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Finite Horizon Markov Decision Processes (MDPs):

• An MDP: 

•  is a distribution over initial states  

(sometimes we assume we start a given state )

•  a set of states

•  a set of actions

•  specifies the dynamics model,  

i.e.  is the probability of transitioning to  form states  under action 

• 

• For now, let’s assume this is a deterministic function

• (sometimes we use a cost )


• A time horizon 

ℳ = {μ, S, A, P, r, H}
μ

s0
S
A
P : S × A ↦ Δ(S)

P(s′ |s, a) s′ s a
r : S × A → [0,1]

c : S × A → [0,1]
H ∈ ℕ
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The Episodic Setting and Trajectories

• Policy 

• deterministic policies: ; stochastic policies: 

• we also consider time-dependent policies (but not a function of the history)


• Sampling a trajectory  on an episode: for a given policy  

• Sample an initial state :

• For 

• Take action 

• Observe reward 

• Transition to (and observe)  where 


• The sampled trajectory is 

π := {π0, π1, …, πH−1}
πt : S ↦ A πt : S ↦ Δ(A)

τ π
s0 ∼ μ

t = 0,1,2,…H − 1
at ∼ πt( ⋅ |st)

rt = r(st, at)
st+1 st+1 ∼ P( ⋅ |st, at)

τ = {s0, a0, r0, s1, a1, r1, …, sH−1, aH−1, rH−1}
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The Probability of a Trajectory & The Objective

• Probability of trajectory: let  denote the probability of observing trajectory 
 when acting under  with .


• Shorthand: we sometimes write  or  when  and/or  are clear from context.

• The rewards in this trajectory must be  (else ).

• For  stochastic: 



• For  deterministic:

 
 

• Objective: find policy  that maximizes our expected cumulative episodic reward: 
	  

ρπ,μ(τ)
τ = {s0, a0, r0, s1, a1, r1, …, sH−1, aH−1, rH−1} π s0 ∼ μ

ρ ρπ π μ
rt = r(st, at) ρπ(τ) = 0

π
ρπ(τ) = μ(s0)π(a0 |s0)P(s1 |s0, a0)…π(aH−2 |sH−2)P(sH−1 |sH−2, aH−2)π(aH−1 |sH−1)

π
ρπ(τ) = μ(s0)1(a0 = π(s0))P(s1 |s0, a0)…P(sH−1 |sH−2, aH−2)1(aH−1 = π(sH−1))

π
max

π
,τ∼ρπ [r(s0, a0) + r(s1, a1) + … + r(sH−1, aH−1)]
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Value function and Q functions:

Quantities that allow us to reason policy’s long-term effect:


• Value function  

• Q function  

• At the last stage, for a stochastic policy,:  
 

	 	  

Vπ
h (s) = , [

H−1

∑
t=h

r(st, at) sh = s]
Qπ

h (s, a) = , [
H−1

∑
t=h

r(st, at) (sh, ah) = (s, a)]

Qπ
H−1(s, a) = r(s, a) Vπ

H−1(s) = ∑
a

πH−1(a |s)r(s, a)
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Example of Policy Evaluation (e.g. computing  and )Vπ Qπ

Consider the following deterministic MDP w/ 3 states & 2 actions, with H = 3

a

b

c

A

B

A B

A

B

Reward: , &  everywhere elser(b, A) = 1 0

• Consider the deterministic policy  
 

• What is ?

  

   
    

   

π0(s) = A, π1(s) = A, π2(s) = B, ∀s

Vπ

Vπ
2(a) = 0,Vπ

2(b) = 0,Vπ
2(c) = 0

Vπ
1(a) = 0,Vπ

1(b) = 1,Vπ
1(c) = 0

Vπ
0(a) = 1,Vπ

0(b) = 2,Vπ
0(c) = 1
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• By definition, Vπ

h (s) = Qπ
h (s, πh(s))

• At , ,  H − 1 Qπ
H−1(s, a) = r(s, a) Vπ

H−1(s) = r(s, πH−1(s))
• Bellman consistency conditions: for a given policy ,π
•  
 
Vπ

h (s) = r(s, πh(s)) + ,s′ ∼P(⋅|s,πh(s)) [Vπ
h+1(s′ )]
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Bellman Consistency
• For a fixed policy, ,π := {π0, π1, …, πH−1}, πh : S ↦ A, ∀h
• By definition, Vπ

h (s) = Qπ
h (s, πh(s))

• At , ,  H − 1 Qπ
H−1(s, a) = r(s, a) Vπ

H−1(s) = r(s, πH−1(s))
• Bellman consistency conditions: for a given policy ,π
•  
 
Vπ

h (s) = r(s, πh(s)) + ,s′ ∼P(⋅|s,πh(s)) [Vπ
h+1(s′ )]

• Qπ
h (s, a) = r(s, a) + ,s′ ∼P(⋅|s,a) [Vπ
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11

-

=v(sa)I F (an(s, (5)]
- sp C · (s

.a)



Notation

12



Notation
•  means sampling from x ∼ D D

12



Notation
•  means sampling from x ∼ D D
•  means sampling from the distribution ,  

i.e. choosing action  with probability 
a ∼ π( ⋅ |s) π( ⋅ |s)

a π(a |s)

12



Notation
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a ∼ π( ⋅ |s) π( ⋅ |s)

a π(a |s)
• For a distribution  over a finite set , 
	

D .
Ex∼D[ f(x)] = ∑

x∈.
D(x)f(x)

12



Notation
•  means sampling from x ∼ D D
•  means sampling from the distribution ,  

i.e. choosing action  with probability 
a ∼ π( ⋅ |s) π( ⋅ |s)

a π(a |s)
• For a distribution  over a finite set , 
	

D .
Ex∼D[ f(x)] = ∑

x∈.
D(x)f(x)

• We use the notation:  
	 Es′ ∼P(⋅|s,a)[ f(s′ )] = ∑

s′ ∈S
P(s′ |s, a)f(s′ )
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Proof: Bellman Consistency for V-function:
Let  denote the random variables rh rh = r(sh, ah)
By definition and by the law of total expectation:  

Vπ
h (s) = , [rh + rh+1 + … + rH−1 sh = s]
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By definition and by the law of total expectation:  

Vπ
h (s) = , [rh + rh+1 + … + rH−1 sh = s]

          = , [rh + , [rh+1 + … + rH−1 sh = s, ah = πh(s), sh+1] sh = s]
By the Markov property: 

= , [rh + , [rh+1 + … + rH−1 sh+1] sh = s]
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By the Markov property: 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Proof: Bellman Consistency for V-function:
Let  denote the random variables rh rh = r(sh, ah)
By definition and by the law of total expectation:  

Vπ
h (s) = , [rh + rh+1 + … + rH−1 sh = s]

          = , [rh + , [rh+1 + … + rH−1 sh = s, ah = πh(s), sh+1] sh = s]
By the Markov property: 

= , [rh + , [rh+1 + … + rH−1 sh+1] sh = s]
= , [rh + Vπ

h+1(sh+1) sh = s]
= r(s, πh(s)) + ∑

s′ 

P(s′ |s, πh(s)) Vπ
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• For a fixed policy, , 
Bellman consistency  we can compute , assuming we know the MDP.

π := {π0, π1, …, πH−1}, πh : S ↦ A, ∀h
⟹ Vπ

h

• Init: Vπ
H(s) = 0

• For t= , set: H − 1,…0
Vπ

h (s) = r(s, πh(s)) + ,s′ ∼P(⋅|s,πh(s)) [Vπ
h+1(s′ )], ∀s ∈ S
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• What is the per iteration computational complexity of DP? 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• Init: Vπ
H(s) = 0

• For t= , set: H − 1,…0
Vπ

h (s) = r(s, πh(s)) + ,s′ ∼P(⋅|s,πh(s)) [Vπ
h+1(s′ )], ∀s ∈ S

14

t

⑩

OCSH)



Computation of  via Backward InductionVπ

• For a fixed policy, , 
Bellman consistency  we can compute , assuming we know the MDP.

π := {π0, π1, …, πH−1}, πh : S ↦ A, ∀h
⟹ Vπ

h

• What is the per iteration computational complexity of DP? 
(assume scalar  are  operations)+, − , × , ÷ O(1)

• What is the total computational complexity of DP?

• Init: Vπ
H(s) = 0

• For t= , set: H − 1,…0
Vπ

h (s) = r(s, πh(s)) + ,s′ ∼P(⋅|s,πh(s)) [Vπ
h+1(s′ )], ∀s ∈ S
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Consider the following deterministic MDP w/ 3 states & 2 actions, with H = 3

a

b

c

A

B

A B

A

B

Reward: , &  everywhere elser(b, A) = 1 0

Example of Optimal Policy π⋆
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A
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A
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Consider the following deterministic MDP w/ 3 states & 2 actions, with H = 3

a

b

c

A

B

A B

A

B

Reward: , &  everywhere elser(b, A) = 1 0

• What’s the optimal policy? 
 π⋆

h (s) = A, ∀s, h

• What is optimal value function, ? 
 

 
 

 

Vπ⋆ = V⋆

V⋆
2 (a) = 0,V⋆

2 (b) = 1,V⋆
2 (c) = 0

V⋆
1 (a) = 1,V⋆

1 (b) = 2,V⋆
1 (c) = 1

V⋆
0 (a) = 2,V⋆

0 (b) = 3,V⋆
0 (c) = 2

Example of Optimal Policy π⋆
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How do we compute  and ?π⋆ V⋆

• Naively, we could compute the value of all policies and take the best one.
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How do we compute  and ?π⋆ V⋆

• Naively, we could compute the value of all policies and take the best one.
• Suppose  states,  actions, and horizon .  

How many different polices there are?  
 
 

|S | |A | H
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How do we compute  and ?π⋆ V⋆

• Naively, we could compute the value of all policies and take the best one.
• Suppose  states,  actions, and horizon .  

How many different polices there are?  
 
 

|S | |A | H

• Can we do better?
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Properties of an Optimal Policy π⋆

• Let  be the set of all time dependent, history dependent, stochastic policies. Π

• Theorem: Every finite horizon MDP has a deterministic optimal policy, that 
dominates all other policies, everywhere.
• i.e. there exists a policy   such that 
	 	    ,  
 

π⋆ := {π⋆
0 , π⋆

1 , …, π⋆
H−1}, π⋆

h : S ↦ A
Vπ⋆

h (s) ≥ Vπ
h (s) ∀s, h ∀π ∈ Π

x
hist . ind

I f(x) q(x)
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Properties of an Optimal Policy π⋆

• Let  be the set of all time dependent, history dependent, stochastic policies. Π

• Theorem: Every finite horizon MDP has a deterministic optimal policy, that 
dominates all other policies, everywhere.
• i.e. there exists a policy   such that 
	 	    ,  
 

π⋆ := {π⋆
0 , π⋆

1 , …, π⋆
H−1}, π⋆

h : S ↦ A
Vπ⋆

h (s) ≥ Vπ
h (s) ∀s, h ∀π ∈ Π
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h = Vπ⋆

h Q⋆
h = Qπ⋆

h

x v
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Properties of an Optimal Policy π⋆

• Let  be the set of all time dependent, history dependent, stochastic policies. Π

• Theorem: Every finite horizon MDP has a deterministic optimal policy, that 
dominates all other policies, everywhere.
• i.e. there exists a policy   such that 
	 	    ,  
 

π⋆ := {π⋆
0 , π⋆

1 , …, π⋆
H−1}, π⋆

h : S ↦ A
Vπ⋆

h (s) ≥ Vπ
h (s) ∀s, h ∀π ∈ Π

•  we can write:  and  .⟹ V⋆
h = Vπ⋆

h Q⋆
h = Qπ⋆

h

•  the starting distribution  doesn’t determine .⟹ μ π⋆
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• “Only the state matters”: how got here doesn’t matter to where we go next, conditioned on 

the action.
• “No Sunk Cost Fallacy”: past rewards are history; we only care about our reward from this 

point forward.
• no FOMO/no regret/no dwelling on the past  

• Caveat: some legitimate reward functions are not additive/linear (so, naively, not an MDP).  
(But, RL is general: think about redefining the state so you can do these.)  

• We write . Vπ⋆ = V⋆
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The Bellman Equations
• A function ,   satisfies the Bellman equations if 
	  ,  

(assume ). 

V = {V0, …VH−1} Vh : S → R
Vh(s) = max

a {r(s, a) + ,s′ ∼P(⋅|s,a)[Vh+1(s′ )]} ∀s

VH = 0

• Theorem:  V satisfies the Bellman equations if and only if . V = V⋆

• The optimal policy is:  .π⋆
h (s) = arg max

a {r(s, a) + ,s′ ∼P(⋅|s,a)[V⋆
h+1(s′ )]}

21



Computation of  with Dynamic ProgrammingV⋆

22



Computation of  with Dynamic ProgrammingV⋆

• Theorem: the following Dynamic Programming algorithm correctly computes  and  
Prf: the Bellman equations directly lead to this backwards induction.

π⋆ V⋆

22



Computation of  with Dynamic ProgrammingV⋆

• Theorem: the following Dynamic Programming algorithm correctly computes  and  
Prf: the Bellman equations directly lead to this backwards induction.

π⋆ V⋆

• Initialize:  
For t= , set:

Vπ
H(s) = 0

H − 1,…0

22



Computation of  with Dynamic ProgrammingV⋆

• Theorem: the following Dynamic Programming algorithm correctly computes  and  
Prf: the Bellman equations directly lead to this backwards induction.

π⋆ V⋆

• Initialize:  
For t= , set:

Vπ
H(s) = 0

H − 1,…0
• V⋆

h (s) = max
a [r(s, a) + ,s′ ∼P(⋅|s,a) [V⋆

h+1(s′ )]]

22

-

Es

Es



Computation of  with Dynamic ProgrammingV⋆

• Theorem: the following Dynamic Programming algorithm correctly computes  and  
Prf: the Bellman equations directly lead to this backwards induction.

π⋆ V⋆

• Initialize:  
For t= , set:

Vπ
H(s) = 0

H − 1,…0
• V⋆

h (s) = max
a [r(s, a) + ,s′ ∼P(⋅|s,a) [V⋆

h+1(s′ )]]
• π⋆

h (s) = arg max
a [r(s, a) + ,s′ ∼P(⋅|s,a) [V⋆

h+1(s′ )]]

22

Es

IUs



Computation of  with Dynamic ProgrammingV⋆

• Theorem: the following Dynamic Programming algorithm correctly computes  and  
Prf: the Bellman equations directly lead to this backwards induction.

π⋆ V⋆

• Initialize:  
For t= , set:

Vπ
H(s) = 0

H − 1,…0
• V⋆

h (s) = max
a [r(s, a) + ,s′ ∼P(⋅|s,a) [V⋆

h+1(s′ )]]
• π⋆

h (s) = arg max
a [r(s, a) + ,s′ ∼P(⋅|s,a) [V⋆

h+1(s′ )]]
• What is the per iteration computational complexity of DP? 

(assume scalar  are  operations)+, − , × , ÷ O(1)

22



Computation of  with Dynamic ProgrammingV⋆

• Theorem: the following Dynamic Programming algorithm correctly computes  and  
Prf: the Bellman equations directly lead to this backwards induction.

π⋆ V⋆

• Initialize:  
For t= , set:

Vπ
H(s) = 0

H − 1,…0
• V⋆

h (s) = max
a [r(s, a) + ,s′ ∼P(⋅|s,a) [V⋆

h+1(s′ )]]
• π⋆

h (s) = arg max
a [r(s, a) + ,s′ ∼P(⋅|s,a) [V⋆

h+1(s′ )]]
• What is the per iteration computational complexity of DP? 

(assume scalar  are  operations)+, − , × , ÷ O(1)
• What is the total computational complexity of DP?

22
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Summary:
• Dynamic Programming lets us efficiently compute optimal policies. 
• We remember the results on “sub-problems”

• Optimal policies are history independent.

Feedback: 

bit.ly/3RHtlxy
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Attendance: 
bit.ly/3RcTC9T



• Recap

• Finite Horizon MDPs

• Policy Evaluation

• Optimality

• The Bellman Equations & Dynamic Programming


• Infinite Horizon MDPs

Today
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Finite Horizon Markov Decision Processes (MDPs):
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• An MDP: ℳ = {μ, S, A, P, r, γ}
• ,  same as beforeμ S, A, P : S × A ↦ Δ(S), r : S × A → [0,1]
• instead of finite horizon , we have a discount factor H γ ∈ [0,1)

Finite Horizon Markov Decision Processes (MDPs):

25

• Objective: find policy  that maximizes our expected, discounted future reward: 
 

π
max

π
' [r(s0, a0) + γr(s1, a1) + γ2r(s2, a2) + … . . π]



The Setting and Our Objective
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• Consider a “stationary” policy  

• “stationary” means not history or time dependent

π : S ↦ A

The Setting and Our Objective
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• Consider a “stationary” policy  

• “stationary” means not history or time dependent

π : S ↦ A

• Sampling a trajectory  on an episode: for a given policy  

• Sample an initial state :

• For 

• Take action 

• Observe reward 

• Transition to (and observe)  where  

τ π
s0 ∼ μ

t = 0,1,2,…∞
at = π(st)

rt = r(st, at)
st+1 st+1 ∼ P( ⋅ |st, at)

τ = {s0, a0, r0, s1, a1, r1, …, }

The Setting and Our Objective
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Today
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• Recap

• Infinite Horizon MDPs

• Policy Evaluation

• Optimality & the Bellman Equations

• Value Iteration

• Policy Iteration



Value function and Q functions:
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Value function and Q functions:
• Quantities that allow us to reason about the policy’s long-term effect:

• Value function  

 
 

Vπ(s) = ' [
∞

∑
h=0

γhr(sh, ah) s0 = s, π]

• Q function  

 

Qπ(s, a) = ' [
∞

∑
h=0

γhr(sh, ah) (s0, a0) = (s, a), π]
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Value function and Q functions:
• Quantities that allow us to reason about the policy’s long-term effect:

• Value function  

 
 

Vπ(s) = ' [
∞

∑
h=0

γhr(sh, ah) s0 = s, π]

• Q function  

 

Qπ(s, a) = ' [
∞

∑
h=0

γhr(sh, ah) (s0, a0) = (s, a), π]
• What are upper and lower bounds on  and  Vπ Qπ

28



Example of Policy Evaluation (e.g. computing  and )Vπ Qπ

Consider the following deterministic MDP w/ 3 states & 2 actions

a

b

c

A

B

A B

A

B

Reward: , &  everywhere elser(b, A) = 1 0
29
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A

B

A B

A
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Reward: , &  everywhere elser(b, A) = 1 0
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Example of Policy Evaluation (e.g. computing  and )Vπ Qπ

Consider the following deterministic MDP w/ 3 states & 2 actions

a

b

c

A

B

A B

A

B

Reward: , &  everywhere elser(b, A) = 1 0

• Consider the policy  
π(a) = B, π(b) = A, π(c) = A

• What is ? 
 

 
 

 
 
 

Vπ

Vπ(a) =

Vπ(b) =

Vπ(c) =

29

r=1


