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• DeepBlue v. Kasparov (1997)

• winning in chess wasn’t a good indicator of 

“progress in AI”

Fascination with AI and Games…
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MCTS: 
Monte Carlo Tree Search

• AlphaBeta pessimistic approach may not lead to effective heuristics.

• MCTS: to decide on an action, we build a lookahead tree. (and repeat)  

Input: game state/node “R”; Output: single action to take at R 
• For two player games

• When building the lookahead tree, we use a heuristic to estimate the “value” of 

taking action “a” at any node “s”  
(no minmax values estimated).


• Applicable to “small” games.
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ActionSelectionSubroutine
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Input: game state (“root node” ), # playouts  

For rollouts 


1. Obtain the -th roll-out: While CurrentNode  {win, lose}

a. For player , at current state , define  and define:  




b. Choose and “take” action:  



2. Update stats: For all visited states  in this “roll-out”,

c. update visit counts:    



d. for winner  and if  was visited by :    



            (data structure: only need to keep track of stats at visited states)

Output: return the action 

R N
t = 1 : N

t ∉
X ∈ {A, B} s s′ = NextState(s, a)

UCB scoret(s, a) = #wins for player X at s′ 

#visits to s′ 

+ C × log(total visits to s)
#visits to s′ 

̂a = arg max
a

UCB score(s, a)
s

[#visits to s′ ] = [#visits to s′ ] + 1
X s X

[#wins for X at s′ ] = [#wins for X at s′ ] + 1

̂a = arg max
a

UCB scoreN(Root Node R, a)



• Obtaining the -th rollout (steps called Selection/Expansion/Simulation):  
Start from “root R” and select successive child nodes until a the game ends.

• At state  (for player ), choose action  leading to  which maximizes:


	

t

s X a s′ = NextState(s, a)
UCB scoret(s, a) = #wins for player X at s′ 

#visits to s′ 

+ C × log(total visits to s)
#visits to s′ 
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Example Diagram:



• The update step for the t-th rollout (“backpropagation”):  
Use the result of the rollout to update information in the nodes on the visited path:  

 



[#visits to s′ ] = [#visits to s′ ] + 1
[#wins for X at s′ ] = [#wins for X at s′ ] + 1

7

Example Diagram:



• Repeat all steps N times, (so we do N roll-outs)

• select the “best” action at the root node R (the game state):  

	 ̂a = arg max
a

UCB scoreN(Root Node R, a)
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Example Diagram:



Today
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• Recap

• Game Playing: AlphaBeta Search/Rule Based Systems

• MCTS

• AlphaZero and Self-Play



AlphaGo
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AlphaGo

10

• Lots of moving parts:

• Imitation Learning: first, the algo estimates the values from historical games.

• It then uses an MCTS-stye lookahead with learned value functions.


• AlphaZero (2017) is a simpler more successful approach.



AlphaZero

• AlphaZero: MCTS + DeepLearning

• There is a value network and policy network:

• a value network estimating for the state of the board 

• A policy network  that is a probability vector over all possible actions.  

(think  of as an estimate of which actions the “subroutine” selects)

• There is a termination condition for each rollout, 

e.g. each rollout is no longer than  steps 

vθ(s)
pθ(a |s)

pθ(a |s)

K
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AlphaZero: ActionSelectionSubroutine
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Input: game state (“root node” ), # playouts , value network , policy network R N vθ(s) pθ(a |s)
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Input: game state (“root node” ), # playouts , value network , policy network R N vθ(s) pθ(a |s)
For rollouts t = 1 : N

1. Obtain the -th roll-out: While CurrentNode  {termination condition}t ∉
a. At current state , define  and define:  s s′ = NextState(s, a)

UCB scoret(s, a) = AvValue(s′ ) + C ⋅ pθ(a |s) ⋅ log(total visits to s)
#visits to s′ 

b. Choose and “take” action:  
̂a = arg max

a
UCB scoret(s, a)
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Input: game state (“root node” ), # playouts , value network , policy network R N vθ(s) pθ(a |s)
For rollouts t = 1 : N

1. Obtain the -th roll-out: While CurrentNode  {termination condition}t ∉
a. At current state , define  and define:  s s′ = NextState(s, a)

UCB scoret(s, a) = AvValue(s′ ) + C ⋅ pθ(a |s) ⋅ log(total visits to s)
#visits to s′ 

b. Choose and “take” action:  
̂a = arg max

a
UCB scoret(s, a)

2. Update stats: For all visited states  in this “roll-out”,s
c. Let  be the terminal node in this rollout.C
d. Update counts: N(s) ← N(s) + 1
e. If state  was for player A:   s AvValue(s) ← N(s)

N(s) + 1 AvValue(s) + 1
N(s) + 1 vθ(C)

f. If state  was for player B: same update but with s −vθ(C)
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Input: game state (“root node” ), # playouts , value network , policy network R N vθ(s) pθ(a |s)
For rollouts t = 1 : N

1. Obtain the -th roll-out: While CurrentNode  {termination condition}t ∉
a. At current state , define  and define:  s s′ = NextState(s, a)

UCB scoret(s, a) = AvValue(s′ ) + C ⋅ pθ(a |s) ⋅ log(total visits to s)
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b. Choose and “take” action:  
̂a = arg max

a
UCB scoret(s, a)

2. Update stats: For all visited states  in this “roll-out”,s
c. Let  be the terminal node in this rollout.C
d. Update counts: N(s) ← N(s) + 1
e. If state  was for player A:   s AvValue(s) ← N(s)

N(s) + 1 AvValue(s) + 1
N(s) + 1 vθ(C)

f. If state  was for player B: same update but with s −vθ(C)
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UCB scoreN(Root Node R, a)



AlphaZero

13



AlphaZero

• Obtaining the -th rollout (steps called Selection/Expansion/Simulation): t

13



AlphaZero
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AlphaZero

• Obtaining the -th rollout (steps called Selection/Expansion/Simulation): t
• Start from “root R” (current game) and do a rollout of no more than  steps.K
• At state , choose action  leading to  which maximizes:s a s′ = NextState(s, a)

	 	 UCB score(a) = AvValue(s′ ) + C ⋅ pθ(a |s) ⋅ log(total visits to s)
#visits to s'

• We’ll specify  soon. AverageValue(s′ )

• in MCTS, this average was 
#wins at s'
#visits to s'
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• The update step for the t-th rollout (“backpropagation”): 
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• The update step for the t-th rollout (“backpropagation”): 
• Suppose the Simulation ends at node  after  steps. C K

14

AlphaZero



• The update step for the t-th rollout (“backpropagation”): 
• Suppose the Simulation ends at node  after  steps. C K
• Update AvValue( ) on all  in the path from the root R to C (for player A):  

 

 
(use negative values for player B)

s s
AvValue(s) ← N(s)

N(s) + 1 AvValue(s) + 1)
N(s) + 1 vθ(C)

N(s) ← N(s) + 1
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• The update step for the t-th rollout (“backpropagation”): 
• Suppose the Simulation ends at node  after  steps. C K
• Update AvValue( ) on all  in the path from the root R to C (for player A):  

 

 
(use negative values for player B)

s s
AvValue(s) ← N(s)

N(s) + 1 AvValue(s) + 1)
N(s) + 1 vθ(C)

N(s) ← N(s) + 1

• Repeat all steps N times, then select “best” action at the root node R (the game state).
14
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AlphaZero: Learning
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• Input: dataset of M self-play games



AlphaZero: Learning
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• Input: dataset of M self-play games
• The point in the dataset is of the  , which says action  was taken in state  and the 

game resulted in outcome  (e.g. win=1,loose=-1, draw=0)
(st, at, Rt) at st

Rt
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• The point in the dataset is of the  , which says action  was taken in state  and the 

game resulted in outcome  (e.g. win=1,loose=-1, draw=0)
(st, at, Rt) at st

Rt
• Supervised Learning: try learn  so to predict the actions and rewards  

 
	 	

θ

Loss(θ) = ∑
t

(vθ(st) − Rt)2 − log pθ(at |st)
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• Input: dataset of M self-play games
• The point in the dataset is of the  , which says action  was taken in state  and the 

game resulted in outcome  (e.g. win=1,loose=-1, draw=0)
(st, at, Rt) at st

Rt
• Supervised Learning: try learn  so to predict the actions and rewards  

 
	 	

θ

Loss(θ) = ∑
t

(vθ(st) − Rt)2 − log pθ(at |st)
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Comments:
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• Question:  
When do we use rollout methods (MPC/AlphaZero) vs PG methods?


• MuZero

• Basically AlphaZero but we don’t know game rules.

• We learn the transition function as we play.



Warmup for UCB-VI
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How we do find  in an unknown MDP?π⋆

• Episodic setting with an unknown MDP: 

• suppose we start at . 

• We act for  steps. 

• Then repeat.


• How do we find ?

• How do get low regret?


• Let’s start with the setting where the MDP is deterministic.

• So both  and  are deterministic.

s0 ∼ μ
H

π⋆

r(s, a) P( ⋅ |s, a)

Prior work: The Explore/Exploit Tradeoff

Thrun ’92

Random search does not find the reward quickly.

(theory) Balancing the explore/exploit tradeoff:
[Kearns & Singh, ’02] E3 is a near-optimal algo.
Sample complexity: [K. ’03, Azar ’17]
Model free: [Strehl et.al. ’06; Dann and Brunskill ’15; Szita &
Szepesvari ’10; Lattimore et.al. ’14; Jin et.al. ’18]

S. M. Kakade (UW) Curiosity 4 / 16

s!
S states Thrun ‘92

R=1
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&
"Known"

MDP
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• Init:  K0 = ∅
• While not terminated
• If there exists , compute the shortest path  to  (s, a) ∉ KN π̃ (s, a)
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Theorem: Assuming , this algorithm returns an optimal policy in most  ?? trajectories.H ≥ |S |
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• Shortest path computation:   
How do we formulate this as computing an optimal policy in some modified MDP? 

• How do we modify the algorithm for general ? 
 

H

• What is the regret of this algorithm?



(Rest of) Today

• Why we don’t want to treat MDPs as big bandits

• UCB-VI for tabular MDPs

22



Exploration in MDP: make it a bandit and do UCB?

Q: given a discrete MDP, how many unique policies we have?
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Exploration in MDP: make it a bandit and do UCB?

Q: given a discrete MDP, how many unique policies we have?

( |A ||S| )
H

So treating each policy as an “arm” and running UCB gives us regret Õ( |A ||S|H N)

This seems bad, so are MDPs just super hard or can we do better?
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Reward function: 
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All state transitions happen with probability 1/2 for all actions

Reward function: 
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|A ||S|H = 24 = 16
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• Why we don’t want to treat MDPs as big bandits

• UCB-VI for tabular MDPs
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Recall: UCB
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Choose the arm with the highest upper confidence bound, i.e.,
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For :t = 0,…, T − 1
Choose the arm with the highest upper confidence bound, i.e.,


at = arg max
k∈{1,…,K}

̂μ(k)
t + ln(2TK/δ)/2N(k)

t

High-level summary: estimate action quality, add exploration bonus, then argmax
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1, …, ̂P n

H−1

Optimistic planning with learned model: πn = VI ({ ̂P n
h, rh + bn

h}H−1
h=1 )

Collect a new trajectory by executing  in the true system  starting from πn {Ph}H−1
h=0 s0

Design reward bonus bn
h(s, a), ∀s, a, h

28

Assume reward function  knownrh(s, a)
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UCBVI: Put All Together
For n = 1 → N :

3. Estimate  ̂P n : ̂P n
h(s′ |s, a) = Nn

h(s, a, s′ )
Nn

h(s, a) , ∀s, a, s′ , h

1. Set Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h

2. Set Nn
h(s, a, s′ ) =

n−1

∑
i=1

1{(si
h, ai

h, si
h+1) = (s, a, s′ )}, ∀s, a, a′ , h

4. Plan: πn = VI ({ ̂P n
h, rh + bn

h}h), with bn
h(s, a) = cH

log(SAHN/δ)
Nn

h(s, a)
5. Execute  πn : {sn

0 , an
0 , rn

0 , …, sn
H−1, an

H−1, rn
H−1, sn

H}

31
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$ [RegretN] := $ [
N

∑
n=1

(V⋆ − Vπn)] ≤ Õ (H2 SAN)
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• Why we don’t want to treat MDPs as big bandits

• UCB-VI for tabular MDPs



Summary:

Feedback: 

bit.ly/3RHtlxy
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Attendance: 
bit.ly/3RcTC9T

UCBVI algorithm applies UCB idea to MDPs to achieve exploration/exploitation trade-off


