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Today

• Logistics (Welcome!)

• Overview of RL

• Markov Decision Processes


• Problem statement

• Policy Evaluation
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Course staff introductions

• Instructors: Lucas Janson and Sham Kakade
•TFs: Benjamin Schiffer 
•CAs: Luke Bailey, Alex Dazhen Cai, Kevin Yee Du, Kevin Yifan 
Huang, Saket Joshi, Thomas Kaminsky, Patrick McDonald, Eric 
Meng Shen, Natnael Mekuria Teshome
•Homework 0 is posted today!
•This is “review” homework for material you should be familiar with 
to take the course.
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Course Overview
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• Just attending regularly will suffice (tbd: we’ll have some web form per class)
• If you can’t, then increase your participation in Ed/section.
• Let us know if you some responsibility, let us know via Ed.

• HWs (45%): will have math and programming components.
• We will have an “embedded ethics lecture” + assignment

• Midterm (20%): this will be in class. Date to be finalized soon.
• Project (30%): 2-3 people per project. Will be empirical.

All policies are stated on the course website:  
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Other Points

•Our policies aim for consistency among all the students.
•  Participation: we will have a web-based attendance form (TBD)
•Communication: please only use Ed to contact us
•Late policy (basically): you have  96 cumulative hours of late time.

•  Please use this to plan for unforeseen circumstances.
•Regrading: ask us in writing on Ed within a week 

5



Today

• Logistics (Welcome!)

• Overview of RL

• Markov Decision Processes


• Problem statement

• Policy Evaluation
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The RL Setting, basically

7



Many RL Successes

[AlphaZero, Silver et.al, 17]

[OpenAI Five, 18]

[OpenAI,19]

TD GAMMON [Tesauro 95]

Supply Chains [Madeka et al ’23]
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Many Future RL Challenges
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Point/Counterpoint: Why Should/Shouldn’t You Study RL?
Point: An elegant formulation!
Counterpoint: seen the notation?  

Point: Tackles (Nearly) the Most General Problem
Counterpoint: Maybe too general?  

Point: pivotal for AGI?
Counterpoint: AGI could just be Big Data + Scale?  

Point: Exploration is fun!
Counterpoint: Exploitation is fun too! 

Point: Enabled Real-world successes!
Counterpoint: Those Deployments Come with "Hacks"
 
Point: Yann said “abandon RL”!
Counterpoint: Yann also said “abandon generative models”,  
“abandon probabilistic models”, and “abandon contrastive learning”!

11

The class will be challenging, and we hope you will enjoy it!
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• Markov Decision Processes


• Problem statement
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Finite Horizon Markov Decision Processes (MDPs):

• An MDP: ℳ = {μ, S, A, P, r, H}
•  is a distribution over initial states  

(sometimes we assume we start a given state )
μ

s0
•  a set of statesS
•  a set of actionsA
•  specifies the dynamics model,  

i.e.  is the probability of transitioning to  form states  under action 
P : S × A ↦ Δ(S)

P(s′ |s, a) s′ s a
• r : S × A → [0,1]
• For now, let’s assume this is a deterministic function
• (sometimes we use a cost )c : S × A → [0,1]

• A time horizon H ∈ ℕ
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Example:  
robot hand needs to pick the ball and hold it in a goal (x,y,z) position 

State : robot configuration (e.g., joint angles) 
and the ball’s position

Action : Torque on joints in arm & fingers 
Transition : physics + some noise 
policy : a function mapping from robot state 
to action (i.e., torque) 
reward/cost:  
  : immediate reward at state  
  : torque magnitude + dist to goal 
horizon: timescale  or discount factor 

s

a
s′ ∼ P( ⋅ |s, a)

π(s)

r(s, a) (s, a)
c(s, a)

H γ
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Example:  
robot hand needs to pick the ball and hold it in a goal (x,y,z) position 

State : robot configuration (e.g., joint angles) 
and the ball’s position

Action : Torque on joints in arm & fingers 
Transition : physics + some noise 
policy : a function mapping from robot state 
to action (i.e., torque) 
reward/cost:  
  : immediate reward at state  
  : torque magnitude + dist to goal 
horizon: timescale  or discount factor 

s

a
s′ ∼ P( ⋅ |s, a)

π(s)

r(s, a) (s, a)
c(s, a)

H γ

π⋆ = arg min
π

, [c(s0, a0) + c(s1, a1) + 2c(s2, a2) + …c(sH−1, aH−1) s0, π]
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The Episodic Setting and Trajectories

• Policy π := {π0, π1, …, πH−1}
• deterministic policies: ; stochastic policies: πt : S ↦ A πt : S ↦ Δ(A)
• we also consider time-dependent policies (but not a function of the history)

• Sampling a trajectory  on an episode: for a given policy  τ π
• Sample an initial state :s0 ∼ μ
• For t = 0,1,2,…H − 1
• Take action at ∼ πt( ⋅ |st)
• Observe reward rt = r(st, at)
• Transition to (and observe)  where st+1 st+1 ∼ P( ⋅ |st, at)

• The sampled trajectory is τ = {s0, a0, r0, s1, a1, r1, …, sH−1, aH−1, rH−1}

15
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• For  deterministic:

 
 

π
ρπ(τ) = μ(s0)1(a0 = π(s0))Pr(s1 |s0, a0)…Pr(sH−1 |sH−2, aH−2)1(aH−1 = π(sH−1))
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Value function and Q functions:

Quantities that allow us to reason policy’s long-term effect:

• Value function  Vπ
h (s) = , [

H−1

∑
t=h

r(st, at) sh = s]

• Q function  Qπ
h (s, a) = , [

H−1

∑
t=h

r(st, at) (sh, ah) = (s, a)]
• At the last stage, what are:  

 
	 	 	  Qπ

H−1(s, a) = Vπ
H−1(s) =

• Objective: (remember )  s0 ∼ μ
max

π
,τ∼ρπ,μ [r(s0, a0) + r(s1, a1) + … + r(sH−1, aH−1)] =
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Example of Policy Evaluation (e.g. computing  and )Vπ Qπ

Consider the following deterministic MDP w/ 3 states & 2 actions, with H = 3

a

b

c

A

B

A B

A

B

Reward: , &  everywhere elser(b, A) = 1 0
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Summary:

• Finite horizon MDPs (a framework for RL): 
• Key concepts:  

V and Q functions; sampling a trajectory  ; Bellman consistency equations;ρπ(τ)
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