Reinforcement Learning \& Markov Decision Processes

Lucas Janson and Sham Kakade

CS/Stat 184: Introduction to Reinforcement Learning
Fall 202\% 3

Today

- Logistics (Welcome!)
- Overview of RL
- Markov Decision Processes
- Problem statement
- Policy Evaluation

Course staff introductions

Course staff introductions

- Instructors: Lucas Janson and Sham Kakade

Course staff introductions

- Instructors: Lucas Janson and Sham Kakade
-TFs: Benjamin Schiffer

Course staff introductions

- Instructors: Lucas Janson and Sham Kakade
-TFs: Benjamin Schiffer
- CAs: Luke Bailey, Alex Dazhen Cai, Kevin Yee Du, Kevin Yifan Huang, Saket Joshi, Thomas Kaminsky, Patrick McDonald, Eric Meng Shen, Natnael Mekuria Teshome

Course staff introductions

- Instructors: Lucas Janson and Sham Kakade
- TFs: Benjamin Schiffer
- CAs: Luke Bailey, Alex Dazhen Cai, Kevin Yee Du, Kevin Yifan Huang, Saket Joshi, Thomas Kaminsky, Patrick McDonald, Eric Meng Shen, Natnael Mekuria Teshome
-Homework 0 is posted today!
- This is "review" homework for material you should be familiar with to take the course.

Course Overview

All policies are stated on the course website: https://shamulent.github.io/CS_Stat184_Fall23.html

Course Overview

All policies are stated on the course website: https://shamulent.github.io/CS_Stat184_Fall23.html

- We want u to obtain fundamental and practical knowledge of RL.

Course Overview

All policies are stated on the course website: https://shamulent.github.io/CS_Stat184_Fall23.html

- We want u to obtain fundamental and practical knowledge of RL.
- Grades: Participation; HW0 +HW1-HW4; Midterm; Project

Course Overview

All policies are stated on the course website: https://shamulent.github.io/CS_Stat184_Fall23.html

- We want u to obtain fundamental and practical knowledge of RL.
- Grades: Participation; HW0 +HW1-HW4; Midterm; Project
- Participation (5\%): not meant to be onerous (see website)
- Just attending regularly will suffice (tbd: we'll have some web form per class)
- If you can't, then increase your participation in Ed/section.
- Let us know if you some responsibility, let us know via Ed.

Course Overview

All policies are stated on the course website: https://shamulent.github.io/CS_Stat184_Fall23.html

- We want u to obtain fundamental and practical knowledge of RL.
- Grades: Participation; HW0 +HW1-HW4; Midterm; Project
- Participation (5\%): not meant to be onerous (see website)
- Just attending regularly will suffice (tbd: we'll have some web form per class)
- If you can't, then increase your participation in Ed/section.
- Let us know if you some responsibility, let us know via Ed.
- HWs (45\%): will have math and programming components.
-We will have an "embedded ethics lecture" + assignment

Course Overview

All policies are stated on the course website: https://shamulent.github.io/CS_Stat184_Fall23.html

- We want u to obtain fundamental and practical knowledge of RL.
- Grades: Participation; HW0 +HW1-HW4; Midterm; Project
- Participation (5\%): not meant to be onerous (see website)
- Just attending regularly will suffice (tbd: we'll have some web form per class)
- If you can't, then increase your participation in Ed/section.
- Let us know if you some responsibility, let us know via Ed.
- HWs (45\%): will have math and programming components.
- We will have an "embedded ethics lecture" + assignment
- Midterm (20\%): this will be in class. Date to be finalized soon.

Course Overview

All policies are stated on the course website: https://shamulent.github.io/CS_Stat184_Fall23.html

- We want u to obtain fundamental and practical knowledge of RL.
- Grades: Participation; HW0 +HW1-HW4; Midterm; Project
- Participation (5\%): not meant to be onerous (see website)
- Just attending regularly will suffice (tbd: we'll have some web form per class)
- If you can't, then increase your participation in Ed/section.
- Let us know if you some responsibility, let us know via Ed.
- HWs (45\%): will have math and programming components.
- We will have an "embedded ethics lecture" + assignment
- Midterm (20\%): this will be in class. Date to be finalized soon.
- Project (30\%): 2-3 people per project. Will be empirical.

Other Points

Other Points

- Our policies aim for consistency among all the students.

Other Points

- Our policies aim for consistency among all the students.
- Participation: we will have a web-based attendance form (TBD)

Other Points

- Our policies aim for consistency among all the students.
- Participation: we will have a web-based attendance form (TBD)
-Communication: please only use Ed to contact us
- Late policy (basically): you have 96 cumulative hours of late time.

Other Points

- Our policies aim for consistency among all the students.
- Participation: we will have a web-based attendance form (TBD)
-Communication: please only use Ed to contact us
- Late policy (basically): you have 96 cumulative hours of late time.
- Please use this to plan for unforeseen circumstances.

Other Points

- Our policies aim for consistency among all the students.
- Participation: we will have a web-based attendance form (TBD)
-Communication: please only use Ed to contact us
- Late policy (basically): you have 96 cumulative hours of late time.
- Please use this to plan for unforeseen circumstances.
- Regrading: ask us in writing on Ed within a week

Today

- Logistics (Welcome!)
- Overview of RL
- Markov Decision Processes
- Problem statement
- Policy Evaluation

The RL Setting, basically

Many RL Successes

TD GAMMON [Tesauro 95]

[OpenAI, 19]

[AlphaZero, Silver et.al, 17]

[OpenAl Five, 18]
Supply chain management

Supply Chains [Madeka et al '23]

Many Future RL Challenges

Vs Other Settings

	Learn from Experience	Generalize	Interactive	Exploration	Credit assignment
Supervised Learning	N				
Bandits ("horizon 1"-RL)					
Reinforcement Learning	W				

Vs Other Settings

	Learn from Experience	Generalize	Interactive	Exploration	Credit assignment
Supervised Learning	N				
Bandits ("horizon 1"-RL)					
Reinforcement Learning					

Vs Other Settings

	Learn from Experience	Generalize	Interactive	Exploration	Credit assignment
Supervised Learning					
Bandits ("horizon 1"-RL)					
Reinforcement Learning					


```
Online Advertising
```


Point/Counterpoint: Why Should/Shouldn't You Study RL?

Point/Counterpoint: Why Should/Shouldn't You Study RL?
Point: An elegant formulation! MDHS, 2 MK, MAB

Point/Counterpoint: Why Should/Shouldn’t You Study RL?

Point: An elegant formulation! Counterpoint: seen the notation?

Point/Counterpoint: Why Should/Shouldn’t You Study RL?

Point: An elegant formulation! Counterpoint: seen the notation?

Point: Tackles (Nearly) the Most General Problem

Point/Counterpoint: Why Should/Shouldn’t You Study RL?

Point: An elegant formulation! Counterpoint: seen the notation?

Point: Tackles (Nearly) the Most General Problem Counterpoint: Maybe too general?

Point/Counterpoint: Why Should/Shouldn’t You Study RL?

Point: An elegant formulation! Counterpoint: seen the notation?

Point: Tackles (Nearly) the Most General Problem Counterpoint: Maybe too general?

Point: pivotal for AGI?

Point/Counterpoint: Why Should/Shouldn’t You Study RL?

Point: An elegant formulation!
Counterpoint: seen the notation?
Point: Tackles (Nearly) the Most General Problem Counterpoint: Maybe too general?

Point: pivotal for AGI? Counterpoint: AGl could just be Big Data + Scale?

Point/Counterpoint: Why Should/Shouldn’t You Study RL?

Point: An elegant formulation! Counterpoint: seen the notation?

Point: Tackles (Nearly) the Most General Problem Counterpoint: Maybe too general?

Point: pivotal for AGI? Counterpoint: AGl could just be Big Data + Scale?

Point: Exploration is fun!

Point/Counterpoint: Why Should/Shouldn’t You Study RL?

Point: An elegant formulation! Counterpoint: seen the notation?

Point: Tackles (Nearly) the Most General Problem Counterpoint: Maybe too general?

Point: pivotal for AGl? Counterpoint: AGl could just be Big Data + Scale?

Point: Exploration is fun!
Counterpoint: Exploitation is fun too!

Point/Counterpoint: Why Should/Shouldn’t You Study RL?

Point: An elegant formulation! Counterpoint: seen the notation?

Point: Tackles (Nearly) the Most General Problem Counterpoint: Maybe too general?

Point: pivotal for AGl? Counterpoint: AGl could just be Big Data + Scale?

Point: Exploration is fun! Counterpoint: Exploitation is fun too!

Point: Enabled Real-world successes!

Point/Counterpoint: Why Should/Shouldn’t You Study RL?

Point: An elegant formulation!
Counterpoint: seen the notation?
Point: Tackles (Nearly) the Most General Problem Counterpoint: Maybe too general?

Point: pivotal for AGl? Counterpoint: AGl could just be Big Data + Scale?

Point: Exploration is fun! Counterpoint: Exploitation is fun too!

Point: Enabled Real-world successes!
 Counterpoint: Those Deployments Come with "Hacks"

Point/Counterpoint: Why Should/Shouldn't You Study RL?

Point: An elegant formulation!
Counterpoint: seen the notation?
Point: Tackles (Nearly) the Most General Problem Counterpoint: Maybe too general?

Point: pivotal for AGI? Counterpoint: AGl could just be Big Data + Scale?

Point: Exploration is fun!
Counterpoint: Exploitation is fun too!
Point: Enabled Real-world successes!
Counterpoint: Those Deployments Come with "Hacks"

> The class will be challenging, and we hope you will enjoy it!

Point/Counterpoint: Why Should/Shouldn't You Study RL?

Point: An elegant formulation! Counterpoint: seen the notation?

Point: Tackles (Nearly) the Most General Problem Counterpoint: Maybe too general?

Point: pivotal for AGI? Counterpoint: AGl could just be Big Data + Scale?

Point: Exploration is fun!
Counterpoint: Exploitation is fun too!
Point: Enabled Real-world successes!
Counterpoint: Those Deployments Come with "Hacks"
Point: Yann said "abandon RL"!

> The class will be challenging, and we hope you will enjoy it!

Point/Counterpoint: Why Should/Shouldn't You Study RL?

Point: An elegant formulation! Counterpoint: seen the notation?

Point: Tackles (Nearly) the Most General Problem Counterpoint: Maybe too general?

Point: pivotal for AGI? Counterpoint: AGl could just be Big Data + Scale?

Point: Exploration is fun!
Counterpoint: Exploitation is fun too!
Point: Enabled Real-world successes!
Counterpoint: Those Deployments Come with "Hacks"
Point: Yann said "abandon RL"!
Counterpoint: Yann also said "abandon generative models", "abandon probabilistic models", and "abandon contrastive learning"!

> The class will be challenging, and we hope you will enjoy it!

Today

- Logistics (Welcome!)
- Overview of RL
- Markov Decision Processes
- Problem statement
- Policy Evaluation

Finite Horizon Markov Decision Processes (MDPs):

Finite Horizon Markov Decision Processes (MDPs):

- An MDP: $\mathscr{M}=\{\mu, S, A, P, r, H\}$

Finite Horizon Markov Decision Processes (MDPs):

- An MDP: $\mathscr{M}=\{\mu, S, A, P, r, H\}$
- μ is a distribution over initial states (sometimes we assume we start a given state s_{0})

Finite Horizon Markov Decision Processes (MDPs):

- An MDP: $\mathbb{M}=\{\mu, S, A, P, r, H\}$
- μ is a distribution over initial states (sometimes we assume we start a given state s_{0})

- S a set of states

Finite Horizon Markov Decision Processes (MDPs):

- An MDP: $\mathscr{M}=\{\mu, S, A, P, r, H\}$
- μ is a distribution over initial states (sometimes we assume we start a given state s_{0})

- S a set of states
- A a set of actions

Finite Horizon Markov Decision Processes (MDPs):

- An MDP: $\mathscr{M}=\{\mu, S, A, P, r, H\}$
- μ is a distribution over initial states
(sometimes we assume we start a given state s_{0})

- S a set of states
- $P: S \times A \mapsto \Delta(S)$ specifies the dynamics model,
ie. $P\left(s^{\prime} \mid s, a\right)$ is the probability of transitioning to s^{\prime} form states s under action a
- $r: S \times A \rightarrow[0,1]$
- For now, let's assume this is a deterministic function

Finite Horizon Markov Decision Processes (MDPs):

- An MDP: $\mathscr{M}=\{\mu, S, A, P, r, H\}$
- μ is a distribution over initial states
(sometimes we assume we start a given state s_{0})

- S a set of states
- A a set of actions
- $P: S \times A \mapsto \Delta(S)$ specifies the dynamics model,
i.e. $P\left(s^{\prime} \mid s, a\right)$ is the probability of transitioning to s^{\prime} form states s under action a
- $r: S \times A \rightarrow[0,1]$
- For now, let's assume this is a deterministic function
- (sometimes we use a cost $c: S \times A \rightarrow[0,1])$

Finite Horizon Markov Decision Processes (MDPs):

- An MDP: $\mathbb{M}=\{\mu, S, A, P, r, H\}$
- μ is a distribution over initial states
(sometimes we assume we start a given state s_{0})

- S a set of states
- A a set of actions
- $P: S \times A \mapsto \Delta(S)$ specifies the dynamics model,
i.e. $P\left(s^{\prime} \mid s, a\right)$ is the probability of transitioning to s^{\prime} form states s under action a
- $r: S \times A \rightarrow[0,1]$
- For now, let's assume this is a deterministic function
- (sometimes we use a cost $c: S \times A \rightarrow[0,1])$
- A time horizon $H \in \mathbb{N}$

Example:

robot hand needs to pick the ball and hold it in a goal ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) position

Example:

robot hand needs to pick the ball and hold it in a goal (x, y, z) position
State s : robot configuration (e.g., joint angles) and the ball's position
Action a : Torque on joints in arm \& fingers
Transition $s^{\prime} \sim P(\cdot \mid s, a)$: physics + some noise policy $\pi(s)$: a function mapping from robot state to action (i.e., torque) reward/cost:
$r(s, a)$: immediate reward at state (s, a) $c(s, a)$: torque magnitude + dist to goal horizon: timescale H or discomptactory

Example:

robot hand needs to pick the ball and hold it in a goal (x, y, z) position
State s : robot configuration (e.g., joint angles)
and the ball's position
Action a : Torque on joints in arm \& fingers
Transition $s^{\prime} \sim P(\cdot \mid s, a)$: physics + some noise policy $\pi(s)$: a function mapping from robot state to action (i.e., torque) reward/cost:
$r(s, a)$: immediate reward at state (s, a) $c(s, a)$: torque magnitude + dist to goal horizon: timescale H or discount factor γ

$$
\pi^{\star}=\arg \min _{\pi} \mathbb{E}\left[c\left(s_{0}, a_{0}\right)+c\left(s_{1}, a_{1}\right)+2 c\left(s_{2}, a_{2}\right)+\ldots c\left(s_{H-1}, a_{H-1}\right) \mid s_{0}, \pi\right]
$$

The Episodic Setting and Trajectories

The Episodic Setting and Trajectories

- Policy $\pi:=\left\{\pi_{0}, \pi_{1}, \ldots, \pi_{H-1}\right\}$
- deterministic policies: $\pi_{t}: S \mapsto A$; stochastic policies: $\pi_{t}: S \mapsto \Delta(A)$
- we also consider time-dependent policies (but not a function of the history)

The Episodic Setting and Trajectories

- Policy $\pi:=\left\{\pi_{0}, \pi_{1}, \ldots, \pi_{H-1}\right\}$
- deterministic policies: $\pi_{t}: S \mapsto A$; stochastic policies: $\pi_{t}: S \mapsto \Delta(A)$
- we also consider time-dependent policies (but not a function of the history)
- Sampling a trajectory τ on an episode: for a given policy π

The Episodic Setting and Trajectories

- Policy $\pi:=\left\{\pi_{0}, \pi_{1}, \ldots, \pi_{H-1}\right\}$
- deterministic policies: $\pi_{t}: S \mapsto A$; stochastic policies: $\pi_{t}: S \mapsto \Delta(A)$
- we also consider time-dependent policies (but not a function of the history)
- Sampling a trajectory τ on an episode: for a given policy π
- Sample an initial state $s_{0} \sim \mu$:

The Episodic Setting and Trajectories

- Policy $\pi:=\left\{\pi_{0}, \pi_{1}, \ldots, \pi_{H-1}\right\}$
- deterministic policies: $\pi_{t}: S \mapsto A$; stochastic policies: $\pi_{t}: S \mapsto \Delta(A)$
- we also consider time-dependent policies (but not a function of the history)
- Sampling a trajectory τ on an episode: for a given policy π
- Sample an initial state $s_{0} \sim \mu$:
- For $t=0,1,2, \ldots H-1$
- Take action $a_{t} \sim \pi_{t}\left(\cdot \mid s_{t}\right)$

The Episodic Setting and Trajectories

- Policy $\pi:=\left\{\pi_{0}, \pi_{1}, \ldots, \pi_{H-1}\right\}$
- deterministic policies: $\pi_{t}: S \mapsto A$; stochastic policies: $\pi_{t}: S \mapsto \Delta(A)$
- we also consider time-dependent policies (but not a function of the history)
- Sampling a trajectory τ on an episode: for a given policy π
- Sample an initial state $s_{0} \sim \mu$:
- For $t=0,1,2, \ldots H-1$
- Take action $a_{t} \sim \pi_{t}\left(\cdot \mid s_{t}\right)$
- Observe reward $r_{t}=r\left(s_{t}, a_{t}\right)$

The Episodic Setting and Trajectories

- Policy $\pi:=\left\{\pi_{0}, \pi_{1}, \ldots, \pi_{H-1}\right\}$
- deterministic policies: $\pi_{t}: S \mapsto A$; stochastic policies: $\pi_{t}: S \mapsto \Delta(A)$
- we also consider time-dependent policies (but not a function of the history)
- Sampling a trajectory τ on an episode: for a given policy π
- Sample an initial state $s_{0} \sim \mu$:
- For $t=0,1,2, \ldots H-1$
- Take action $a_{t} \sim \pi_{t}\left(\cdot \mid s_{t}\right)$
- Observe reward $r_{t}=r\left(s_{t}, a_{t}\right)$

- Transition to (and observe) s_{t+1} where $s_{t+1} \sim P\left(\cdot \mid s_{t}, a_{t}\right)$

The Episodic Setting and Trajectories

- Policy $\pi:=\left\{\pi_{0}, \pi_{1}, \ldots, \pi_{H-1}\right\}$
- deterministic policies: $\pi_{t}: S \mapsto A$; stochastic policies: $\pi_{t}: S \mapsto \Delta(A)$
- we also consider time-dependent policies (but not a function of the history)
- Sampling a trajectory τ on an episode: for a given policy π
- Sample an initial state $s_{0} \sim \mu$:

$$
a_{0}=\pi_{0}\left(S_{0}\right)
$$

- For $t=0,1,2, \ldots H-1$
- Take action $a_{t} \sim \pi_{t}\left(\cdot \mid s_{t}\right)$

$$
u_{1}=\pi_{1}\left(S_{1}\right)
$$

- Observe reward $r_{t}=r\left(s_{t}, a_{t}\right)$
- Transition to (and observe) s_{t+1} where $s_{t+1} \sim P\left(\cdot \mid s_{t}, a_{t}\right)$
- The sampled trajectory is $\tau=\left\{s_{0}, a_{0}, r_{0}, s_{1}, a_{1}, r_{1}, \ldots, s_{H-1}, a_{H-1}, r_{H-1}\right\}$

The Probability of a Trajectory \& The Objective

The Probability of a Trajectory \& The Objective

- Probability of trajectory: let $\rho_{\pi, \mu}(\tau)$ denote the probability of observing trajectory $\tau=\left\{s_{0}, a_{0}, r_{0}, s_{1}, a_{1}, r_{1}, \ldots, s_{H-1}, a_{H-1}, r_{H-1}\right\}$ when acting under π with $s_{0} \sim \mu$.

The Probability of a Trajectory \& The Objective

- Probability of trajectory: let $\rho_{\pi, \mu}(\tau)$ denote the probability of observing trajectory $\tau=\left\{s_{0}, a_{0}, r_{0}, s_{1}, a_{1}, r_{1}, \ldots, s_{H-1}, a_{H-1}, r_{H-1}\right\}$ when acting under π with $s_{0} \sim \mu$.
- Shorthand: we sometimes write ρ or ρ_{π} when π and/or μ are clear from context.

The Probability of a Trajectory \& The Objective

- Probability of trajectory: let $\rho_{\pi, \mu}(\tau)$ denote the probability of observing trajectory $\tau=\left\{s_{0}, a_{0}, r_{0}, s_{1}, a_{1}, r_{1}, \ldots, s_{H-1}, a_{H-1}, r_{H-1}\right\}$ when acting under π with $s_{0} \sim \mu$.
- Shorthand: we sometimes write ρ or ρ_{π} when π and/or μ are clear from context.
- The rewards in this trajectory must be $r_{t}=r\left(s_{t}, a_{t}\right)$ (else $\left.\rho_{\pi}(\tau)=0\right)$.

The Probability of a Trajectory \& The Objective

- Probability of trajectory: let $\rho_{\pi, \mu}(\tau)$ denote the probability of observing trajectory $\tau=\left\{s_{0}, a_{0}, r_{0}, s_{1}, a_{1}, r_{1}, \ldots, s_{H-1}, a_{H-1}, r_{H-1}\right\}$ when acting under π with $s_{0} \sim \mu$.
- Shorthand: we sometimes write ρ or ρ_{π} when π and/or μ are clear from context.
- The rewards in this trajectory must be $r_{t}=r\left(s_{t}, a_{t}\right)$ (else $\left.\rho_{\pi}(\tau)=0\right)$.
- For π stochastic:

$$
\rho_{\pi}(\tau)=\mu\left(s_{0}\right) \pi\left(a_{0} \mid s_{0}\right) P\left(s_{1} \mid s_{0}, a_{0}\right) \ldots \pi\left(a_{H-2} \mid s_{H-2}\right) P\left(s_{H-1} \mid s_{H-2}, a_{H-2}\right) \pi\left(a_{H-1} \mid s_{H-1}\right)
$$

The Probability of a Trajectory \& The Objective

- Probability of trajectory: let $\rho_{\pi, \mu}(\tau)$ denote the probability of observing trajectory $\tau=\left\{s_{0}, a_{0}, r_{0}, s_{1}, a_{1}, r_{1}, \ldots, s_{H-1}, a_{H-1}, r_{H-1}\right\}$ when acting under π with $s_{0} \sim \mu$.
- Shorthand: we sometimes write ρ or ρ_{π} when π and/or μ are clear from context.
- The rewards in this trajectory must be $r_{t}=r\left(s_{t}, a_{t}\right)$ (else $\left.\rho_{\pi}(\tau)=0\right)$.
- For π stochastic:

$$
\rho_{\pi}(\tau)=\mu\left(s_{0}\right) \pi\left(a_{0} \mid s_{0}\right) \operatorname{Pr}\left(s_{1} \mid s_{0}, a_{0}\right) \ldots \pi\left(a_{H-2} \mid s_{H-2}\right) \operatorname{Pr}\left(s_{H-1} \mid s_{H-2}, a_{H-2}\right) \pi\left(a_{H-1} \mid s_{H-1}\right)
$$

- For π deterministic:

$$
\rho_{\pi}(\tau)=\mu\left(s_{0}\right) \mathbf{1}\left(a_{0}=\pi\left(s_{0}\right)\right) \operatorname{Pr}\left(s_{1} \mid s_{0}, a_{0}\right) \ldots \operatorname{Pr}\left(s_{H-1} \mid s_{H-2}, a_{H-2}\right) \mathbf{1}\left(a_{H-1}=\pi\left(s_{H-1}\right)\right)
$$

The Probability of a Trajectory \& The Objective

- Probability of trajectory: let $\rho_{\pi, \mu}(\tau)$ denote the probability of observing trajectory $\tau=\left\{s_{0}, a_{0}, r_{0}, s_{1}, a_{1}, r_{1}, \ldots, s_{H-1}, a_{H-1}, r_{H-1}\right\}$ when acting under π with $s_{0} \sim \mu$.
- Shorthand: we sometimes write ρ or ρ_{π} when π and/or μ are clear from context.
- The rewards in this trajectory must be $r_{t}=r\left(s_{t}, a_{t}\right)$ (else $\left.\rho_{\pi}(\tau)=0\right)$.
- For π stochastic:

$$
\rho_{\pi}(\tau)=\mu\left(s_{0}\right) \pi\left(a_{0} \mid s_{0}\right) \operatorname{Pr}\left(s_{1} \mid s_{0}, a_{0}\right) \ldots \pi\left(a_{H-2} \mid s_{H-2}\right) \operatorname{Pr}\left(s_{H-1} \mid s_{H-2}, a_{H-2}\right) \pi\left(a_{H-1} \mid s_{H-1}\right)
$$

- For π deterministic:

$$
\rho_{\pi}(\tau)=\mu\left(s_{0}\right) \mathbf{1}\left(a_{0}=\pi\left(s_{0}\right)\right) \operatorname{Pr}\left(s_{1} \mid s_{0}, a_{0}\right) \ldots \operatorname{Pr}\left(s_{H-1} \mid s_{H-2}, a_{H-2}\right) \mathbf{1}\left(a_{H-1}=\pi\left(s_{H-1}\right)\right)
$$

- Objective: find policy π that maximizes our expected cumulative episodic reward:

$$
\max _{\pi} \mathbb{E}_{\tau \sim \rho_{\pi}}\left[r\left(s_{0}, a_{0}\right)+r\left(s_{1}, a_{1}\right)+\ldots+r\left(s_{H-1}, a_{H-1}\right)\right]
$$

- Logistics (Welcome!)
- Overview of RL
- Markov Decision Processes
- Problem statement
- Policy Evaluation

$$
S=\begin{array}{rllll}
1 & 2, & & \cdots & 10 \\
a & a & a & \cdots & a \\
b & a & a & a & \\
& a
\end{array}
$$

How many
deft. policies
are there?

Value function and \mathbf{Q} functions:

Quantities that allow us to reason policy's long-term effect:

Value function and Q functions:

Quantities that allow us to reason policy's long-term effect:

$$
\begin{aligned}
& \text { Value function } V_{h}^{\pi}(s)=\mathbb{E}\left[\sum_{t=h}^{H-1} r\left(s_{t}, a_{t}\right) \mid s_{h}=s\right] \\
& =\left\{\int_{n}+r_{n+1}+\cdots T_{H-1} S_{n}=S_{n+1}=\pi\left(S_{n+1}\right)\right.
\end{aligned}
$$

Value function and Q functions:

Quantities that allow us to reason policy's long-term effect:

- Value function $V_{h}^{\pi}(s)=\mathbb{E}\left[\sum_{t=h}^{H-1} r\left(s_{t}, a_{t}\right) \mid s_{h}=s\right]$
- Q function $Q_{h}^{\pi}(s, a)=\mathbb{E}\left[\sum_{t=h}^{H-1} r\left(s_{t}, a_{t}\right) \mid\left(s_{h}, a_{h}\right)=(s, a)\right]$
$\bigcap_{n}+\cdots \cdots V_{H-1}$
$a_{n}=a, \quad a_{n+1}=\pi\left(s_{n+1}\right)$

Value function and Q functions:

Quantities that allow us to reason policy's long-term effect:

- Value function $V_{h}^{\pi}(s)=\mathbb{E}\left[\sum_{t=h}^{H-1} r\left(s_{t}, a_{t}\right) \mid s_{h}=s\right]$

Q function $Q_{h}^{\pi}(s, a)=\mathbb{E}\left[\sum_{t=h}^{H-1} r\left(s_{t}, a_{t}\right) \mid\left(s_{h}, a_{h}\right)=(s, a)\right]$

$$
V_{n}^{\pi}(S)
$$

$$
=\psi_{h}^{\pi}\left(s, \pi_{n}(s)\right)
$$

- At the last stage, what are:

$$
Q_{H-1}^{\pi}(s, a)=\vee\left(S_{r} q\right) \quad V_{H-1}^{\pi}(s)=r(\overbrace{H \rightarrow r}(S))
$$

Value function and Q functions:

Quantities that allow us to reason policy's long-term effect:

- Value function $V_{h}^{\pi}(s)=\mathbb{E}\left[\sum_{t=h}^{H-1} r\left(s_{t}, a_{t}\right) \mid s_{h}=s\right]$
- Q function $Q_{h}^{\pi}(s, a)=\mathbb{E}\left[\sum_{t=h}^{H-1} r\left(s_{t}, a_{t}\right) \mid\left(s_{h}, a_{h}\right)=(s, a)\right]$
- At the last stage, what are:

$$
Q_{H-1}^{\pi}(s, a)=
$$

$$
V_{H-1}^{\pi}(s)=
$$

- Objective: (remember $s_{0} \sim \mu$) $\max \mathbb{E}_{\tau \sim \rho_{\pi, \mu}}\left[r\left(s_{0}, a_{0}\right)+r\left(s_{1}, a_{1}\right)+\ldots+r\left(s_{H-1}, a_{H-1}\right)\right]=$

Example of Policy Evaluation (e.g. computing V^{π} and Q^{π})

Consider the following deterministic MDP w/ 3 states \& 2 actions, with $H=3$

Example of Policy Evaluation (e.g. computing V^{π} and Q^{π})

Consider the following deterministic MDP w/ 3 states \& 2 actions, with $H=3$

- Consider the deterministic policy

$$
\pi_{0}(s)=A, \pi_{1}(s)=A, \pi_{2}(s)=B, \forall s
$$

Example of Policy Evaluation (e.g. computing V^{π} and Q^{π})

Consider the following deterministic MDP w/ 3 states \& 2 actions, with $H=3$

- Consider the deterministic policy

$$
\pi_{0}(s)=A, \pi_{1}(s)=A, \pi_{2}(s)=B, \forall s
$$

- What is V^{π} ?

Example of Policy Evaluation (e.g. computing V^{π} and Q^{π})

Consider the following deterministic MDP w/ 3 states \& 2 actions, with $H=3$

- Consider the deterministic policy

$$
\pi_{0}(s)=A, \pi_{1}(s)=A, \pi_{2}(s)=B, \forall s
$$

- What is V^{π} ?

$$
V_{2}^{\pi}(a)=0, V_{2}^{\pi}(b)=0, V_{2}^{\pi}(c)=0
$$

Example of Policy Evaluation (e.g. computing V^{π} and Q^{π})

Consider the following deterministic MDP w/ 3 states \& 2 actions, with $H=3$

- Consider the deterministic policy

$$
\pi_{0}(s)=A, \pi_{1}(s)=A, \pi_{2}(s)=B, \forall s
$$

- What is V^{π} ?

$$
\begin{aligned}
& V_{2}^{\pi}(a)=0, V_{2}^{\pi}(b)=0, V_{2}^{\pi}(c)=0 \\
& V_{1}^{\pi}(a)=0, V_{1}^{\pi}(b)=1, V_{1}^{\pi}(c)=0
\end{aligned}
$$

Example of Policy Evaluation (e.g. computing V^{π} and Q^{π})

Consider the following deterministic MDP w/ 3 states \& 2 actions, with $H=3$

- Consider the deterministic policy

$$
\pi_{0}(s)=A, \pi_{1}(s)=A, \pi_{2}(s)=B, \forall s
$$

- What is V^{π} ?

$$
\begin{aligned}
& V_{2}^{\pi}(a)=0, V_{2}^{\pi}(b)=0, V_{2}^{\pi}(c)=0 \\
& V_{1}^{\pi}(a)=0, V_{1}^{\pi}(b)=1, V_{1}^{\pi}(c)=0 \\
& V_{0}^{\pi}(a)=1, V_{0}^{\pi}(b)=2, V_{0}^{\pi}(c)=1
\end{aligned}
$$

Summary:

- Finite horizon MDPs (a framework for RL):
- Key concepts:

V and Q functions; sampling a trajectory $\rho_{\pi}(\tau)$; Bellman consistencyequations;

