Reinforcement Learning & Markov Decision Processes

Lucas Janson and Sham Kakade CS/Stat 184: Introduction to Reinforcement Learning Fall 2023

- Overview of RL
- Markov Decision Processes
 - Problem statement
 - Policy Evaluation

Course staff introductions

- Instructors: Lucas Janson and Sham Kakade
- **TFs:** Benjamin Schiffer
- CAs: Luke Bailey, Alex Dazhen Cai, Kevin Yee Du, Kevin Yifan Huang, Saket Joshi, Thomas Kaminsky, Patrick McDonald, Eric Meng Shen, Natnael Mekuria Teshome
- Homework 0 is posted today!
- This is "review" homework for material you should be familiar with to take the course.

Course Overview

- We want u to obtain fundamental and practical knowledge of RL.
- Grades: Participation; HW0 +HW1-HW4; Midterm; Project
- Participation (5%): not meant to be onerous (see website)
 - Just attending regularly will suffice (tbd: we'll have some web form per class)
 - If you can't, then increase your participation in Ed/section.
 - Let us know if you some responsibility, let us know via Ed.
- HWs (45%): will have math and programming components.
 - We will have an "embedded ethics lecture" + assignment
- Midterm (20%): this will be in class. Date to be finalized soon.
- Project (30%): 2-3 people per project. Will be empirical.

All policies are stated on the course website: https://shamulent.github.io/CS_Stat184_Fall23.html

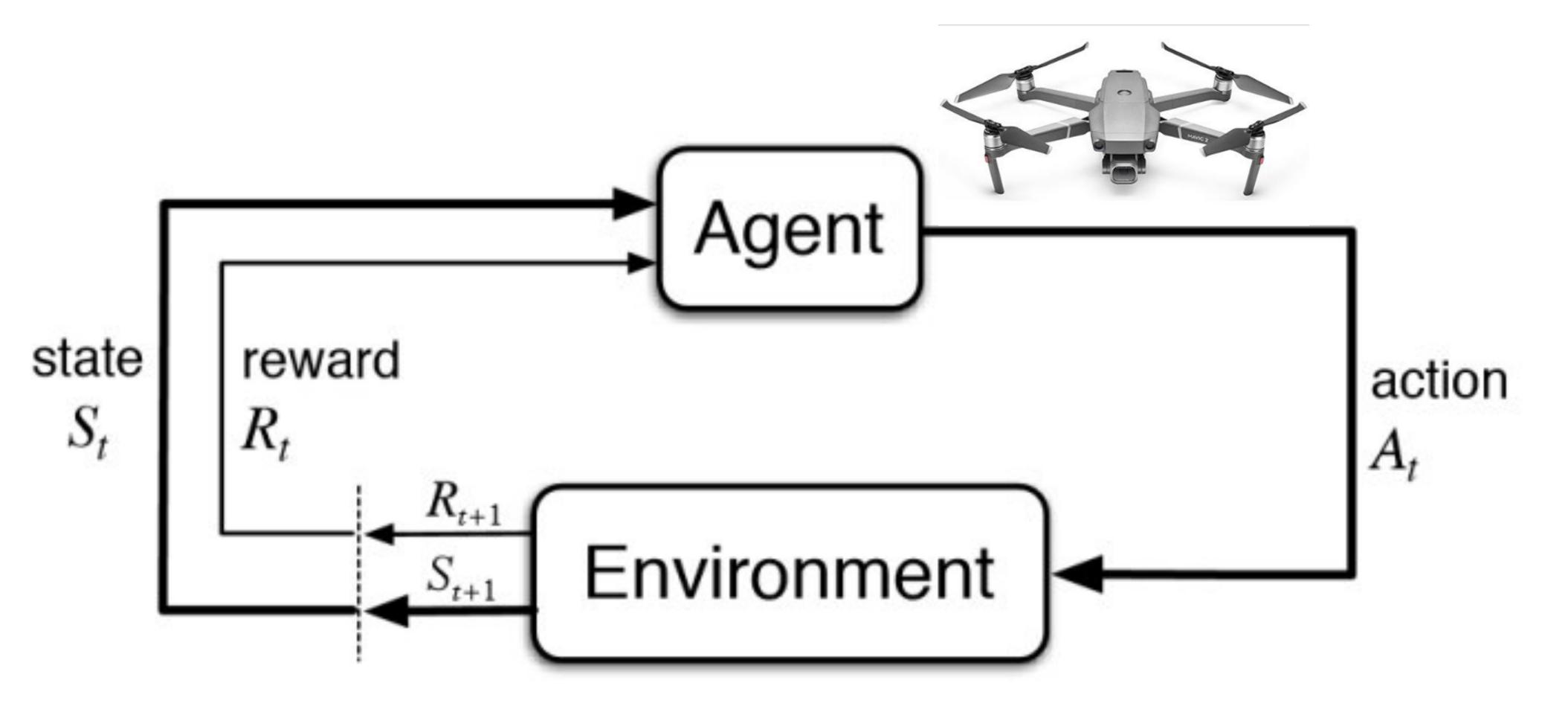
Other Points

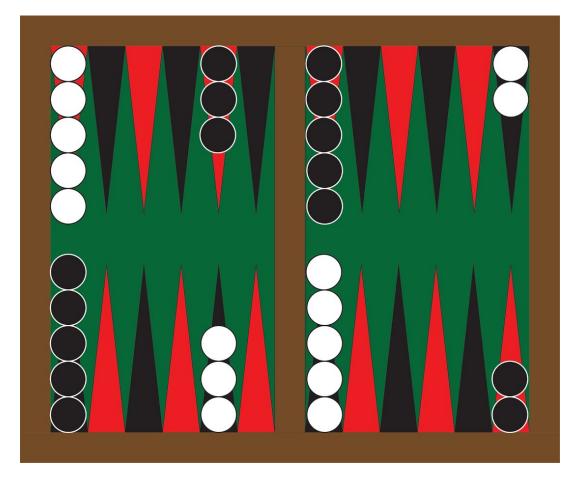
- Our policies aim for consistency among all the students.
- Participation: we will have a web-based attendance form (TBD)
- Communication: please only use Ed to contact us
- Late policy (basically): you have 96 cumulative hours of late time.
 - Please use this to plan for unforeseen circumstances.
- Regrading: ask us in writing on Ed within a week

Logistics (Welcome!)

- Overview of RL
- Markov Decision Processes
 - Problem statement
 - Policy Evaluation

The RL Setting, basically





TD GAMMON [Tesauro 95]



Many RL Successes

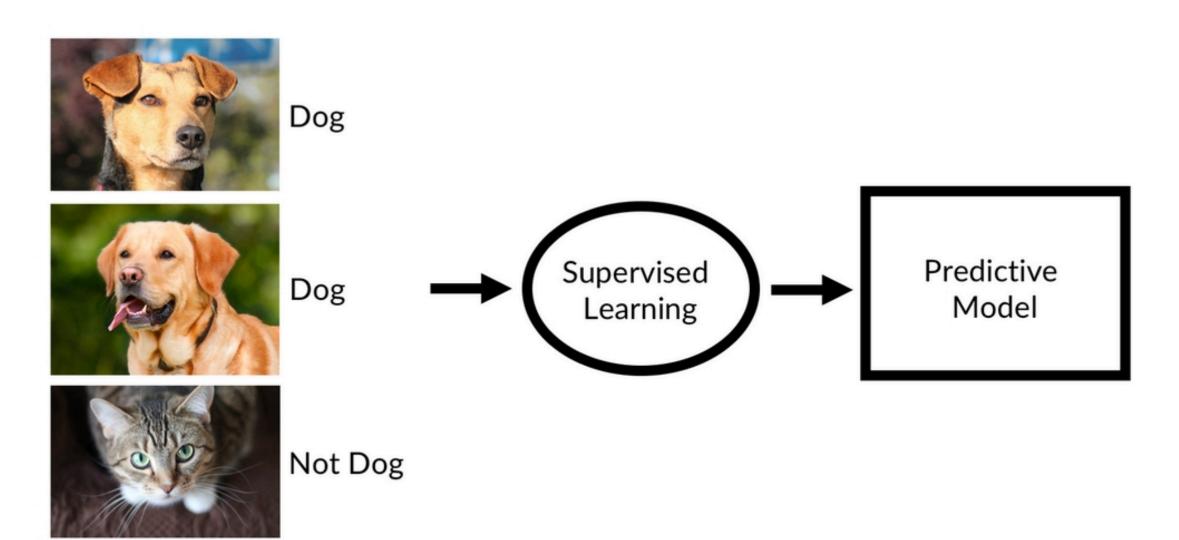
[AlphaZero, Silver et.al, 17]

[OpenAl Five, 18]

Supply Chains [Madeka et al '23]

Many Future RL Challenges

	Learn from Experience	Generalize	Interactive	Exploration	Credit assignment
Supervised Learning					
Bandits ("horizon 1"-RL)					
Reinforcement Learning					



Vs Other Settings

Point/Counterpoint: Why Should/Shouldn't You Study RL?

Point: An elegant formulation! **Counterpoint:** seen the notation?

Point: Tackles (Nearly) the Most General Problem **Counterpoint:** Maybe *too* general?

Point: pivotal for AGI? **Counterpoint:** AGI could just be Big Data + Scale?

Point: Exploration is fun! **Counterpoint:** Exploitation is fun too!

Point: Enabled Real-world successes! **Counterpoint:** Those Deployments Come with "Hacks"

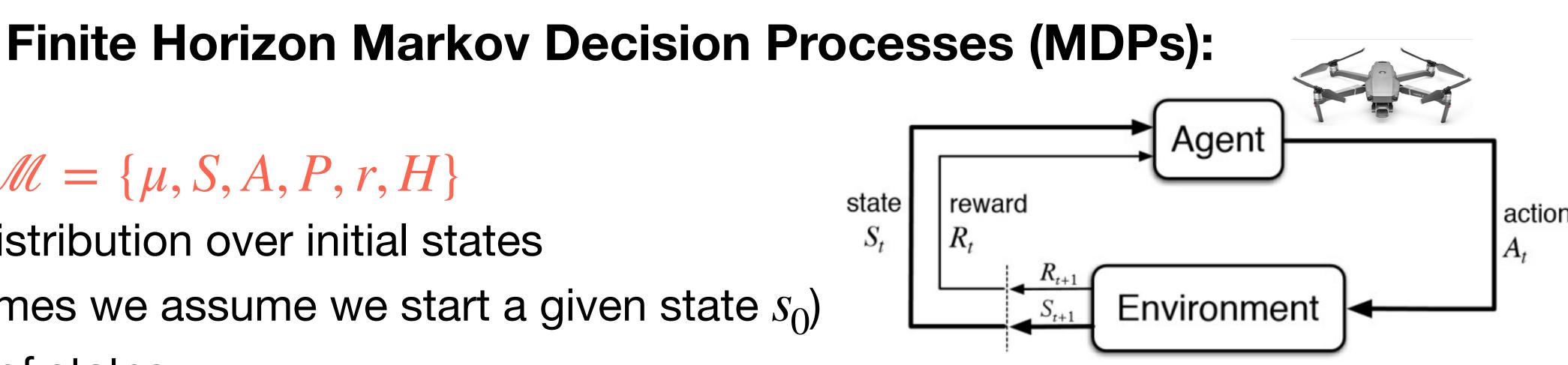
Point: Yann said "abandon RL"! **Counterpoint:** Yann also said "abandon generative models", "abandon probabilistic models", and "abandon contrastive learning"!

The class will be challenging, and we hope you will enjoy it!

- Logistics (Welcome!)
- Overview of RL

- Problem statement
- Policy Evaluation

- An MDP: $M = \{\mu, S, A, P, r, H\}$
 - μ is a distribution over initial states (sometimes we assume we start a given state s_0)
 - S a set of states
 - A a set of actions
 - $P: S \times A \mapsto \Delta(S)$ specifies the dynamics model,
 - $r: S \times A \rightarrow [0,1]$
 - For now, let's assume this is a deterministic function
 - (sometimes we use a cost $c : S \times A \rightarrow [0,1]$)
 - A time horizon $H \in \mathbb{N}$



i.e. $P(s' \mid s, a)$ is the probability of transitioning to s' form states s under action a

Example: robot hand needs to pick the ball and hold it in a goal (x,y,z) position

ar Ac Tr po to re

h

 $\pi^{\star} = \arg\min_{\pi} \mathbb{E} \left[c(s_0, a_0) + c(s_1, a_1) \right]$

- **State** *s*: robot configuration (e.g., joint angles) and the ball's position
- Action *a*: Torque on joints in arm & fingers
- **Transition** $s' \sim P(\cdot | s, a)$: physics + some noise
- **policy** $\pi(s)$: a function mapping from robot state to action (i.e., torque)

reward/cost:

r(s, a): immediate reward at state (s, a)c(s, a): torque magnitude + dist to goal **horizon:** timescale *H* or discount factor γ

$$+ c(s_2, a_2) + \dots c(s_{H-1}, a_{H-1}) \left| s_0, \pi \right|$$

The Episodic Setting and Trajectories

• Policy
$$\pi := \{\pi_0, \pi_1, ..., \pi_{H-1}\}$$

- we also consider time-dependent policies (but not a function of the history)
- deterministic policies: $\pi_t : S \mapsto A$; stochastic policies: $\pi_t : S \mapsto \Delta(A)$ • Sampling a trajectory τ on an episode: for a given policy π
 - Sample an initial state $s_0 \sim \mu$:
 - For t = 0, 1, 2, ..., H 1
 - Take action $a_t \sim \pi_t(\cdot | s_t)$
 - Observe reward $r_t = r(s_t, a_t)$
 - Transition to (and observe) s_{t+1} where $s_{t+1} \sim P(\cdot \mid s_t, a_t)$
 - The sampled trajectory is $\tau = \{s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{H-1}, a_{H-1}, r_{H-1}\}$

The Probability of a Trajectory & The Objective

- - The rewards in this trajectory must be $r_t = r(s_t, a_t)$ (else $\rho_{\pi}(\tau) = 0$).
 - For π stochastic: $\rho_{\pi}(\tau) = \mu(s_0)\pi(a_0 | s_0)P(s_1 | s_0, a_0)\dots\pi(s_0)P(s_1 | s_0, a_0)\dots\pi(s_0)P(s_0 | s_0)P(s_0 | s_0)P(s_0 | s_0)\dots\pi(s_0)P(s_0 | s_0)P(s_0 | s_0)\dots\pi(s_0)P(s_0 | s_0)P(s_0 | s_0)\dots\pi(s_0)P(s_0 | s_0)\dots\pi(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P$
 - For π deterministic: $\rho_{\pi}(\tau) = \mu(s_0) \mathbf{1}(a_0 = \pi(s_0)) P(s_1 | s_0, a_0)$
- $\max \mathbb{E}_{\tau \sim \rho_{\pi}} \left[r(s_0, a_0) + r(s_1, a_1) + \ldots + r(s_{H-1}, a_{H-1}) \right]$

• Probability of trajectory: let $\rho_{\pi,\mu}(\tau)$ denote the probability of observing trajectory $\tau = \{s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{H-1}, a_{H-1}, r_{H-1}\}$ when acting under π with $s_0 \sim \mu$. Shorthand: we sometimes write ρ or ρ_{π} when π and/or μ are clear from context.

$$(a_{H-2} | s_{H-2})P(s_{H-1} | s_{H-2}, a_{H-2})\pi(a_{H-1} | s_{H-1})$$

b)...P(s_{H-1} | s_{H-2}, a_{H-2})**1**(a_{H-1} = \pi(s_{H-1}))

Objective: find policy π that maximizes our expected cumulative episodic reward:

- Logistics (Welcome!)
- Overview of RL
- Markov Decision Processes
 - Problem statement

Policy Evaluation

Value function and Q functions:

Quantities that allow us to reason policy's long-term effect: • Value function $V_h^{\pi}(s) = \mathbb{E}\left[\sum_{t=h}^{H-1} r(s_t, a_t) \middle| s_h = s\right]$

• Q function
$$Q_h^{\pi}(s, a) = \mathbb{E} \left[\sum_{t=h}^{H-1} r(s_t, a_t) \right] (s_h)$$

At the last stage, what are:

$$Q_{H-1}^{\pi}(s,a) = V_{H-1}^{\pi}(s,a) = V_{H-1}^{\pi}$$

$(a_h, a_h) = (s, a)$

 $v_{r_{-1}}(s) =$

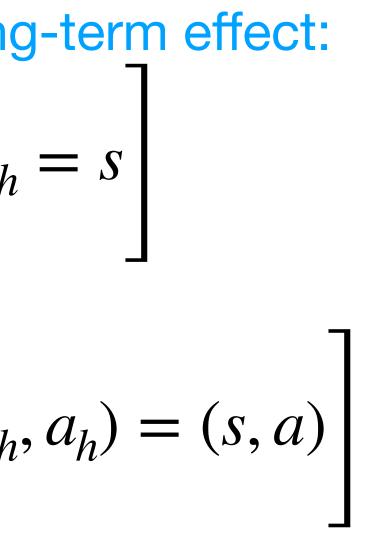
Value function and Q functions:

Quantities that allow us to reason policy's long-term effect: Value function $V_h^{\pi}(s) = \mathbb{E}\left[\sum_{t=h}^{H-1} r(s_t, a_t) \middle| s_h = s\right]$

• **Q function**
$$Q_h^{\pi}(s, a) = \mathbb{E} \left[\sum_{t=h}^{H-1} r(s_t, a_t) \right| (s_h)$$

• At the last stage, for a stochastic policy,:

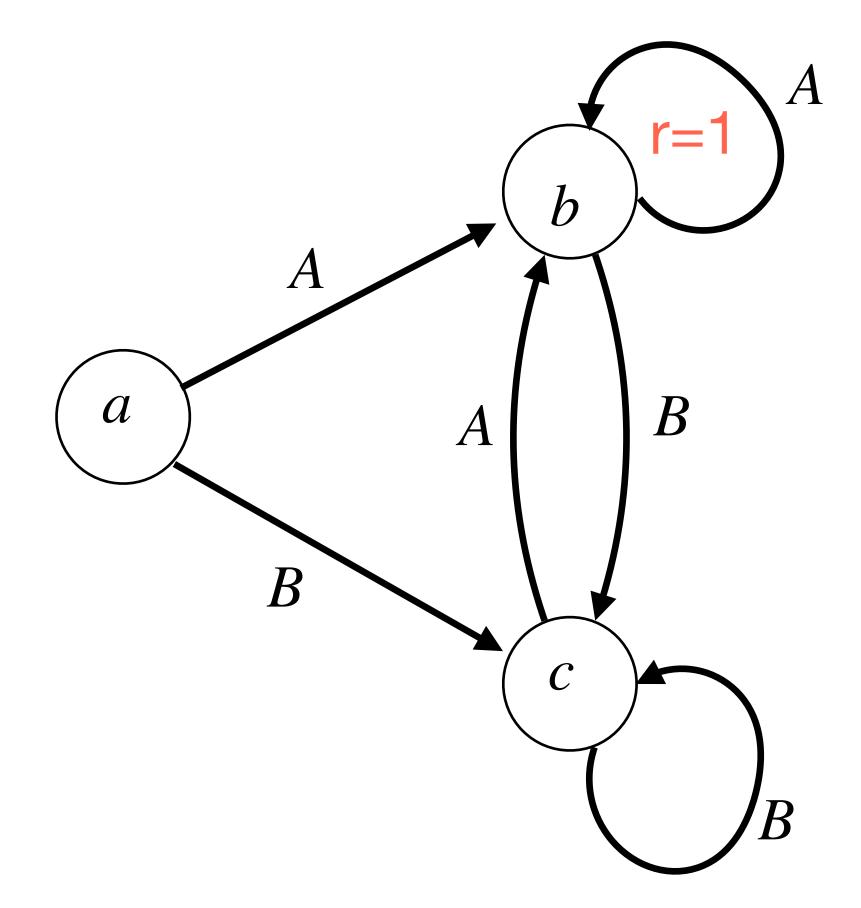
$$Q_{H-1}^{\pi}(s,a) = r(s,a)$$
 V_{H}^{π}



 $\prod_{H=1}^{\pi} (s) = \sum \pi_{H-1} (a \mid s) r(s, a)$

Example of Policy Evaluation (e.g. computing V^{π} and Q^{π})

Consider the following **deterministic** MDP w/3 states & 2 actions, with H = 3



Reward: r(b, A) = 1, & 0 everywhere else

- Consider the deterministic policy $\pi_0(s) = A, \pi_1(s) = A, \pi_2(s) = B, \forall s$
- What is V^{π} ? $V_2^{\pi}(a) = 0, V_2^{\pi}(b) = 0, V_2^{\pi}(c) = 0$ $V_1^{\pi}(a) = 0, V_1^{\pi}(b) = 1, V_1^{\pi}(c) = 0$ $V_0^{\pi}(a) = 1, V_0^{\pi}(b) = 2, V_0^{\pi}(c) = 1$

Summary:

- Finite horizon MDPs (a framework for RL):
- Key concepts:

V and Q functions; sampling a trajectory $\rho_{\pi}(\tau)$; Bellman consistency equations;

