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» An MDP:
* U Is a distribution over initial states
(sometimes we assume we start a given state s

« S a set of states
« A a set of actions
e P: S XA A(S) specifies the dynamics model,
.e. is the probability of transitioning to s’ form states s under action a

e For now, let’'s assume this is a deterministic function
e (sometimesweuseacostc:SXA — [0,1])

e A time horizon H € N



The Episodic Setting and Trajectories

e Policy i := {71'0, TCps ey JrH_l}

» deterministic policies: z, : § — A; stochastic policies: 7, : § = A(A)

* we also consider time-dependent policies (but not a function of the history)
o Sampling a trajectory 7 on an episode: for a given policy &

Cl=o
« Sample an initial state s, ~ u: C@ C// ﬂt% » 1
P | §é/)

e Fort=0,1,2,...H—1 | -
o Take actiona, ~ (- |s,) M

» Observe reward r, = r(s,, a,)
» Transition to (and observe) s,, ; where s,. | ~ P( - |s,, a,)

« The sampled trajectory is



The Probability of a Trajectory & The Objective

« Probability of trajectory: let pw(f) denote the probability of observing trajectory
T = {80 oy Fys S0y Fra ooy Sy 15 Ay T | When acting under 7 with s, ~ /1.
» Shorthand: we sometimes write p or p _when 7 and/or u are clear from context.

» The rewards in this trajectory must be r, = r(s,, a,) (else p_(7) = 0).
 For & stochastic:

Pn(T) — ﬂ(So)ﬂ(ao | S())P (S1 | S0 Clo)- : -ﬂ(aH_z | SH—2)P (SH_1 | Sg_»s aH_z)ﬂ(aH_1 | SH_1)
e For m deterministic:

PAT) = ,u(SO)l(aO — ﬂ(so))P(Sl | sg, ag)- - - P(Syy_1 | Sy aH_z)l(aH_l — 7Z'(SH_1))

o Objective: find policy 7 that maximizes our expected cumulative episodic reward:

max E__, [r(so, ag) + r(sy,ay) + ... + r(sy_q, aH_l)]
U




Value function and Q functions:

Quantities that allow us to reason policy’s long-term effect:

H-1
. Vi) =E | ) r(s,a)|s,=s
t=h
H-1
) Qy(s,a) = Z r(s,a) | (s, a,) = (s,a)
t=h

* At the last stage, for a stochastic policy,:

QZ_(s,a) = r(s,a) VE_ ()= ) my_i(als)r(s, a)



Example of Policy Evaluation (e.g. computing V* and O”)

Consider the following deterministic MDP w/ 3 states & 2 actions, with

e Consider the deterministic policy
mo(s) = A, (s) = A, my(s) = B, Vs

e What is V*?
Vi(a) = O,Vg(b) =0,Vi(c) =0

Vita) = 0,Vi(b) = 1,Vi(c) =0

Vi(a) = 1,VA(b) = 2,V(c) = 1




loday:
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Bellman Consistency

 For a fixed policy, 7 := {71'0, Ty, ...,7Z'H_1}, m S = AV,
» By definition, V/'(s) = O/ (s, m,(5))
« AtH—-1,0;_(s,a) =r(s,a), V;_,(s) = r(s, mg_,(s))
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Bellman Consistency

For a fixed policy, 7 := {71'0, Tis oo 7Z'H_1}, m S = AV,
By definition, V/'(s) = O,(s, 7,(5))

AtH—1,0; (s,a) =r(s,a), V;_,(s) = r(s, my_i(s))
Sellman consistency conditions: for a given policy ,

e Vi($) = r(s, my(9) + By opismsn [Vie1 (8]
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Bellman Consistency

For a fixed policy, 7 := {71'0, Tis oo 7Z'H_1}, m S = AV,
By definition, V/'(s) = O,(s, 7,(5))

AtH—1,0; (s,a) =r(s,a), V;_,(s) = r(s, my_i(s))
Sellman consistency conditions: for a given policy ,

e Vi($) = r(s, m(9) + By opismsy [Vie (8]

+ 05(s.a) = r(8,@) + Eg_pjs) [V 8]

A N J y J
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.e. choosing action a with probability 7z(a | 5)
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Notation

means sampling from D

means sampling from the distribution zz( - | 5),
.e. choosing action a with probability 7z(a | 5)
For a distribution D over a finite set X,

We use the notation:
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Proof: Bellman Consistency for V-function:

Let r;, denote the random variables r;, = (s, a;)

Vi (§> - g L a [é\m%m\%v\(gww O{“”B@# o %tgﬁ“/gwﬂj

/-
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Proof: Bellman Consistency for V-function: I @iﬂ

Let r;, denote the random variables r;, = r(s,, a;) & LXK [ }\/] j

By definition and by the law of total expectation:

Viis)=E |r,+r g+ ... +ryg Sh=S]
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Proof: Bellman Consistency for V-function:

Let r;, denote the random variables r;, = (s, a;)
By definition and by the law of total expectation:

Vi (s) =k

rh+1’h_|_1-|- +7"H_1 Sh:S]

Fpo1+ .o Frg_y|s, =s,a,= Jl'h(S),Sh+1] S), = S]

Fh-l- [
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Proof: Bellman Consistency for V-function:

Let r;, denote the random variables r;, = (s, a;)

By definition and by the law of total expectation:

Vi (s) =

By the Markov property:

= | ]/'h—|—

rh_l_rh_l_l_l_ ©c o o

rh‘l‘ [

rh_l_l + e oo

[ rh_l_l_l_oo.

+ ry_q

+ ry_q

Sh+1]

Sh:S]

+ ry_q

Sp = S,y = (), Spy

13
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Proof: Bellman Consistency for V-function:

Let r;, denote the random variables r;, = (s, a;)

By definition and by the law of total expectation:

Vi, (s)

rh+rh+1 + ...y

Fh-l- [

By the Markov property:

rh‘l‘

il DA S o S

rt Ve (Snpt) | S) = S]

— Wégh/ﬁ@[%B 7—

Vpo1t oo T Ty

T

Sh+1]

7

Sh:S]

S, = 8,4, = m,(5), Sh_|_1] S), = S]

Sh:S]
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Let r;, denote the random variables r;, = (s, a;)
By definition and by the law of total expectation:

Sh:S]

Vi, (s)

By the Markov property:

rh‘l‘

]"h + V +1(Sh+1)

Proof: Bellman Consistency for V—functlon

rh_l_rh_l_l_l_ ©c o o

Fh-l- [

[ rh_l_l_l_oo.

+ 'y Sh+1]

+ ry_q

rh_l_l + e oo

+ ry_q

S, =8, a;, = m(S), Sh_|_1]

Sh:S]

= r(s, m($)) + Y P(s'| 5, my(s)) VI, (5")

13
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Computation of V* via Backward Induction
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Computation of V* via Backward Induction

o For afixed policy, 7 .= {71'0, Ty, ...,ﬂH_l}, T, S A,Vh,

Bellman consistency = we can compute V7, assuming we know the MDP.

o Init: V7, (s) =0
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Computation of V* via Backward Induction

o For afixed policy, 7 .= {71'0, Ty, ...,ﬂH_l}, T, S A,Vh,

Bellman consistency = we can compute V7, assuming we know the MDP.

o Init: V7, (s) =0

e Fort=H —1,...0, set:
Vi(s) = r(s, my(s)) + = o P(-|5.7(5)) [ +1(S )] Vs € S
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Computation of V* via Backward Induction

o For afixed policy, 7 .= {71'0, Ty, ...,ﬂH_l}, T, S A,Vh,

Bellman consistency = we can compute V7, assuming we know the MDP.

o Init: V7 (s) =0

h
e Fora= H—1,...0, set:
Vi(s) = (s, m(8)) + Egoppismesy | Vi ()], Vs €S

 What is the per iteration computational complexity of DP?
(assume scalar +, — , X , = are O(1) operations) OC S @)

14



§u@@8/§@

Computation of V”* via Backward Induction %H
W%V\AQVQ U/ S

-

o For afixed policy, 7 .= {71'0, TPy oons 7Z'H_1}, T, S A,Vh, T
Bellman consistency = we can compute V7, assuming we know the MDP. \/@ Cg@)

o Init: V7, (s) =0

e Fort=H —1,...0, set:
Vi(s) = r(s, ;(s) + Egopijsmon Vi 8] VS €S

 What is the per iteration computational complexity of DP?

(assume scalar +, — , X , = are O(1) operations)
 What is the total computational complexity of DP? O ig 2 H>
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Today

 Recap
* Finite Horizon MDPs
* Policy Evaluation
e Optimality
* The Bellman Equations & Dynamic Programming

e Infinite Horizon MDPs
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Example of Optimal Policy 7*

Consider the following deterministic MDP w/ 3 states & 2 actions, with
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Example of Optimal Policy 7*

Consider the following deterministic MDP w/ 3 states & 2 actions, with

 What’s the optimal policy?
7 (s) = A, Vs, h
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Example of Optimal Policy 7*

Consider the following deterministic MDP w/ 3 states & 2 actions, with

 What’s the optimal policy?
7 (s) = A, Vs, h

« What is optimal value function, VT = V*?
Vz*(a) = O,V;(b) = 1,V2*(C) =0

Vi(a) = 1,Vi(b) =2,Vi(c) =1

Vi(a) =2,VF(b) =3,V](c) =2
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How do we compute 7~ and V*?

* Naively, we could compute the value of all policies and take the best one.
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How do we compute 7~ and V*?

* Naively, we could compute the value of all policies and take the best one.
» Suppose | S| states, |A | actions, and horizon H.

T, ($)=a
VS H ﬁ
\A\‘ = x/ @/ . SO \4/
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How do we compute 7~ and V*?

* Naively, we could compute the value of all policies and take the best one.
» Suppose | S| states, |A | actions, and horizon H.

e Can we do better?
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Properties of an Optimal Policy 7 *

« Let I1 be the set of all time dependent, history dependent, stochastic policies.
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Properties of an Optimal Policy 7 *

« Let ]I be the set of all time dependent, history dependent, stochastic pojz:ies.
g %57jrr [ "L _

 Theorem: Every finite horizon MDP has a deterministic optimal policy, that

e I.e. there exists a policy T* = {ﬂ*, 771*, e ”17;—1}’ ﬂ; Y —» A such that
VZ(s) > VA(s) Vs,h, Vo eTl

j} 5[l %C%)

% /
Tl o -
S X %

a g
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Properties of an Optimal Policy 7 *

« Let I1 be the set of all time dependent, history dependent, stochastic policies.

 Theorem: Every finite horizon MDP has a deterministic optimal policy, that

e I.e. there exists a policy T* = {ﬂ*, 771*, e ng_l}, ﬂ; Y —» A such that
VZ'(s) > VA(s) Vs,h, Vo Tl
70
7

¢ = We can write: V,f = V,ff* and QZ( = Q;f*.
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Properties of an Optimal Policy 7 * %77[@2
//\V{Q VJQ L\/@ﬁ%

Let I1 be the set of all time dependent, history dependent, stochastic policies.

Theorem: Every finite horizon MDP has a deterministic gptimal policy, that

e I.e. there exists a policy T* = {ﬂ*, 771*, e ng_l}, ﬂ; Y —» A such that
VZ'(s) > VA(s) Vs,h, Vo Tl

—> we can write: V,f = V,ff* and QZ( = Q;f*.

—> the starting distribution 1 doesn’t determine z*.
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the action. b /Z R
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What's the Proof Intuition?

* Theorem: Every finite horizon MDP has a deterministic optimal policy, that

e What's the Proof Intuition?

* “Only the state matters”: how got here doesn’t matter to where we go next, conditioned on
the action.

* “No Sunk Cost Fallacy”: past rewards are history; we only care about our reward from this
point forward.

* no FOMO/no regret/no dwelling on the past

 Caveat: some legitimate reward functions are not additive/linear (so, naively, not an MDP).
(But, RL is general: think about redefining the state so you can do these.)
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What's the Proof Intuition?

Theorem: Every finite horizon MDP has a deterministic optimal policy, that

What's the Proof Intuition

* “Only the state matters”: how got here doesn’t matter to where we go next, conditioned on
the action.

* “No Sunk Cost Fallacy”: past rewards are history; we only care about our reward from this
point forward.
* no FOMO/no regret/no dwelling on the past

Caveat: some legitimate reward functions are not additive/linear (so, naively, not an MDP).
(But, RL is general: think about redefining the state so you can do these.)

We write V* = V*.
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The Bellman Equations

» AfunctionV=1{V,,...Vy_;}, V, : § = R satisfies the Bellman equations if
Vh(S) — IMax {F(S, Cl) + _S’NP(°‘S,CI) [Vh_l_l(S/)] } ; VS

(@assume V; = 0).
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The Bellman Equations

» AfunctionV=1{V,,...Vy_;}, V, : § = R satisfies the Bellman equations if
Vh(S) — IMax {F(S, Cl) + _S’NP(°‘S,CZ) [Vh-l-l(sl)] } ; VS

(@assume V; = 0).

« Theorem: V satisfies the Bellman equations if and only if V = V™.
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The Bellman Equations

» AfunctionV=1{V,,...Vy_;}, V, : § = R satisfies the Bellman equations if
Vh(S) — IMax {F(S, Cl) + _S’NP(°‘S,CI) [Vh-l-l(s/)] } ; VS

(@assume V; = 0).

« Theorem: V satisfies the Bellman equations if and only if V = V™.

. The optimal policy is: ﬂ;(s) = arg max {r(s, a)+ Eg p.1s.a) [V,::rl(s’)] }

A
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Computation of V* with Dynamic Programming

the following algorithm correctly computes z* and V*
Prf: the Bellman equations directly lead to this backwards induction.
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Computation of V* with Dynamic Programming

 [heorem: the following Dynamic Programming algorithm correctly computes 7* and V*
Prf: the Bellman equations directly lead to this backwards induction.

» Initialize: V/,(s5) = 0
Fort=H — 1,...0, set:
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Computation of V* with Dynamic Programming

 [heorem: the following Dynamic Programming algorithm correctly computes 7* and V*
Prf: the Bellman equations directly lead to this backwards induction.

» Initialize: V/,(s5) = 0
Fort=H — 1,...0, set:

. VX(s) = max |r(s,a) +

A
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Computation of V* with Dynamic Programming

 [heorem: the following Dynamic Programming algorithm correctly computes 7* and V*
Prf: the Bellman equations directly lead to this backwards induction.

.+ Initialize: V/(s) =0
Fort=H — 1,...0, set:

. VX(s) = max [r(s, a) + Ey p.is.a [ (s )]]

A

. 71';:(5’) = arg max [r(s, a) + g p. 5.0) [ H(S )]]

d
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 [heorem: the following Dynamic Programming algorithm correctly computes 7* and V*
Prf: the Bellman equations directly lead to this backwards induction.

» Initialize: V/,(s5) = 0
Fort=H — 1,...0, set:

. VX(s) = max [r(s, a) + Ey p.is.a [ (s )]]

A

. 71';:(5’) = arg max [r(s, a) + g p. 5.0) [ H(S )]]

d

 What is the per iteration computational complexity of DP?
(assume scalar +, — , X , = are O(1) operations)
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Computation of V* with Dynamic Programming

 [heorem: the following Dynamic Programming algorithm correctly computes 7* and V*
Prf: the Bellman equations directly lead to this backwards induction.

» Initialize: V/,(s5) = 0
Fort=H — 1,...0, set:

. VX(s) = max [r(s, a) + Ey p.is.a [ (s )]]

A

. 71';:(5’) = arg max [r(s, a) + g p. 15.0) [ H(S )]]

d

 What is the per iteration computational complexity of DP?
(assume scalar +, — , X, — are O(1) operations) @ C > 4 ﬁl

 What is the total Computatlonal complexity of DP?

22



Summary:

* \We remember the results on “sub-problems”
* Optimal policies are history independent.

Attendance: Feedback:
bit.ly/3RcTCOT bit.ly/3RHtIxy
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Finite Horizon Markov Decision Processes (MDPs):

 An MDP:

e U, S, A, P:SXA > AW), r:5XA — |0,1] same as before
e instead of finite horizon H, we have a discount factor

o Objective: find policy & that maximizes our expected, discounted future reward:
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The Setting and Our Objective
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The Setting and Our Objective

« Consider a “stationary” policyz: S — A
e “stationary” means not history or time dependent
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The Setting and Our Objective

« Consider a “stationary” policyz: S — A
e “stationary” means not history or time dependent

o Sampling a trajectory 7 on an episode: for a given policy &
« Sample an initial state s, ~ u:
e Fort=0,1,2,...00
» Take action a, = 7n(s,)
» Observe reward r, = r(s,, a,)
» Transition to (and observe) s,, ; where s,. | ~ P( - |s,, a,)
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* Infinite Horizon MDPs
* Policy Evaluation
* Optimality & the Bellman Equations
* Value lteration

* Policy Iteration
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Value function and Q functions:

* Quantities that allow us to reason about the policy’s long-term effect:

o0
_ Value function V*(s) = E Z y'r(s,, a,)|so = s,
h=0
o0
, Qfunction Q%(s,a) = E | ) y"r(s ) | (s, ap) = (s,a), 7

h=0
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Value function and Q functions:

Quantities that allow us to reason about the policy’s long-term effect:

o0
Value function V*(s) = Z y'r(s,, a,)|so = s,
h=0
0
Q function Q%(s,a) = E | ) v"r(s). ay) | (0. ap) = (s, a), m

h=0

What are upper and lower bounds on V* and Q”
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Example of Policy Evaluation (e.g. computing V* and O”)

Consider the following deterministic MDP w/ 3 states & 2 actions
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Example of Policy Evaluation (e.g. computing V* and O”)

Consider the following deterministic MDP w/ 3 states & 2 actions

e Consider the policy
n(a) =B, n(b) =A,n(c) =A
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Example of Policy Evaluation (e.g. computing V* and O”)

Consider the following deterministic MDP w/ 3 states & 2 actions

e Consider the policy

n(a) =B, n(b) =A,n(c) =A
« What is V*?

Vi(a) =

Vi(b) =

Vie) =
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