn

h}H−1
h=1)

Design reward bonus bn
h(s, a), ∀s, a, h

28

Assume reward function knownrh(s, a)

UCBVI: Tabular optimism in the face of uncertainty

Inside iteration n :

Use all previous data to estimate transitions ̂P n
1, …, ̂P n

H−1

Optimistic planning with learned model: πn = VI ({ ̂P n
h, rh + bn

h}H−1
h=1)

Collect a new trajectory by executing in the true system starting from πn {Ph}H−1
h=0 s0

Design reward bonus bn
h(s, a), ∀s, a, h

28

Assume reward function knownrh(s, a)

Model Estimation
Let us consider the very beginning of episode :n

*n
h = {si

h, ai
h, si

h+1}n−1
i=1 , ∀h

29

Model Estimation
Let us consider the very beginning of episode :n

*n
h = {si

h, ai
h, si

h+1}n−1
i=1 , ∀h

Let’s also maintain some statistics using these datasets:

29

Model Estimation
Let us consider the very beginning of episode :n

*n
h = {si

h, ai
h, si

h+1}n−1
i=1 , ∀h

Let’s also maintain some statistics using these datasets:

Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h, Nn
h(s, a, s′) =

n−1

∑
i=1

1{(si
h, ai

h, si
h+1) = (s, a, s′)}, ∀s, a, h

29

Model Estimation
Let us consider the very beginning of episode :n

*n
h = {si

h, ai
h, si

h+1}n−1
i=1 , ∀h

Let’s also maintain some statistics using these datasets:

Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h, Nn
h(s, a, s′) =

n−1

∑
i=1

1{(si
h, ai

h, si
h+1) = (s, a, s′)}, ∀s, a, h

Estimate model :̂P n
h(s′ |s, a), ∀s, a, s′ , h

̂P n
h(s′ |s, a) = Nn

h(s, a, s′)
Nn

h(s, a)
29

Reward Bonus Design and Value Iteration
Let us consider the very beginning of episode :n

*n
h = {si

h, ai
h, si

h+1}n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

30

Reward Bonus Design and Value Iteration
Let us consider the very beginning of episode :n

*n
h = {si

h, ai
h, si

h+1}n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

log (SAHN/δ)
Nn

h(s, a)

30

Reward Bonus Design and Value Iteration
Let us consider the very beginning of episode :n

*n
h = {si

h, ai
h, si

h+1}n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

log (SAHN/δ)
Nn

h(s, a)
Encourage to explore

new state-actions

30

Reward Bonus Design and Value Iteration
Let us consider the very beginning of episode :n

*n
h = {si

h, ai
h, si

h+1}n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

log (SAHN/δ)
Nn

h(s, a)
Encourage to explore

new state-actions

Value Iteration (aka DP) at episode n using and { ̂P n
h}h {rh + bn

h}h

30

Reward Bonus Design and Value Iteration
Let us consider the very beginning of episode :n

*n
h = {si

h, ai
h, si

h+1}n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

log (SAHN/δ)
Nn

h(s, a)
Encourage to explore

new state-actions

Value Iteration (aka DP) at episode n using and { ̂P n
h}h {rh + bn

h}h

̂V n
H(s) = 0,∀s

30

Reward Bonus Design and Value Iteration
Let us consider the very beginning of episode :n

*n
h = {si

h, ai
h, si

h+1}n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

log (SAHN/δ)
Nn

h(s, a)
Encourage to explore

new state-actions

Value Iteration (aka DP) at episode n using and { ̂P n
h}h {rh + bn

h}h

̂V n
H(s) = 0,∀s ̂Q n

h(s, a) = min {rh(s, a) + bn
h(s, a) + ̂P n

h(⋅ |s, a) ⋅ ̂V n
h+1, H}, ∀s, a

30

Reward Bonus Design and Value Iteration
Let us consider the very beginning of episode :n

*n
h = {si

h, ai
h, si

h+1}n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

log (SAHN/δ)
Nn

h(s, a)
Encourage to explore

new state-actions

Value Iteration (aka DP) at episode n using and { ̂P n
h}h {rh + bn

h}h

̂V n
H(s) = 0,∀s

̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s

̂Q n
h(s, a) = min {rh(s, a) + bn

h(s, a) + ̂P n
h(⋅ |s, a) ⋅ ̂V n

h+1, H}, ∀s, a

30

Reward Bonus Design and Value Iteration
Let us consider the very beginning of episode :n

*n
h = {si

h, ai
h, si

h+1}n−1
i=1 , ∀h, Nn

h(s, a) =
n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

bn
h(s, a) = cH

log (SAHN/δ)
Nn

h(s, a)
Encourage to explore

new state-actions

Value Iteration (aka DP) at episode n using and { ̂P n
h}h {rh + bn

h}h

̂V n
H(s) = 0,∀s

̂V n
h(s) = max

a
̂Q n
h(s, a), πn

h(s) = arg max
a

̂Q n
h(s, a), ∀s ̂V n

h ∞
≤ H, ∀h, n

̂Q n
h(s, a) = min {rh(s, a) + bn

h(s, a) + ̂P n
h(⋅ |s, a) ⋅ ̂V n

h+1, H}, ∀s, a

30

UCBVI: Put All Together
For n = 1 → N :

3. Estimate ̂P n : ̂P n
h(s′ |s, a) = Nn

h(s, a, s′)
Nn

h(s, a) , ∀s, a, s′ , h

1. Set Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h

2. Set Nn
h(s, a, s′) =

n−1

∑
i=1

1{(si
h, ai

h, si
h+1) = (s, a, s′)}, ∀s, a, a′ , h

4. Plan: πn = VI ({ ̂P n
h, rh + bn

h}h), with bn
h(s, a) = cH

log(SAHN/δ)
Nn

h(s, a)
5. Execute πn : {sn

0 , an
0 , rn

0 , …, sn
H−1, an

H−1, rn
H−1, sn

H}

31

High-level Idea: Exploration Exploitation Tradeoff
Upper bound per-episode regret: V⋆

0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

32

High-level Idea: Exploration Exploitation Tradeoff
Upper bound per-episode regret: V⋆

0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

1. What if is small? ̂V n
0(s0) − Vπn

0 (s0)

32

High-level Idea: Exploration Exploitation Tradeoff
Upper bound per-episode regret: V⋆

0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

1. What if is small? ̂V n
0(s0) − Vπn

0 (s0)

Then is close to , i.e., we are doing exploitationπn π⋆

32

High-level Idea: Exploration Exploitation Tradeoff
Upper bound per-episode regret: V⋆

0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

2. What if is large? ̂V n
0(s0) − Vπn

0 (s0)

1. What if is small? ̂V n
0(s0) − Vπn

0 (s0)

Then is close to , i.e., we are doing exploitationπn π⋆

32

High-level Idea: Exploration Exploitation Tradeoff
Upper bound per-episode regret: V⋆

0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

2. What if is large? ̂V n
0(s0) − Vπn

0 (s0)

1. What if is small? ̂V n
0(s0) − Vπn

0 (s0)

Then is close to , i.e., we are doing exploitationπn π⋆

 must be largêV n
0(s0) − Vπn

0 (s0) ≤
H−1

∑
h=0

$s,a∼dπn
h [bn

h(s, a) + (̂P n
h(⋅ |s, a) − Ph(⋅ |s, a)) ⋅ ̂V n

h+1]

32

High-level Idea: Exploration Exploitation Tradeoff
Upper bound per-episode regret: V⋆

0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

2. What if is large? ̂V n
0(s0) − Vπn

0 (s0)

1. What if is small? ̂V n
0(s0) − Vπn

0 (s0)

Then is close to , i.e., we are doing exploitationπn π⋆

 must be largêV n
0(s0) − Vπn

0 (s0) ≤
H−1

∑
h=0

$s,a∼dπn
h [bn

h(s, a) + (̂P n
h(⋅ |s, a) − Ph(⋅ |s, a)) ⋅ ̂V n

h+1]

32

Not obvious

High-level Idea: Exploration Exploitation Tradeoff
Upper bound per-episode regret: V⋆

0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

2. What if is large? ̂V n
0(s0) − Vπn

0 (s0)

1. What if is small? ̂V n
0(s0) − Vπn

0 (s0)

Then is close to , i.e., we are doing exploitationπn π⋆

 must be largêV n
0(s0) − Vπn

0 (s0) ≤
H−1

∑
h=0

$s,a∼dπn
h [bn

h(s, a) + (̂P n
h(⋅ |s, a) − Ph(⋅ |s, a)) ⋅ ̂V n

h+1]
We collect data at steps where bonus is large or model is wrong, i.e., exploration

32

Not obvious

High-level Idea: Exploration Exploitation Tradeoff
Upper bound per-episode regret: V⋆

0 (s0) − Vπn

0 (s0) ≤ ̂V n
0(s0) − Vπn

0 (s0)

2. What if is large? ̂V n
0(s0) − Vπn

0 (s0)

1. What if is small? ̂V n
0(s0) − Vπn

0 (s0)

Then is close to , i.e., we are doing exploitationπn π⋆

 must be largêV n
0(s0) − Vπn

0 (s0) ≤
H−1

∑
h=0

$s,a∼dπn
h [bn

h(s, a) + (̂P n
h(⋅ |s, a) − Ph(⋅ |s, a)) ⋅ ̂V n

h+1]
We collect data at steps where bonus is large or model is wrong, i.e., exploration

$ [RegretN] := $ [
N

∑
n=1

(V⋆ − Vπn)] ≤ Õ (H2 SAN)
32

Not obvious

Today

33

• Why we don’t want to treat MDPs as big bandits

• UCB-VI for tabular MDPs

Summary:

Feedback:

bit.ly/3RHtlxy

34

Attendance: 
bit.ly/3RcTC9T

UCBVI algorithm applies UCB idea to MDPs to achieve exploration/exploitation trade-off

