Reinforcement Learning & Markov Decision Processes

Lucas Janson and Sham Kakade

CS/Stat 184: Introduction to Reinforcement Learning Fall 202# 5

Today

- Logistics (Welcome!)
- Overview of RL
- Markov Decision Processes
 - Problem statement
 - Policy Evaluation

• Instructors: Lucas Janson and Sham Kakade

• Instructors: Lucas Janson and Sham Kakade

• TFs: Benjamin Schiffer

- Instructors: Lucas Janson and Sham Kakade
- TFs: Benjamin Schiffer
- CAs: Luke Bailey, Alex Dazhen Cai, Kevin Yee Du, Kevin Yifan Huang, Saket Joshi, Thomas Kaminsky, Patrick McDonald, Eric Meng Shen, Natnael Mekuria Teshome

- Instructors: Lucas Janson and Sham Kakade
- TFs: Benjamin Schiffer
- CAs: Luke Bailey, Alex Dazhen Cai, Kevin Yee Du, Kevin Yifan Huang, Saket Joshi, Thomas Kaminsky, Patrick McDonald, Eric Meng Shen, Natnael Mekuria Teshome
- Homework 0 is posted today!
 - This is "review" homework for material you should be familiar with to take the course.

All policies are stated on the course website: https://shamulent.github.io/CS_Stat184_Fall23.html

• We want u to obtain fundamental and practical knowledge of RL.

- We want u to obtain fundamental and practical knowledge of RL.
- Grades: Participation; HW0 +HW1-HW4; Midterm; Project

- We want u to obtain fundamental and practical knowledge of RL.
- Grades: Participation; HW0 +HW1-HW4; Midterm; Project
- Participation (5%): not meant to be onerous (see website)
 - Just attending regularly will suffice (tbd: we'll have some web form per class)
 - If you can't, then increase your participation in Ed/section.
 - Let us know if you some responsibility, let us know via Ed.

- We want u to obtain fundamental and practical knowledge of RL.
- Grades: Participation; HW0 +HW1-HW4; Midterm; Project
- Participation (5%): not meant to be onerous (see website)
 - Just attending regularly will suffice (tbd: we'll have some web form per class)
 - If you can't, then increase your participation in Ed/section.
 - Let us know if you some responsibility, let us know via Ed.
- HWs (45%): will have math and programming components.
 - We will have an "embedded ethics lecture" + assignment

- We want u to obtain fundamental and practical knowledge of RL.
- Grades: Participation; HW0 +HW1-HW4; Midterm; Project
- Participation (5%): not meant to be onerous (see website)
 - Just attending regularly will suffice (tbd: we'll have some web form per class)
 - If you can't, then increase your participation in Ed/section.
 - Let us know if you some responsibility, let us know via Ed.
- HWs (45%): will have math and programming components.
 - We will have an "embedded ethics lecture" + assignment
- Midterm (20%): this will be in class. Date to be finalized soon.

- We want u to obtain fundamental and practical knowledge of RL.
- Grades: Participation; HW0 +HW1-HW4; Midterm; Project
- Participation (5%): not meant to be onerous (see website)
 - Just attending regularly will suffice (tbd: we'll have some web form per class)
 - If you can't, then increase your participation in Ed/section.
 - Let us know if you some responsibility, let us know via Ed.
- HWs (45%): will have math and programming components.
 - We will have an "embedded ethics lecture" + assignment
- Midterm (20%): this will be in class. Date to be finalized soon.
- Project (30%): 2-3 people per project. Will be empirical.

Our policies aim for consistency among all the students.

- Our policies aim for consistency among all the students.
- Participation: we will have a web-based attendance form (TBD)

- Our policies aim for consistency among all the students.
- Participation: we will have a web-based attendance form (TBD)
- Communication: please only use Ed to contact us
- Late policy (basically): you have 96 cumulative hours of late time.

- Our policies aim for consistency among all the students.
- Participation: we will have a web-based attendance form (TBD)
- Communication: please only use Ed to contact us
- Late policy (basically): you have 96 cumulative hours of late time.
 - Please use this to plan for unforeseen circumstances.

- Our policies aim for consistency among all the students.
- Participation: we will have a web-based attendance form (TBD)
- Communication: please only use Ed to contact us
- Late policy (basically): you have 96 cumulative hours of late time.
 - Please use this to plan for unforeseen circumstances.
- Regrading: ask us in writing on Ed within a week

Today

Logistics (Welcome!)

- Overview of RL
- Markov Decision Processes
 - Problem statement
 - Policy Evaluation

The RL Setting, basically

Many RL Successes

TD GAMMON [Tesauro 95]

[OpenAI,19]

[AlphaZero, Silver et.al, 17]

[OpenAl Five, 18]

Supply Chains [Madeka et al '23]

Many Future RL Challenges

Vs Other Settings

	Learn from Experience	Generalize	Interactive	Exploration	Credit assignment
Supervised Learning	/	/			
Bandits ("horizon 1"-RL)		/	/	/	
Reinforcement Learning	/	/	/	/	/

Vs Other Settings

	Learn from Experience	Generalize	Interactive	Exploration	Credit assignment
Supervised Learning	/	/			
Bandits ("horizon 1"-RL)	/	/	/	/	
Reinforcement Learning	/	/	/	/	/

Vs Other Settings

	Learn from Experience	Generalize	Interactive	Exploration	Credit assignment
Supervised Learning		/			
Bandits ("horizon 1"-RL)		/	/	/	
Reinforcement Learning	/	/	/	/	/

Point: An elegant formulation!

Point: An elegant formulation!

Counterpoint: seen the notation?

Point: An elegant formulation! **Counterpoint:** seen the notation?

Point: Tackles (Nearly) the Most General Problem

POMOPS Multi-Agent RL (6+ MCTS)

Point: An elegant formulation! **Counterpoint:** seen the notation?

Point: Tackles (Nearly) the Most General Problem

Counterpoint: Maybe too general?

Point: An elegant formulation! **Counterpoint:** seen the notation?

Point: Tackles (Nearly) the Most General Problem

Counterpoint: Maybe too general?

Point: pivotal for AGI?

Point: An elegant formulation! **Counterpoint:** seen the notation?

Point: Tackles (Nearly) the Most General Problem

Counterpoint: Maybe *too* general?

Point: pivotal for AGI?

Counterpoint: AGI could just be Big Data + Scale?

RLHF?

Point: An elegant formulation! **Counterpoint:** seen the notation?

Point: Tackles (Nearly) the Most General Problem

Counterpoint: Maybe *too* general?

Point: pivotal for AGI?

Counterpoint: AGI could just be Big Data + Scale?

Point: Exploration is fun!

Point: An elegant formulation! **Counterpoint:** seen the notation?

Point: Tackles (Nearly) the Most General Problem

Counterpoint: Maybe *too* general?

Point: pivotal for AGI?

Counterpoint: AGI could just be Big Data + Scale?

Point: Exploration is fun!

Counterpoint: Exploitation is fun too!

Point: An elegant formulation! **Counterpoint:** seen the notation?

Point: Tackles (Nearly) the Most General Problem

Counterpoint: Maybe too general?

Point: pivotal for AGI?

Counterpoint: AGI could just be Big Data + Scale?

Point: Exploration is fun!

Counterpoint: Exploitation is fun too!

Point: Enabled Real-world successes!

Point: An elegant formulation! **Counterpoint:** seen the notation?

Point: Tackles (Nearly) the Most General Problem

Counterpoint: Maybe too general?

Point: pivotal for AGI?

Counterpoint: AGI could just be Big Data + Scale?

Point: Exploration is fun!

Counterpoint: Exploitation is fun too!

Point: Enabled Real-world successes!

Counterpoint: Those Deployments Come with "Hacks"

Point: An elegant formulation! **Counterpoint:** seen the notation?

Point: Tackles (Nearly) the Most General Problem

Counterpoint: Maybe *too* general?

Point: pivotal for AGI?

Counterpoint: AGI could just be Big Data + Scale?

Point: Exploration is fun!

Counterpoint: Exploitation is fun too!

Point: Enabled Real-world successes!

Counterpoint: Those Deployments Come with "Hacks"

The class will be challenging, and we hope you will enjoy it!

Point: An elegant formulation! **Counterpoint:** seen the notation?

Point: Tackles (Nearly) the Most General Problem

Counterpoint: Maybe *too* general?

Point: pivotal for AGI?

Counterpoint: AGI could just be Big Data + Scale?

Point: Exploration is fun!

Counterpoint: Exploitation is fun too!

Point: Enabled Real-world successes!

Counterpoint: Those Deployments Come with "Hacks"

Point: Yann said "abandon RL"!

The class will be challenging, and we hope you will enjoy it!

Point: An elegant formulation! **Counterpoint:** seen the notation?

Point: Tackles (Nearly) the Most General Problem

Counterpoint: Maybe *too* general?

Point: pivotal for AGI?

Counterpoint: AGI could just be Big Data + Scale?

Point: Exploration is fun!

Counterpoint: Exploitation is fun too!

Point: Enabled Real-world successes!

Counterpoint: Those Deployments Come with "Hacks"

Point: Yann said "abandon RL"!

Counterpoint: Yann also said "abandon generative models",

"abandon probabilistic models", and "abandon contrastive learning"!

The class will be challenging, and we hope you will enjoy it!

Today

- Logistics (Welcome!)
- Overview of RL

- Markov Decision Processes
 - Problem statement
 - Policy Evaluation

Finite Horizon Markov Decision Processes (MDPs): $\begin{array}{c} \text{state} \\ S_t \end{array}$ $\begin{array}{c} \text{reward} \\ R_t \end{array}$ $\begin{array}{c} \text{Environment} \end{array}$

• An MDP: $\mathcal{M} = \{\mu, S, A, P, r, H\}$

- An MDP: $\mathcal{M} = \{\mu, S, A, P, r, H\}$
 - μ is a distribution over initial states (sometimes we assume we start a given state s_0)

Sovel

- An MDP: $\mathcal{M} = \{\mu, S, A, P, r, H\}$
 - μ is a distribution over initial states (sometimes we assume we start a given state s_0)
 - *S* a set of states

- An MDP: $\mathcal{M} = \{\mu, S, A, P, r, H\}$
 - μ is a distribution over initial states (sometimes we assume we start a given state s_0)
 - S a set of states
 - A a set of actions

- An MDP: $\mathcal{M} = \{\mu, S, A, P, r, H\}$
 - μ is a distribution over initial states (sometimes we assume we start a given state s_0)
 - *S* a set of states
 - A a set of actions
 - $P: S \times A \mapsto \Delta(S)$ specifies the dynamics model, i.e. P(s'|s,a) is the probability of transitioning to s' form states s under action a
 - $r: S \times A \rightarrow [0,1]$
 - For now, let's assume this is a deterministic function

- An MDP: $\mathcal{M} = \{\mu, S, A, P, r, H\}$
 - μ is a distribution over initial states (sometimes we assume we start a given state s_0)
 - S a set of states
 - A a set of actions
 - $P: S \times A \mapsto \Delta(S)$ specifies the dynamics model, i.e. P(s'|s,a) is the probability of transitioning to s' form states s under action a
 - $r: S \times A \rightarrow [0,1]$
 - For now, let's assume this is a deterministic function
 - (sometimes we use a cost $c: S \times A \rightarrow [0,1]$)

- An MDP: $\mathcal{M} = \{\mu, S, A, P, r, H\}$
 - μ is a distribution over initial states (sometimes we assume we start a given state s_0)
 - S a set of states
 - A a set of actions
 - $P: S \times A \mapsto \Delta(S)$ specifies the dynamics model, i.e. P(s'|s,a) is the probability of transitioning to s' form states s under action a
 - $r: S \times A \rightarrow [0,1]$
 - For now, let's assume this is a deterministic function
 - (sometimes we use a cost $c: S \times A \rightarrow [0,1]$)
 - A time horizon $H \in \mathbb{N}$

Example: robot hand needs to pick the ball and hold it in a goal (x,y,z) position

Example:

robot hand needs to pick the ball and hold it in a goal (x,y,z) position

State *s*: robot configuration (e.g., joint angles) and the ball's position

Action a: Torque on joints in arm & fingers **Transition** $s' \sim P(\cdot \mid s, a)$: physics + some noise **policy** $\pi(s)$: a function mapping from robot state to action (i.e., torque)

reward/cost:

r(s, a): immediate reward at state (s, a)

c(s, a): torque magnitude + dist to goal

horizon: timescale H or discount factor γ

Example:

robot hand needs to pick the ball and hold it in a goal (x,y,z) position

State *s*: robot configuration (e.g., joint angles) and the ball's position

Action a: Torque on joints in arm & fingers **Transition** $s' \sim P(\cdot \mid s, a)$: physics + some noise **policy** $\pi(s)$: a function mapping from robot state to action (i.e., torque)

reward/cost:

r(s, a): immediate reward at state (s, a)

c(s, a): torque magnitude + dist to goal

horizon: timescale H or discount factor γ

$$\pi^* = \arg\min_{\pi} \mathbb{E} \left[c(s_0, a_0) + c(s_1, a_1) + 2c(s_2, a_2) + \dots + c(s_{H-1}, a_{H-1}) \, \middle| \, s_0, \pi \right]$$

- Policy $\pi:=\left\{\pi_0,\pi_1,...,\pi_{H-1}
 ight\}$
 - deterministic policies: $\pi_t : S \mapsto A$; stochastic policies: $\pi_t : S \mapsto \Delta(A)$
 - we also consider time-dependent policies (but not a function of the history)

- Policy $\pi := \left\{\pi_0, \pi_1, ..., \pi_{H-1}\right\}$
 - deterministic policies: $\pi_t : S \mapsto A$; stochastic policies: $\pi_t : S \mapsto \Delta(A)$
 - we also consider time-dependent policies (but not a function of the history)
- Sampling a trajectory τ on an episode: for a given policy π

- Policy $\pi := \left\{\pi_0, \pi_1, ..., \pi_{H-1}\right\}$
 - deterministic policies: $\pi_t : S \mapsto A$; stochastic policies: $\pi_t : S \mapsto \Delta(A)$
 - we also consider time-dependent policies (but not a function of the history)
- Sampling a trajectory τ on an episode: for a given policy π
 - Sample an initial state $s_0 \sim \mu$:

- Policy $\pi:=\left\{\pi_0,\pi_1,...,\pi_{H-1}
 ight\}$
 - deterministic policies: $\pi_t : S \mapsto A$; stochastic policies: $\pi_t : S \mapsto \Delta(A)$
 - we also consider time-dependent policies (but not a function of the history)
- Sampling a trajectory τ on an episode: for a given policy π
 - Sample an initial state $s_0 \sim \mu$:
 - For t = 0,1,2,...H-1
 - Take action $a_t \sim \pi_t(\cdot \mid s_t)$

$$Q_0 = T_0(\cdot | S_0)$$

$$Q_0 = T_0(\cdot | S_0)$$

- Policy $\pi := \left\{\pi_0, \pi_1, ..., \pi_{H-1}\right\}$
 - deterministic policies: $\pi_t : S \mapsto A$; stochastic policies: $\pi_t : S \mapsto \Delta(A)$
 - we also consider time-dependent policies (but not a function of the history)
- Sampling a trajectory τ on an episode: for a given policy π
 - Sample an initial state $s_0 \sim \mu$:
 - For t = 0,1,2,...H-1
 - Take action $a_t \sim \pi_t(\cdot \mid s_t)$
 - Observe reward $r_t = r(s_t, a_t)$

- Policy $\pi := \left\{\pi_0, \pi_1, ..., \pi_{H-1}\right\}$
 - deterministic policies: $\pi_t : S \mapsto A$; stochastic policies: $\pi_t : S \mapsto \Delta(A)$
 - we also consider time-dependent policies (but not a function of the history)
- Sampling a trajectory τ on an episode: for a given policy π
 - Sample an initial state $s_0 \sim \mu$:
 - For t = 0,1,2,...H-1
 - Take action $a_t \sim \pi_t(\cdot \mid s_t)$
 - Observe reward $r_t = r(s_t, a_t)$
 - Transition to (and observe) s_{t+1} where $s_{t+1} \sim P(\cdot \mid s_t, a_t)$

- Policy $\pi := \{\pi_0, \pi_1, ..., \pi_{H-1}\}$
 - deterministic policies: $\pi_t: S \mapsto A$; stochastic policies: $\pi_t: S \mapsto \Delta(A)$
 - we also consider time-dependent policies (but not a function of the history)
- Sampling a trajectory τ on an episode: for a given policy π
 - Sample an initial state $s_0 \sim \mu$:
 - For t = 0,1,2,...H-1
 - Take action $a_t \sim \pi_t(\cdot \mid s_t)$
 - Observe reward $r_t = r(s_t, a_t)$
 - Transition to (and observe) s_{t+1} where $s_{t+1} \sim P(\,\cdot\,|\,s_t,a_t)$ The sampled trajectory is $\tau = \{s_0,a_0,r_0,s_1,a_1,r_1,...,s_{H-1},a_{H-1},r_{H-1}\}$

$$Cl_0 = Tl_0[S_0]$$

$$Cl_1 = Tl_1[S_1]$$

• Probability of trajectory: let $\rho_{\pi,\mu}(\tau)$ denote the probability of observing trajectory $\tau = \{s_0, a_0, r_0, s_1, a_1, r_1, ..., s_{H-1}, a_{H-1}, r_{H-1}\}$ when acting under π with $s_0 \sim \mu$.

- Probability of trajectory: let $\rho_{\pi,\mu}(\tau)$ denote the probability of observing trajectory $\tau = \{s_0, a_0, r_0, s_1, a_1, r_1, ..., s_{H-1}, a_{H-1}, r_{H-1}\}$ when acting under π with $s_0 \sim \mu$.
 - Shorthand: we sometimes write ρ or ρ_{π} when π and/or μ are clear from context.

- Probability of trajectory: let $\rho_{\pi,\mu}(\tau)$ denote the probability of observing trajectory $\tau = \{s_0, a_0, r_0, s_1, a_1, r_1, ..., s_{H-1}, a_{H-1}, r_{H-1}\}$ when acting under π with $s_0 \sim \mu$.
 - Shorthand: we sometimes write ρ or ρ_{π} when π and/or μ are clear from context.
 - The rewards in this trajectory must be $r_t = r(s_t, a_t)$ (else $\rho_{\pi}(\tau) = 0$).

- Probability of trajectory: let $\rho_{\pi,\mu}(\tau)$ denote the probability of observing trajectory $\tau = \{s_0, a_0, r_0, s_1, a_1, r_1, ..., s_{H-1}, a_{H-1}, r_{H-1}\}$ when acting under π with $s_0 \sim \mu$.
 - Shorthand: we sometimes write ρ or ρ_{π} when π and/or μ are clear from context.
 - The rewards in this trajectory must be $r_t = r(s_t, a_t)$ (else $\rho_{\pi}(\tau) = 0$).
 - For π stochastic:

$$\rho_{\pi}(\tau) = \mu(s_0)\pi(a_0 \mid s_0)P(s_1 \mid s_0, a_0)\dots\pi(a_{H-2} \mid s_{H-2})P(s_{H-1} \mid s_{H-2}, a_{H-2})\pi(a_{H-1} \mid s_{H-1})$$

- Probability of trajectory: let $\rho_{\pi,\mu}(\tau)$ denote the probability of observing trajectory $\tau = \{s_0, a_0, r_0, s_1, a_1, r_1, ..., s_{H-1}, a_{H-1}, r_{H-1}\}$ when acting under π with $s_0 \sim \mu$.
 - Shorthand: we sometimes write ρ or ρ_{π} when π and/or μ are clear from context.
 - The rewards in this trajectory must be $r_t = r(s_t, a_t)$ (else $\rho_{\pi}(\tau) = 0$).
 - For π stochastic:

$$\rho_{\pi}(\tau) = \mu(s_0)\pi(a_0 \mid s_0)Pr(s_1 \mid s_0, a_0)\dots\pi(a_{H-2} \mid s_{H-2})Pr(s_{H-1} \mid s_{H-2}, a_{H-2})\pi(a_{H-1} \mid s_{H-1})$$

• For π deterministic:

$$\rho_{\pi}(\tau) = \mu(s_0) \mathbf{1} \left(a_0 = \pi(s_0) \right) Pr(s_1 \mid s_0, a_0) \dots Pr(s_{H-1} \mid s_{H-2}, a_{H-2}) \mathbf{1} \left(a_{H-1} = \pi(s_{H-1}) \right)$$

- Probability of trajectory: let $\rho_{\pi,\mu}(\tau)$ denote the probability of observing trajectory $\tau = \{s_0, a_0, r_0, s_1, a_1, r_1, ..., s_{H-1}, a_{H-1}, r_{H-1}\}$ when acting under π with $s_0 \sim \mu$.
 - Shorthand: we sometimes write ρ or ρ_{π} when π and/or μ are clear from context.
 - The rewards in this trajectory must be $r_t = r(s_t, a_t)$ (else $\rho_{\pi}(\tau) = 0$).
 - For π stochastic:

$$\rho_{\pi}(\tau) = \mu(s_0)\pi(a_0 \mid s_0)Pr(s_1 \mid s_0, a_0)\dots\pi(a_{H-2} \mid s_{H-2})Pr(s_{H-1} \mid s_{H-2}, a_{H-2})\pi(a_{H-1} \mid s_{H-1})$$

• For π deterministic:

$$\rho_{\pi}(\tau) = \mu(s_0) \mathbf{1} \left(a_0 = \pi(s_0) \right) Pr(s_1 \mid s_0, a_0) \dots Pr(s_{H-1} \mid s_{H-2}, a_{H-2}) \mathbf{1} \left(a_{H-1} = \pi(s_{H-1}) \right)$$

• Objective: find policy π that maximizes our expected cumulative episodic reward:

$$\max_{\pi} \mathbb{E}_{\tau \sim \rho_{\pi}} \left[r(s_0, a_0) + r(s_1, a_1) + \dots + r(s_{H-1}, a_{H-1}) \right]$$

S Today

- Logistics (Welcome!)
- Overview of RL
- Markov Decision Processes
 - Problem statement

Policy Evaluation

Hon many det policies are there?

 $(S) \circ H$

Quantities that allow us to reason policy's long-term effect:

Quantities that allow us to reason policy's long-term effect:

Value function
$$V_h^{\pi}(s) = \mathbb{E}\left[\sum_{t=h}^{H-1} r(s_t, a_t) \middle| s_h = s\right]$$

$$Q_n = \pi(S_n)$$
 $Q_{n+1} = \pi(S_{n+1})$

Quantities that allow us to reason policy's long-term effect:

Value function
$$V_h^{\pi}(s) = \mathbb{E}\left[\sum_{t=h}^{H-1} r(s_t, a_t) \middle| s_h = s\right]$$

• Q function
$$Q_h^{\pi}(s,a) = \mathbb{E}\left[\sum_{t=h}^{H-1} r(s_t,a_t) \middle| (s_h,a_h) = (s,a)\right]$$

$$Q_h \leftarrow Q_h \qquad Q_{h+1} \leftarrow Q_{h+1} \qquad Q_{h+1}$$

Value function and Q functions: To - det

value function and Q functions:

Quantities that allow us to reason policy's long-term effect:

Value function
$$V_h^{\pi}(s) = \mathbb{E}\left[\sum_{t=h}^{H-1} r(s_t, a_t) \middle| s_h = s\right]$$

• Q function
$$Q_h^{\pi}(s, a) = \mathbb{E}\left[\left.\sum_{t=h}^{H-1} r(s_t, a_t)\right| (s_h, a_h) = (s, a)\right]$$

$$V_{n}^{d} (S)$$

$$= Q_{h}^{d} (S) \pi_{h}(S)$$

• At the last stage, what are:

$$Q_{H-1}^{\pi}(s,a) = \bigvee \left(\sum \alpha \right)$$

$$V_{H-1}^{\pi}(s) = \bigvee \left(\sum_{H \in \Gamma} \left(S \right) \right)$$

Quantities that allow us to reason policy's long-term effect:

Value function
$$V_h^{\pi}(s) = \mathbb{E}\left[\sum_{t=h}^{H-1} r(s_t, a_t) \middle| s_h = s\right]$$

• Q function
$$Q_h^{\pi}(s,a) = \mathbb{E}\left[\left.\sum_{t=h}^{H-1} r(s_t,a_t)\right|(s_h,a_h) = (s,a)\right]$$

At the last stage, what are:

$$Q_{H-1}^{\pi}(s,a) = V_{H-1}^{\pi}(s) =$$

• Objective: (remember $s_0 \sim \mu$) $\max_{\pi} \mathbb{E}_{\tau \sim \rho_{\pi,\mu}} \left[r(s_0, a_0) + r(s_1, a_1) + \ldots + r(s_{H-1}, a_{H-1}) \right] =$

Consider the following **deterministic** MDP w/ 3 states & 2 actions, with H=3

Consider the following **deterministic** MDP w/ 3 states & 2 actions, with H = 3

• Consider the deterministic policy $\pi_0(s) = A, \pi_1(s) = A, \pi_2(s) = B, \forall s$

Consider the following **deterministic** MDP w/ 3 states & 2 actions, with H=3

- Consider the deterministic policy $\pi_0(s) = A, \pi_1(s) = A, \pi_2(s) = B, \forall s$
- What is V^{π} ?

Consider the following **deterministic** MDP w/ 3 states & 2 actions, with H = 3

- Consider the deterministic policy $\pi_0(s) = A, \pi_1(s) = A, \pi_2(s) = B, \forall s$
- What is V^{π} ? $V_2^{\pi}(a) = 0, V_2^{\pi}(b) = 0, V_2^{\pi}(c) = 0$

Consider the following **deterministic** MDP w/ 3 states & 2 actions, with H = 3

- Consider the deterministic policy $\pi_0(s) = A, \pi_1(s) = A, \pi_2(s) = B, \forall s$
- What is V^{π} ? $V_2^{\pi}(a) = 0, V_2^{\pi}(b) = 0, V_2^{\pi}(c) = 0$ $V_1^{\pi}(a) = 0, V_1^{\pi}(b) = 1, V_1^{\pi}(c) = 0$

Consider the following **deterministic** MDP w/ 3 states & 2 actions, with H=3

- Consider the deterministic policy $\pi_0(s) = A, \pi_1(s) = A, \pi_2(s) = B, \forall s$
- What is V^{π} ? $V_2^{\pi}(a) = 0, V_2^{\pi}(b) = 0, V_2^{\pi}(c) = 0$

$$V_1^{\pi}(a) = 0, V_1^{\pi}(b) = 1, V_1^{\pi}(c) = 0$$

$$V_0^{\pi}(a) = 1, V_0^{\pi}(b) = 2, V_0^{\pi}(c) = 1$$

Summary:

- Finite horizon MDPs (a framework for RL):
- Key concepts:

V and Q functions; sampling a trajectory $\rho_{\pi}(\tau)$; Bellman consistency equations;