Reinforcement Learning \& Multi-Armed Bandits

Lucas Janson and Sham Kakade
CS/Stat 184: Introduction to Reinforcement Learning Fall 2023

Today

- Recap
- Finite Horizon MDPs
- Policy Evaluation
- Optimality
- The Bellman Equations \& Dynamic Programming
- Infinite Horizon MDPs

Recap

Finite Horizon Markov Decision Processes (MDPs):

- An MDP: $\mathscr{M}=\{\mu, S, A, P, r, H\}$
- μ is a distribution over initial states (sometimes we assume we start a given state s_{0})

- S a set of states
- A a set of actions
- $P: S \times A \mapsto \Delta(S)$ specifies the dynamics model,
i.e. $P\left(s^{\prime} \mid s, a\right)$ is the probability of transitioning to s^{\prime} form states s under action a
- $r: S \times A \rightarrow[0,1]$
- For now, let's assume this is a deterministic function
- (sometimes we use a cost $c: S \times A \rightarrow[0,1]$)
- A time horizon $H \in \mathbb{N}$

The Episodic Setting and Trajectories

- Policy $\pi:=\left\{\pi_{0}, \pi_{1}, \ldots, \pi_{H-1}\right\}$
- deterministic policies: $\pi_{t}: S \mapsto A$; stochastic policies: $\pi_{t}: S \mapsto \Delta(A)$
- we also consider time-dependent policies (but not a function of the history)
- Sampling a trajectory τ on an episode: for a given policy π
- Sample an initial state $s_{0} \sim \mu$:
- For $t=0,1,2, \ldots H-1$
- Take action $a_{t} \sim \pi_{t}\left(\cdot \mid s_{t}\right)$
- Observe reward $r_{t}=r\left(s_{t}, a_{t}\right)$
- Transition to (and observe) s_{t+1} where $s_{t+1} \sim P\left(\cdot \mid s_{t}, a_{t}\right)$
- The sampled trajectory is $\tau=\left\{s_{0}, a_{0}, r_{0}, s_{1}, a_{1}, r_{1}, \ldots, s_{H-1}, a_{H-1}, r_{H-1}\right\}$

The Probability of a Trajectory \& The Objective

- Probability of trajectory: let $\rho_{\pi, \mu}(\tau)$ denote the probability of observing trajectory $\tau=\left\{s_{0}, a_{0}, r_{0}, s_{1}, a_{1}, r_{1}, \ldots, s_{H-1}, a_{H-1}, r_{H-1}\right\}$ when acting under π with $s_{0} \sim \mu$.
- Shorthand: we sometimes write ρ or ρ_{π} when π and/or μ are clear from context.
- The rewards in this trajectory must be $r_{t}=r\left(s_{t}, a_{t}\right)$ (else $\left.\rho_{\pi}(\tau)=0\right)$.
- For π stochastic:

$$
\rho_{\pi}(\tau)=\mu\left(s_{0}\right) \pi\left(a_{0} \mid s_{0}\right) P\left(s_{1} \mid s_{0}, a_{0}\right) \ldots \pi\left(a_{H-2} \mid s_{H-2}\right) P\left(s_{H-1} \mid s_{H-2}, a_{H-2}\right) \pi\left(a_{H-1} \mid s_{H-1}\right)
$$

- For π deterministic:

$$
\rho_{\pi}(\tau)=\mu\left(s_{0}\right) \mathbf{1}\left(a_{0}=\pi\left(s_{0}\right)\right) P\left(s_{1} \mid s_{0}, a_{0}\right) \ldots P\left(s_{H-1} \mid s_{H-2}, a_{H-2}\right) \mathbf{1}\left(a_{H-1}=\pi\left(s_{H-1}\right)\right)
$$

- Objective: find policy π that maximizes our expected cumulative episodic reward:
$\max _{\pi} \mathbb{E}_{\tau \sim \rho_{\pi}}\left[r\left(s_{0}, a_{0}\right)+r\left(s_{1}, a_{1}\right)+\ldots+r\left(s_{H-1}, a_{H-1}\right)\right]$

Value function and \mathbf{Q} functions:

Quantities that allow us to reason policy's long-term effect:

- Value function $V_{h}^{\pi}(s)=\mathbb{E}\left[\sum_{t=h}^{H-1} r\left(s_{t}, a_{t}\right) \mid s_{h}=s\right]$
- Q function $Q_{h}^{\pi}(s, a)=\mathbb{E}\left[\sum_{t=h}^{H-1} r\left(s_{t}, a_{t}\right) \mid\left(s_{h}, a_{h}\right)=(s, a)\right]$
- At the last stage, for a stochastic policy,:

$$
Q_{H-1}^{\pi}(s, a)=r(s, a)
$$

$$
V_{H-1}^{\pi}(s)=\sum_{a} \pi_{H-1}(a \mid s) r(s, a)
$$

Example of Policy Evaluation (e.g. computing V^{π} and Q^{π})
Consider the following deterministic MDP w/ 3 states \& 2 actions, with $H=3$

- Consider the deterministic policy

$$
\pi_{0}(s)=A, \pi_{1}(s)=A, \pi_{2}(s)=B, \forall s
$$

- What is V^{π} ?

$$
\begin{aligned}
& V_{2}^{\pi}(a)=0, V_{2}^{\pi}(b)=0, V_{2}^{\pi}(c)=0 \\
& V_{1}^{\pi}(a)=0, V_{1}^{\pi}(b)=1, V_{1}^{\pi}(c)=0 \\
& V_{0}^{\pi}(a)=1, V_{0}^{\pi}(b)=2, V_{0}^{\pi}(c)=1
\end{aligned}
$$

Today:

Today

- Recap
- Finite Horizon MDPs
- Policy Evaluation
- Optimality
- The Bellman Equations \& Dynamic Programming
- Infinite Horizon MDPs

Bellman Consistency

Bellman Consistency

- For a fixed policy, $\pi:=\left\{\pi_{0}, \pi_{1}, \ldots, \pi_{H-1}\right\}, \pi_{h}: S \mapsto A, \forall h$,

Bellman Consistency

- For a fixed policy, $\pi:=\left\{\pi_{0}, \pi_{1}, \ldots, \pi_{H-1}\right\}, \pi_{h}: S \mapsto A, \forall h$,
- By definition, $V_{h}^{\pi}(s)=Q_{h}^{\pi}\left(s, \pi_{h}(s)\right)$

Bellman Consistency

- For a fixed policy, $\pi:=\left\{\pi_{0}, \pi_{1}, \ldots, \pi_{H-1}\right\}, \pi_{h}: S \mapsto A, \forall h$,
- By definition, $V_{h}^{\pi}(s)=Q_{h}^{\pi}\left(s, \pi_{h}(s)\right)$
- At $H-1, Q_{H-1}^{\pi}(s, a)=r(s, a), V_{H-1}^{\pi}(s)=r\left(s, \pi_{H-1}(s)\right)$

Bellman Consistency

- For a fixed policy, $\pi:=\left\{\pi_{0}, \pi_{1}, \ldots, \pi_{H-1}\right\}, \pi_{h}: S \mapsto A, \forall h$,
- By definition, $V_{h}^{\pi}(s)=Q_{h}^{\pi}\left(s, \pi_{h}(s)\right)$
- At $H-1, Q_{H-1}^{\pi}(s, a)=r(s, a), V_{H-1}^{\pi}(s)=r\left(s, \pi_{H-1}(s)\right)$
- Bellman consistency conditions: for a given policy π,

Bellman Consistency

- For a fixed policy, $\pi:=\left\{\pi_{0}, \pi_{1}, \ldots, \pi_{H-1}\right\}, \pi_{h}: S \mapsto A, \forall h$,
- By definition, $V_{h}^{\pi}(s)=Q_{h}^{\pi}\left(s, \pi_{h}(s)\right)$
- At $H-1, Q_{H-1}^{\pi}(s, a)=r(s, a), V_{H-1}^{\pi}(s)=r\left(s, \pi_{H-1}(s)\right)$
- Bellman consistency conditions: for a given policy π,
- $V_{h}^{\pi}(s)=r\left(s, \pi_{h}(s)\right)+\mathbb{E}_{s^{\prime} \sim P\left(\cdot \mid s, \pi_{h}(s)\right)}\left[V_{h+1}^{\pi}\left(s^{\prime}\right)\right]$

Bellman Consistency

- For a fixed policy, $\pi:=\left\{\pi_{0}, \pi_{1}, \ldots, \pi_{H-1}\right\}, \pi_{h}: S \mapsto A, \forall h$,
- By definition, $V_{h}^{\pi}(s)=Q_{h}^{\pi}\left(s, \pi_{h}(s)\right)$
- At $H-1, Q_{H-1}^{\pi}(s, a)=r(s, a), V_{H-1}^{\pi}(s)=r\left(s, \pi_{H-1}(s)\right)$
- Bellman consistency conditions: for a given policy π,
- $V_{h}^{\pi}(s)=r\left(s, \pi_{h}(s)\right)+\mathbb{E}_{s^{\prime} \sim P\left(\cdot \mid s, \pi_{h}(s)\right)}\left[V_{h+1}^{\pi}\left(s^{\prime}\right)\right]$
- $Q_{h}^{\pi}(s, a)=r(s, a)+\mathbb{E}_{s^{\prime} \sim P(\mid s, a)}\left[V_{h+1}^{\pi}\left(s^{\prime}\right)\right]$

Notation

Notation

- $x \sim D$ means sampling from D

Notation

- $x \sim D$ means sampling from D
- $a \sim \pi(\cdot \mid s)$ means sampling from the distribution $\pi(\cdot \mid s)$,
i.e. choosing action a with probability $\pi(a \mid s)$

Notation

- $x \sim D$ means sampling from D
- $a \sim \pi(\cdot \mid s)$ means sampling from the distribution $\pi(\cdot \mid s)$, i.e. choosing action a with probability $\pi(a \mid s)$
- For a distribution D over a finite set \mathscr{X},

$$
E_{x \sim D}[f(x)]=\sum_{x \in \mathscr{X}} D(x) f(x)
$$

Notation

- $x \sim D$ means sampling from D
- $a \sim \pi(\cdot \mid s)$ means sampling from the distribution $\pi(\cdot \mid s)$,
i.e. choosing action a with probability $\pi(a \mid s)$
- For a distribution D over a finite set \mathscr{X},

$$
E_{x \sim D}[f(x)]=\sum_{x \in \mathscr{X}} D(x) f(x)
$$

- We use the notation:

$$
E_{s^{\prime} \sim P(\cdot \mid s, a)}\left[f\left(s^{\prime}\right)\right]=\sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, a\right) f\left(s^{\prime}\right)
$$

Proof: Bellman Consistency for V-function:

Proof: Bellman Consistency for V-function:

Let r_{h} denote the random variables $r_{h}=r\left(s_{h}, a_{h}\right)$

Proof: Bellman Consistency for V-function:

Let r_{h} denote the random variables $r_{h}=r\left(s_{h}, a_{h}\right)$ By definition and by the law of total expectation:

$V_{h}^{\pi}(s)=\mathbb{E}\left[r_{h}+r_{h+1}+\ldots+r_{H-1} \mid s_{h}=s\right]$

Proof: Bellman Consistency for V-function:

Let r_{h} denote the random variables $r_{h}=r\left(s_{h}, a_{h}\right)$
By definition and by the law of total expectation:

$$
\begin{aligned}
V_{h}^{\pi}(s) & =\mathbb{E}\left[r_{h}+r_{h+1}+\ldots+r_{H-1} \mid s_{h}=s\right] \\
& =\mathbb{E}\left[r_{h}+\mathbb{E}\left[r_{h+1}+\ldots+r_{H-1} \mid s_{h}=s, a_{h}=\pi_{h}(s), s_{h+1}\right] \mid s_{h}=s\right]
\end{aligned}
$$

Proof: Bellman Consistency for V-function:

Let r_{h} denote the random variables $r_{h}=r\left(s_{h}, a_{h}\right)$
By definition and by the law of total expectation:

$$
\begin{aligned}
V_{h}^{\pi}(s) & =\mathbb{E}\left[r_{h}+r_{h+1}+\ldots+r_{H-1} \mid s_{h}=s\right] \\
& =\mathbb{E}\left[r_{h}+\mathbb{E}\left[r_{h+1}+\ldots+r_{H-1} \mid s_{h}=s, a_{h}=\pi_{h}(s), s_{h+1}\right] \mid s_{h}=s\right]
\end{aligned}
$$

By the Markov property:

$$
=\mathbb{E}\left[r_{h}+\mathbb{E}\left[r_{h+1}+\ldots+r_{H-1} \mid s_{h+1}\right] \mid s_{h}=s\right]
$$

Proof: Bellman Consistency for V-function:

Let r_{h} denote the random variables $r_{h}=r\left(s_{h}, a_{h}\right)$
By definition and by the law of total expectation:

$$
\begin{aligned}
V_{h}^{\pi}(s) & =\mathbb{E}\left[r_{h}+r_{h+1}+\ldots+r_{H-1} \mid s_{h}=s\right] \\
& =\mathbb{E}\left[r_{h}+\mathbb{E}\left[r_{h+1}+\ldots+r_{H-1} \mid s_{h}=s, a_{h}=\pi_{h}(s), s_{h+1}\right] \mid s_{h}=s\right]
\end{aligned}
$$

By the Markov property:

$$
\begin{aligned}
& =\mathbb{E}\left[r_{h}+\mathbb{E}\left[r_{h+1}+\ldots+r_{H-1} \mid s_{h+1}\right] \mid s_{h}=s\right] \\
& =\mathbb{E}\left[r_{h}+V_{h+1}^{\pi}\left(s_{h+1}\right) \mid s_{h}=s\right]
\end{aligned}
$$

Proof: Bellman Consistency for V-function:

Let r_{h} denote the random variables $r_{h}=r\left(s_{h}, a_{h}\right)$
By definition and by the law of total expectation:

$$
\begin{aligned}
V_{h}^{\pi}(s) & =\mathbb{E}\left[r_{h}+r_{h+1}+\ldots+r_{H-1} \mid s_{h}=s\right] \\
& =\mathbb{E}\left[r_{h}+\mathbb{E}\left[r_{h+1}+\ldots+r_{H-1} \mid s_{h}=s, a_{h}=\pi_{h}(s), s_{h+1}\right] \mid s_{h}=s\right]
\end{aligned}
$$

By the Markov property:

$$
\begin{aligned}
& =\mathbb{E}\left[r_{h}+\mathbb{E}\left[r_{h+1}+\ldots+r_{H-1} \mid s_{h+1}\right] \mid s_{h}=s\right] \\
& =\mathbb{E}\left[r_{h}+V_{h+1}^{\pi}\left(s_{h+1}\right) \mid s_{h}=s\right] \\
& =r\left(s, \pi_{h}(s)\right)+\sum P\left(s^{\prime} \mid s, \pi_{h}(s)\right) V_{h+1}^{\pi}\left(s^{\prime}\right)
\end{aligned}
$$

Computation of V^{π} via Backward Induction

Computation of V^{π} via Backward Induction

- For a fixed policy, $\pi:=\left\{\pi_{0}, \pi_{1}, \ldots, \pi_{H-1}\right\}, \pi_{h}: S \mapsto A, \forall h$, Bellman consistency \Longrightarrow we can compute V_{h}^{π}, assuming we know the MDP.

Computation of V^{π} via Backward Induction

- For a fixed policy, $\pi:=\left\{\pi_{0}, \pi_{1}, \ldots, \pi_{H-1}\right\}, \pi_{h}: S \mapsto A, \forall h$, Bellman consistency \Longrightarrow we can compute V_{h}^{π}, assuming we know the MDP.
- Init: $V_{H}^{\pi}(s)=0$

Computation of V^{π} via Backward Induction

- For a fixed policy, $\pi:=\left\{\pi_{0}, \pi_{1}, \ldots, \pi_{H-1}\right\}, \pi_{h}: S \mapsto A, \forall h$, Bellman consistency \Longrightarrow we can compute V_{h}^{π}, assuming we know the MDP.
- Init: $V_{H}^{\pi}(s)=0$
- For $\mathrm{t}=H-1, \ldots 0$, set:

$$
V_{h}^{\pi}(s)=r\left(s, \pi_{h}(s)\right)+\mathbb{E}_{s^{\prime} \sim P\left(\cdot \mid s, \pi_{h}(s)\right)}\left[V_{h+1}^{\pi}\left(s^{\prime}\right)\right], \forall s \in S
$$

Computation of V^{π} via Backward Induction

- For a fixed policy, $\pi:=\left\{\pi_{0}, \pi_{1}, \ldots, \pi_{H-1}\right\}, \pi_{h}: S \mapsto A, \forall h$, Bellman consistency \Longrightarrow we can compute V_{h}^{π}, assuming we know the MDP.
- Init: $V_{H}^{\pi}(s)=0$
- Fort $H-1, \ldots 0$, set:

$$
V_{h}^{\pi}(s)=r\left(s, \pi_{h}(s)\right)+\mathbb{E}_{s^{\prime} \sim P\left(\cdot \mid s, \pi_{h}(s)\right)}\left[V_{h+1}^{\pi}\left(s^{\prime}\right)\right], \forall s \in S
$$

- What is the per iteration computational complexity of DP? (assume scalar,,$+- \times, \div$ are $O(1)$ operations)

Computation of V^{π} via Backward Induction

- For a fixed policy, $\pi:=\left\{\pi_{0}, \pi_{1}, \ldots, \pi_{H-1}\right\}, \pi_{h}: S \mapsto A, \forall h$, Bellman consistency \Longrightarrow we can compute V_{h}^{π}, assuming we know the MDP.
- Init: $V_{H}^{\pi}(s)=0$
- For $\mathrm{t}=H-1, \ldots 0$, set:

$$
V_{h}^{\pi}(s)=r\left(s, \pi_{h}(s)\right)+\mathbb{E}_{s^{\prime} \sim P\left(\cdot \mid s, \pi_{h}(s)\right)}\left[V_{h+1}^{\pi}\left(s^{\prime}\right)\right], \forall s \in S
$$

- What is the per iteration computational complexity of DP? (assume scalar,,$+- \times, \div$ are $O(1)$ operations)
- What is the total computational complexity of DP?

Today

- Recap
- Finite Horizon MDPs
- Policy Evaluation
- Optimality
- The Bellman Equations \& Dynamic Programming
- Infinite Horizon MDPs

Example of Optimal Policy π^{\star}

Consider the following deterministic MDP w/ 3 states \& 2 actions, with $H=3$

Example of Optimal Policy π^{\star}

Consider the following deterministic MDP w/ 3 states \& 2 actions, with $H=3$

-What's the optimal policy?

$$
\pi_{h}^{\star}(s)=A, \forall s, h
$$

Example of Optimal Policy π^{\star}

Consider the following deterministic MDP w/ 3 states \& 2 actions, with $H=3$

- What's the optimal policy?

$$
\pi_{h}^{\star}(s)=A, \forall s, h
$$

- What is optimal value function, $V^{\pi^{\star}}=V^{\star}$?

$$
\begin{aligned}
& V_{2}^{\star}(a)=0, V_{2}^{\star}(b)=1, V_{2}^{\star}(c)=0 \\
& V_{1}^{\star}(a)=1, V_{1}^{\star}(b)=2, V_{1}^{\star}(c)=1 \\
& V_{0}^{\star}(a)=2, V_{0}^{\star}(b)=3, V_{0}^{\star}(c)=2
\end{aligned}
$$

How do we compute π^{\star} and V^{\star} ?

How do we compute π^{\star} and V^{\star} ?

- Naively, we could compute the value of all policies and take the best one.

How do we compute π^{\star} and V^{\star} ?

- Naively, we could compute the value of all policies and take the best one.
- Suppose $|S|$ states, $|A|$ actions, and horizon H. How many different polices there are?

How do we compute π^{\star} and V^{\star} ?

- Naively, we could compute the value of all policies and take the best one.
- Suppose $|S|$ states, $|A|$ actions, and horizon H. How many different polices there are?
- Can we do better?

Properties of an Optimal Policy π^{\star}

Properties of an Optimal Policy π^{\star}

- Let Π be the set of all time dependent, history dependent, stochastic policies.

Properties of an Optimal Policy π^{\star}

- Let Π be the set of all time dependent, history dependent, stochastic policies.
- Theorem: Every finite horizon MDP has a deterministic optimal policy, that dominates all other policies, everywhere.

Properties of an Optimal Policy π^{\star}

- Let Π be the set of all time dependent, history dependent, stochastic policies.
- Theorem: Every finite horizon MDP has a deterministic optimal policy, that dominates all other policies, everywhere.
- i.e. there exists a policy $\pi^{\star}:=\left\{\pi_{0}^{\star}, \pi_{1}^{\star}, \ldots, \pi_{H-1}^{\star}\right\}, \pi_{h}^{\star}: S \mapsto A$ such that

$$
V_{h}^{\pi^{\star}}(s) \geq V_{h}^{\pi}(s) \quad \forall s, h, \forall \pi \in \Pi
$$

Properties of an Optimal Policy π^{\star}

- Let Π be the set of all time dependent, history dependent, stochastic policies.
- Theorem: Every finite horizon MDP has a deterministic optimal policy, that dominates all other policies, everywhere.
- i.e. there exists a policy $\pi^{\star}:=\left\{\pi_{0}^{\star}, \pi_{1}^{\star}, \ldots, \pi_{H-1}^{\star}\right\}, \pi_{h}^{\star}: S \mapsto A$ such that

$$
V_{h}^{\pi^{\star}}(s) \geq V_{h}^{\pi}(s) \quad \forall s, h, \forall \pi \in \Pi
$$

- \Longrightarrow we can write: $V_{h}^{\star}=V_{h}^{\pi^{\star}}$ and $Q_{h}^{\star}=Q_{h}^{\pi^{\star}}$.

Properties of an Optimal Policy π^{\star}

- Let Π be the set of all time dependent, history dependent, stochastic policies.
- Theorem: Every finite horizon MDP has a deterministic optimal policy, that dominates all other policies, everywhere.
- i.e. there exists a policy $\pi^{\star}:=\left\{\pi_{0}^{\star}, \pi_{1}^{\star}, \ldots, \pi_{H-1}^{\star}\right\}, \pi_{h}^{\star}: S \mapsto A$ such that

$$
V_{h}^{\pi^{\star}}(s) \geq V_{h}^{\pi}(s) \quad \forall s, h, \forall \pi \in \Pi
$$

- \Longrightarrow we can write: $V_{h}^{\star}=V_{h}^{\pi^{\star}}$ and $Q_{h}^{\star}=Q_{h}^{\pi^{\star}}$.
- \Longrightarrow the starting distribution μ doesn't determine π^{\star}.

What's the Proof Intuition?

What's the Proof Intuition?

- Theorem: Every finite horizon MDP has a deterministic optimal policy, that dominates all other policies, everywhere.

What's the Proof Intuition?

- Theorem: Every finite horizon MDP has a deterministic optimal policy, that dominates all other policies, everywhere.
- What's the Proof Intuition?

What's the Proof Intuition?

- Theorem: Every finite horizon MDP has a deterministic optimal policy, that dominates all other policies, everywhere.
- What's the Proof Intuition?
- "Only the state matters": how got here doesn't matter to where we go next, conditioned on the action.

What's the Proof Intuition?

- Theorem: Every finite horizon MDP has a deterministic optimal policy, that dominates all other policies, everywhere.
- What's the Proof Intuition?
- "Only the state matters": how got here doesn't matter to where we go next, conditioned on the action.
- "No Sunk Cost Fallacy": past rewards are history; we only care about our reward from this point forward.

What's the Proof Intuition?

- Theorem: Every finite horizon MDP has a deterministic optimal policy, that dominates all other policies, everywhere.
- What's the Proof Intuition?
- "Only the state matters": how got here doesn't matter to where we go next, conditioned on the action.
- "No Sunk Cost Fallacy": past rewards are history; we only care about our reward from this point forward.
- no FOMO/no regret/no dwelling on the past

What's the Proof Intuition?

- Theorem: Every finite horizon MDP has a deterministic optimal policy, that dominates all other policies, everywhere.
- What's the Proof Intuition?
- "Only the state matters": how got here doesn't matter to where we go next, conditioned on the action.
- "No Sunk Cost Fallacy": past rewards are history; we only care about our reward from this point forward.
- no FOMO/no regret/no dwelling on the past
- Caveat: some legitimate reward functions are not additive/linear (so, naively, not an MDP). (But, RL is general: think about redefining the state so you can do these.)

What's the Proof Intuition?

- Theorem: Every finite horizon MDP has a deterministic optimal policy, that dominates all other policies, everywhere.
- What's the Proof Intuition?
- "Only the state matters": how got here doesn't matter to where we go next, conditioned on the action.
- "No Sunk Cost Fallacy": past rewards are history; we only care about our reward from this point forward.
- no FOMO/no regret/no dwelling on the past
- Caveat: some legitimate reward functions are not additive/linear (so, naively, not an MDP). (But, RL is general: think about redefining the state so you can do these.)
- We write $V^{\pi^{\star}}=V^{\star}$.

Today

- Recap
- Finite Horizon MDPs
- Policy Evaluation
- Optimality
- The Bellman Equations \& Dynamic Programming
- Infinite Horizon MDPs

The Bellman Equations

The Bellman Equations

- A function $V=\left\{V_{0}, \ldots V_{H-1}\right\}, V_{h}: S \rightarrow R$ satisfies the Bellman equations if

$$
V_{h}(s)=\max _{a}\left\{r(s, a)+\mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)}\left[V_{h+1}\left(s^{\prime}\right)\right]\right\}, \forall s
$$

(assume $V_{H}=0$).

The Bellman Equations

- A function $V=\left\{V_{0}, \ldots V_{H-1}\right\}, V_{h}: S \rightarrow R$ satisfies the Bellman equations if

$$
V_{h}(s)=\max _{a}\left\{r(s, a)+\mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)}\left[V_{h+1}\left(s^{\prime}\right)\right]\right\}, \forall s
$$

(assume $V_{H}=0$).

- Theorem: V satisfies the Bellman equations if and only if $V=V^{\star}$.

The Bellman Equations

- A function $V=\left\{V_{0}, \ldots V_{H-1}\right\}, V_{h}: S \rightarrow R$ satisfies the Bellman equations if

$$
V_{h}(s)=\max _{a}\left\{r(s, a)+\mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)}\left[V_{h+1}\left(s^{\prime}\right)\right]\right\}, \forall s
$$

(assume $V_{H}=0$).

- Theorem: V satisfies the Bellman equations if and only if $V=V^{\star}$.
- The optimal policy is: $\pi_{h}^{\star}(s)=\arg \max _{a}\left\{r(s, a)+\mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)}\left[V_{h+1}^{\star}\left(s^{\prime}\right)\right]\right\}$.

Computation of V^{\star} with Dynamic Programming

Computation of V^{\star} with Dynamic Programming

- Theorem: the following Dynamic Programming algorithm correctly computes π^{\star} and V^{\star} Prf: the Bellman equations directly lead to this backwards induction.

Computation of V^{\star} with Dynamic Programming

- Theorem: the following Dynamic Programming algorithm correctly computes π^{\star} and V^{\star} Prf: the Bellman equations directly lead to this backwards induction.
- Initialize: $V_{H}^{\pi}(s)=0$

For $\mathrm{t}=H-1, \ldots 0$, set:

Computation of V^{\star} with Dynamic Programming

- Theorem: the following Dynamic Programming algorithm correctly computes π^{\star} and V^{\star} Prf: the Bellman equations directly lead to this backwards induction.
- Initialize: $V_{H}^{\pi}(s)=0 \quad \forall s$

For $\mathrm{t}=\mathrm{H}-1, \ldots 0$, set:

- $V_{h}^{\star}(s)=\max _{a}\left[r(s, a)+\mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)}\left[V_{h+1}^{\star}\left(s^{\prime}\right)\right]\right]$

Computation of V^{\star} with Dynamic Programming

- Theorem: the following Dynamic Programming algorithm correctly computes π^{\star} and V^{\star} Prf: the Bellman equations directly lead to this backwards induction.
- Initialize: $V_{H}^{\pi}(s)=0$

For $\mathrm{t}=\mathrm{H}-1, \ldots 0$, set:

- $V_{h}^{\star}(s)=\max _{a}\left[r(s, a)+\mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)}\left[V_{h+1}^{\star}\left(s^{\prime}\right)\right]\right]$
- $\pi_{h}^{\star}(s)=\arg \max _{a}\left[r(s, a)+\mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)}\left[V_{h+1}^{\star}\left(s^{\prime}\right)\right]\right]$

Computation of V^{\star} with Dynamic Programming

- Theorem: the following Dynamic Programming algorithm correctly computes π^{\star} and V^{\star} Prf: the Bellman equations directly lead to this backwards induction.
- Initialize: $V_{H}^{\pi}(s)=0$

For $\mathrm{t}=H-1, \ldots 0$, set:

- $V_{h}^{\star}(s)=\max _{a}\left[r(s, a)+\mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)}\left[V_{h+1}^{\star}\left(s^{\prime}\right)\right]\right]$
- $\pi_{h}^{\star}(s)=\underset{a}{\arg \max _{a}}\left[r(s, a)+\mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)}\left[V_{h+1}^{\star}\left(s^{\prime}\right)\right]\right]$
- What is the per iteration computational complexity of DP? (assume scalar,,$+- \times, \div$ are $O(1)$ operations)

Computation of V^{\star} with Dynamic Programming

- Theorem: the following Dynamic Programming algorithm correctly computes π^{\star} and V^{\star} Prf: the Bellman equations directly lead to this backwards induction.
- Initialize: $V_{H}^{\pi}(s)=0$

For $\mathrm{t}=H-1, \ldots 0$, set:

- $V_{h}^{\star}(s)=\max _{a}\left[r(s, a)+\mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)}\left[V_{h+1}^{\star}\left(s^{\prime}\right)\right]\right]$
- $\pi_{h}^{\star}(s)=\arg \max _{a}\left[r(s, a)+\mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)}\left[V_{h+1}^{\star}\left(s^{\prime}\right)\right]\right]$
- What is the per iteration computational complexity of DP? (assume scalar,,$+- \times, \div$ are $O(1)$ operations)
- What is the total computational complexity of DP?

Summary:

- Dynamic Programming lets us efficiently compute optimal policies.
- We remember the results on "sub-problems"
- Optimal policies are history independent.

Attendance:
bit.ly/3RcTC9T

Feedback:
bit.ly/3RHtlxy

Today

- Recap
- Finite Horizon MDPs
- Policy Evaluation
- Optimality
- The Bellman Equations \& Dynamic Programming
- Infinite Horizon MDPs

Finite Horizon Markov Decision Processes (MDPs):

Finite Horizon Markov Decision Processes (MDPs):

- An MDP: $\mathscr{M}=\{\mu, S, A, P, r, \gamma\}$

Finite Horizon Markov Decision Processes (MDPs):

- An MDP: $\mathscr{M}=\{\mu, S, A, P, r, \gamma\}$
- $\mu, S, A, P: S \times A \mapsto \Delta(S), r: S \times A \rightarrow[0,1]$ same as before

Finite Horizon Markov Decision Processes (MDPs):

- An MDP: $\mathscr{M}=\{\mu, S, A, P, r, \gamma\}$
- $\mu, S, A, P: S \times A \mapsto \Delta(S), r: S \times A \rightarrow[0,1]$ same as before
- instead of finite horizon H, we have a discount factor $\gamma \in[0,1)$

Finite Horizon Markov Decision Processes (MDPs):

- An MDP: $\mathscr{M}=\{\mu, S, A, P, r, \gamma\}$
- $\mu, S, A, P: S \times A \mapsto \Delta(S), r: S \times A \rightarrow[0,1]$ same as before
- instead of finite horizon H, we have a discount factor $\gamma \in[0,1)$
- Objective: find policy π that maximizes our expected, discounted future reward: $\max _{\pi} \mathbb{E}\left[r\left(s_{0}, a_{0}\right)+\gamma r\left(s_{1}, a_{1}\right)+\gamma^{2} r\left(s_{2}, a_{2}\right)+\ldots . \mid \pi\right]$

The Setting and Our Objective

The Setting and Our Objective

- Consider a "stationary" policy $\pi: S \mapsto A$
- "stationary" means not history or time dependent

The Setting and Our Objective

- Consider a "stationary" policy $\pi: S \mapsto A$
- "stationary" means not history or time dependent
- Sampling a trajectory τ on an episode: for a given policy π
- Sample an initial state $s_{0} \sim \mu$:
- For $t=0,1,2, \ldots \infty$
- Take action $a_{t}=\pi\left(s_{t}\right)$
- Observe reward $r_{t}=r\left(s_{t}, a_{t}\right)$
- Transition to (and observe) s_{t+1} where $s_{t+1} \sim P\left(\cdot \mid s_{t}, a_{t}\right)$ $\tau=\left\{s_{0}, a_{0}, r_{0}, s_{1}, a_{1}, r_{1}, \ldots,\right\}$

Today

- Recap
- Infinite Horizon MDPs
- Policy Evaluation
- Optimality \& the Bellman Equations
- Value Iteration
- Policy Iteration

Value function and Q functions:

Value function and Q functions:

- Quantities that allow us to reason about the policy's long-term effect:

Value function and Q functions:

- Quantities that allow us to reason about the policy's long-term effect:
- Value function $V^{\pi}(s)=\mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r\left(s_{h}, a_{h}\right) \mid s_{0}=s, \pi\right]$

Value function and Q functions:

- Quantities that allow us to reason about the policy's long-term effect:
- Value function $V^{\pi}(s)=\mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r\left(s_{h}, a_{h}\right) \mid s_{0}=s, \pi\right]$
- Q function $Q^{\pi}(s, a)=\mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r\left(s_{h}, a_{h}\right) \mid\left(s_{0}, a_{0}\right)=(s, a), \pi\right]$

Value function and Q functions:

- Quantities that allow us to reason about the policy's long-term effect:
- Value function $V^{\pi}(s)=\mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r\left(s_{h}, a_{h}\right) \mid s_{0}=s, \pi\right]$
- Q function $Q^{\pi}(s, a)=\mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r\left(s_{h}, a_{h}\right) \mid\left(s_{0}, a_{0}\right)=(s, a), \pi\right]$
- What are upper and lower bounds on V^{π} and Q^{π}

Example of Policy Evaluation (e.g. computing V^{π} and Q^{π})

Consider the following deterministic MDP w/ 3 states \& 2 actions

Example of Policy Evaluation (e.g. computing V^{π} and Q^{π})

Consider the following deterministic MDP w/ 3 states \& 2 actions

- Consider the policy

$$
\pi(a)=B, \pi(b)=A, \pi(c)=A
$$

Example of Policy Evaluation (e.g. computing V^{π} and Q^{π})

Consider the following deterministic MDP w/ 3 states \& 2 actions

- Consider the policy

$$
\pi(a)=B, \pi(b)=A, \pi(c)=A
$$

- What is V^{π} ?
$V^{\pi}(a)=$

$$
V^{\pi}(b)=
$$

$$
V^{\pi}(c)=
$$

