Reinforcement Learning & Multi-Armed Bandits

Lucas Janson and Sham Kakade CS/Stat 184: Introduction to Reinforcement Learning Fall 2023

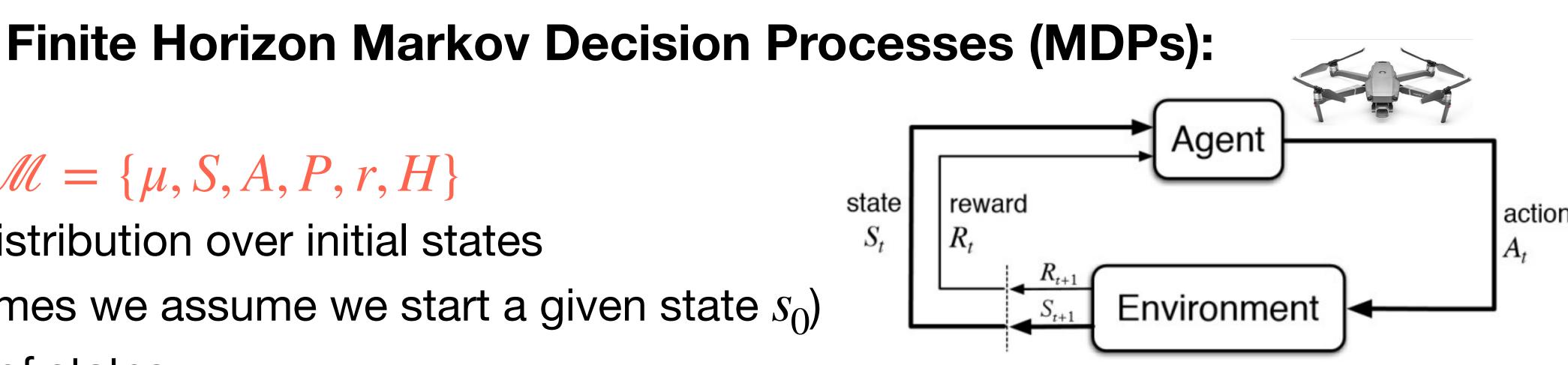
- Finite Horizon MDPs
 - Policy Evaluation
 - Optimality
 - The Bellman Equations & Dynamic Programming
- Infinite Horizon MDPs lacksquare

Today

* FMD Lie Thus

Recap

- An MDP: $M = \{\mu, S, A, P, r, H\}$
 - μ is a distribution over initial states (sometimes we assume we start a given state s_0)
 - S a set of states
 - A a set of actions
 - $P: S \times A \mapsto \Delta(S)$ specifies the dynamics model,
 - $r: S \times A \rightarrow [0,1]$
 - For now, let's assume this is a deterministic function
 - (sometimes we use a cost $c : S \times A \rightarrow [0,1]$)
 - A time horizon $H \in \mathbb{N}$



i.e. $P(s' \mid s, a)$ is the probability of transitioning to s' form states s under action a

The Episodic Setting and Trajectories

- Policy $\pi := \{\pi_0, \pi_1, \dots, \pi_{H-1}\}$
 - we also consider time-dependent policies (but not a function of the history)

Charth Pr. MGISE)

- deterministic policies: $\pi_t : S \mapsto A$; stochastic policies: $\pi_t : S \mapsto \Delta(A)$ • Sampling a trajectory τ on an episode: for a given policy π MODSC
 - Sample an initial state $s_0 \sim \mu$:
 - For $t = 0, 1, 2, \dots, H 1$
 - Take action $a_t \sim \pi_t(\cdot | s_t)$
 - Observe reward $r_t = r(s_t, a_t)$
 - Transition to (and observe) s_{t+1} where $s_{t+1} \sim P(\cdot \mid s_t, a_t)$ • The sampled trajectory is $\tau = \{s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{H-1}, a_{H-1}, r_{H-1}\}$

The Probability of a Trajectory & The Objective

- - The rewards in this trajectory must be $r_t = r(s_t, a_t)$ (else $\rho_{\pi}(\tau) = 0$).
 - For π stochastic: $\rho_{\pi}(\tau) = \mu(s_0)\pi(a_0 | s_0)P(s_1 | s_0, a_0)\dots\pi(s_0)P(s_1 | s_0, a_0)\dots\pi(s_0)P(s_0 | s_0)P(s_0 | s_0)P(s_0 | s_0)\dots\pi(s_0)P(s_0 | s_0)P(s_0 | s_0)\dots\pi(s_0)P(s_0 | s_0)P(s_0 | s_0)\dots\pi(s_0)P(s_0 | s_0)\dots\pi(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P(s_0)P$
 - For π deterministic: $\rho_{\pi}(\tau) = \mu(s_0) \mathbf{1}(a_0 = \pi(s_0)) P(s_1 | s_0, a_0)$
- $\max \mathbb{E}_{\tau \sim \rho_{\pi}} \left[r(s_0, a_0) + r(s_1, a_1) + \ldots + r(s_{H-1}, a_{H-1}) \right]$

• Probability of trajectory: let $\rho_{\pi,\mu}(\tau)$ denote the probability of observing trajectory $\tau = \{s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{H-1}, a_{H-1}, r_{H-1}\}$ when acting under π with $s_0 \sim \mu$. Shorthand: we sometimes write ρ or ρ_{π} when π and/or μ are clear from context.

$$(a_{H-2} | s_{H-2})P(s_{H-1} | s_{H-2}, a_{H-2})\pi(a_{H-1} | s_{H-1})$$

b)...P(s_{H-1} | s_{H-2}, a_{H-2})**1**(a_{H-1} = \pi(s_{H-1}))

Objective: find policy π that maximizes our expected cumulative episodic reward:

Value function and Q functions:

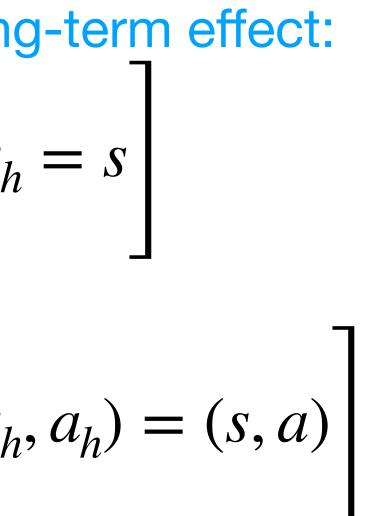
Quantities that allow us to reason policy's long-term effect: Γ_{μ}

• Value function
$$V_h^{\pi}(s) = \mathbb{E} \left[\sum_{t=h}^{H-1} r(s_t, a_t) \middle| s_h \right]$$

• **Q function**
$$Q_h^{\pi}(s, a) = \mathbb{E} \left[\sum_{t=h}^{H-1} r(s_t, a_t) \right| (s_h)$$

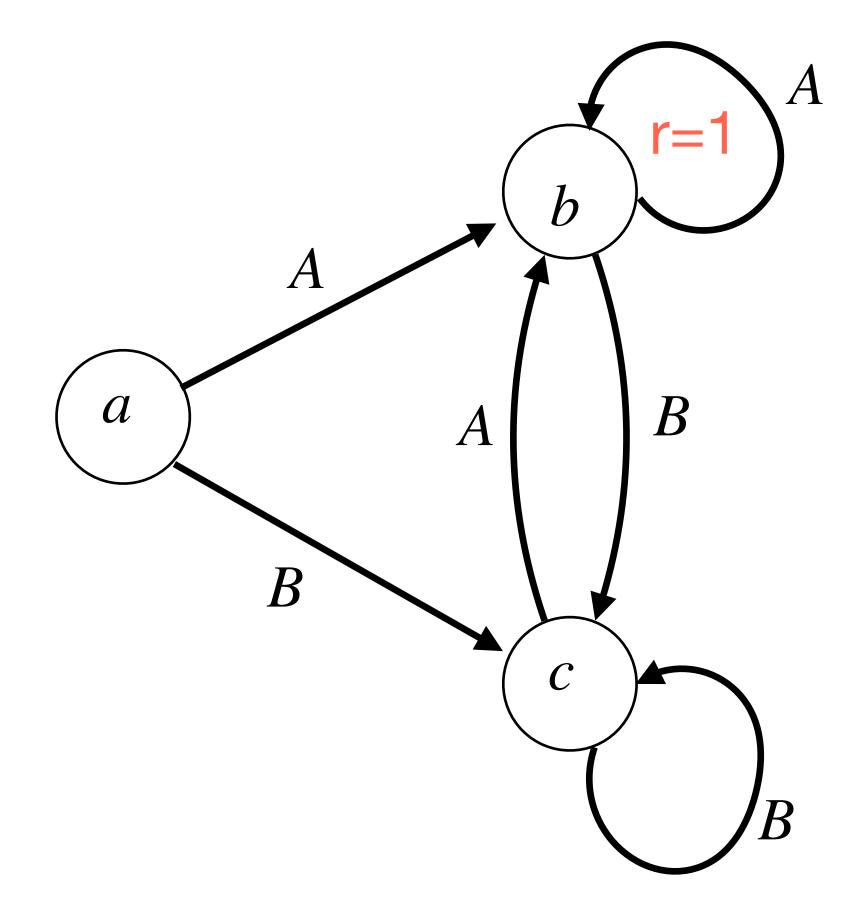
• At the last stage, for a stochastic policy,:

$$Q_{H-1}^{\pi}(s,a) = r(s,a) \qquad \qquad V_{H-1}^{\pi}(s) = \sum_{a} \pi_{H-1}(a \mid s) r(s,a)$$



Example of Policy Evaluation (e.g. computing V^{π} and Q^{π})

Consider the following **deterministic** MDP w/3 states & 2 actions, with H = 3



Reward: r(b, A) = 1, & 0 everywhere else

- Consider the deterministic policy $\pi_0(s) = A, \pi_1(s) = A, \pi_2(s) = B, \forall s$
- What is V^{π} ? $V_2^{\pi}(a) = 0, V_2^{\pi}(b) = 0, V_2^{\pi}(c) = 0$ $V_1^{\pi}(a) = 0, V_1^{\pi}(b) = 1, V_1^{\pi}(c) = 0$ $V_0^{\pi}(a) = 1, V_0^{\pi}(b) = 2, V_0^{\pi}(c) = 1$

Today:

- Optimality
- The Bellman Equations & Dynamic Programming
- Infinite Horizon MDPs

Today

Bellman Consistency • For a fixed policy, $\pi := \{\pi_0, \pi_1, ..., \pi_{H-1}\}, \pi_h : S \mapsto A, \forall h$,

Bellman Consistency • For a fixed policy, $\pi := \{\pi_0, \pi_1, ..., \pi_{H-1}\}, \pi_h : S \mapsto A, \forall h$,

- By definition, $V_h^{\pi}(s) = Q_h^{\pi}(s, \pi_h(s))$

- For a fixed policy, $\pi := \{\pi_0, \pi_1, ..., \pi_{H-1}\}, \pi_h : S \mapsto A, \forall h$,
- By definition, $V_h^{\pi}(s) = Q_h^{\pi}(s, \pi_h(s))$
- At H 1, $Q_{H-1}^{\pi}(s, a) = r(s, a)$, $V_{H-1}^{\pi}(s) = r(s, \pi_{H-1}(s))$

- For a fixed policy, $\pi := \{\pi_0, \pi_1, ..., \pi_{H-1}\}, \pi_h : S \mapsto A, \forall h$,
- By definition, $V_h^{\pi}(s) = Q_h^{\pi}(s, \pi_h(s))$
- At H 1, $Q_{H-1}^{\pi}(s, a) = r(s, a)$, $V_{H-1}^{\pi}(s) = r(s, \pi_{H-1}(s))$
- Bellman consistency conditions: for a given policy π ,

- For a fixed policy, $\pi := \{\pi_0, \pi_1, ..., \pi_{H-1}\}, \pi_h : S \mapsto A, \forall h$,
- By definition, $V_h^{\pi}(s) = Q_h^{\pi}(s, \pi_h(s))$
- At H 1, $Q_{H-1}^{\pi}(s, a) = r(s, a)$, $V_{H-1}^{\pi}(s) = r(s, \pi_{H-1}(s))$
- Bellman consistency conditions: for a given policy π ,
 - $V_h^{\pi}(s) = r(s, \pi_h(s)) + \mathbb{E}_{s' \sim P(\cdot | s, \pi_h(s))} \left[V_{h+1}^{\pi}(s') \right]$

ZPCS STUSS Mar (S)

- For a fixed policy, $\pi := \{\pi_0, \pi_1, ..., \pi_{H-1}\}, \pi_h : S \mapsto A, \forall h$,
- By definition, $V_h^{\pi}(s) = Q_h^{\pi}(s, \pi_h(s))$
- At H 1, $Q_{H-1}^{\pi}(s, a) = r(s, a)$, $V_{H-1}^{\pi}(s) = r(s, \pi_{H-1}(s))$
- Bellman consistency conditions: for a given policy π ,
 - $V_h^{\pi}(s) = r(s, \pi_h(s)) + \mathbb{E}_{s' \sim P(\cdot | s, \pi_h(s))} \left[V_{h+1}^{\pi}(s') \right]$
 - $Q_{h}^{\pi}(s,a) = r(s,a) + \mathbb{E}_{s' \sim P(\cdot|s,a)} \left[V_{h+1}^{\pi}(s') \right]$ $= \sqrt{(s_{i}a)} + \mathbb{E}_{s' \sim P(\cdot|s_{i}a_{i})} \left[Q_{h+1}^{\pi} \left(s' \right)^{T} \left(s' \right) \right]$
- $s(s) = r(s, \pi_{H-1}(s))$ given policy π , $\begin{bmatrix} V_{h+1}^{\pi}(s') \end{bmatrix}$

• $x \sim D$ means sampling from D

- $x \sim D$ means sampling from D
- $a \sim \pi(\cdot | s)$ means sampling from the distribution $\pi(\cdot | s)$, i.e. choosing action *a* with probability $\pi(a \mid s)$

- $x \sim D$ means sampling from D
- $a \sim \pi(\cdot | s)$ means sampling from the distribution $\pi(\cdot | s)$, i.e. choosing action a with probability $\pi(a \mid s)$
- For a distribution D over a finite set \mathcal{X} , $E_{x \sim D}[f(x)] = \sum D(x)f(x)$ $x \in \mathcal{X}$

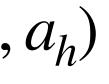
- $x \sim D$ means sampling from D
- $a \sim \pi(\cdot | s)$ means sampling from the distribution $\pi(\cdot | s)$, i.e. choosing action a with probability $\pi(a \mid s)$
- For a distribution D over a finite set \mathscr{X} , $E_{x \sim D}[f(x)] = \sum D(x)f(x)$ $x \in \mathcal{X}$
- We use the notation:

 $E_{s' \sim P(\cdot|s,a)}[f(s')] = \sum P(s'|s,a)f(s')$

 $s' \in S$

Let r_h denote the random variables $r_h = r(s_h, a_h)$ $V^{\mathcal{T}}(S) = \mathcal{F}\left[V(S_{\mathcal{H}}, \mathcal{A}_{\mathcal{H}}) + V(S_{\mathcal{H}}, \mathcal{A}_{\mathcal{H}}) + \cdots + \mathcal{N}(S_{\mathcal{H}}, \mathcal{A}_{\mathcal{H}})\right]$

Let r_h denote the random variables $r_h = r(s_h, a_h)$ By definition and by the law of total expectation: $V_h^{\pi}(s) = \mathbb{E}\left[r_h + r_{h+1} + \dots + r_{H-1}\right|s_h = s$



Let r_h denote the random variables $r_h = r(s_h, a_h)$ By definition and by the law of total expectation: $V_h^{\pi}(s) = \mathbb{E}\left[r_h + r_{h+1} + \ldots + r_{H-1} \middle| s_h = s\right]$ $= \mathbb{E}\left[r_h + \mathbb{E}\left[r_{h+1} + \ldots + r_{H-1} \middle| s_h = s, a_h\right]$

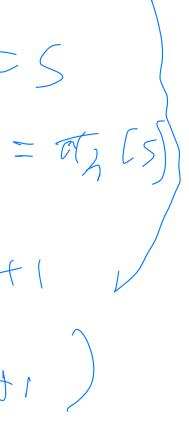
$$s, a_h = \pi_h(s), s_{h+1} \mid s_h = s$$

Let r_h denote the random variables $r_h = r(s_h, a_h)$ By definition and by the law of total expectation: $V_h^{\pi}(s) = \mathbb{E}\left[r_h + r_{h+1} + \ldots + r_{H-1} \middle| s_h = s\right]$ $= \mathbb{E}\left[r_h + \mathbb{E}\left[r_{h+1} + \ldots + r_{H-1} \middle| s_h = s, a_h\right]$

$$= \mathbb{E}\left[r_{h} + \mathbb{E}\left[r_{h+1} + \dots + r_{H-1} \middle| s_{h} = s, a_{h} = \pi_{h}(s), s_{h+1}\right] \middle| s_{h} = s\right]$$
By the Markov property:

$$= \mathbb{E}\left[r_{h} + \mathbb{E}\left[r_{h+1} + \dots + r_{H-1} \middle| s_{h+1}\right] \middle| s_{h} = s\right]$$

$$P_{r}\left(\mathcal{A}_{n+1}, \dots + \mathcal{A}_{H-1}, s_{H-1}, s_{H-1}, \dots, s_{H-1}, s_{H-1}, s_{H-1}, s_{H-1}, s_{H-1}, \dots, s_{H-1}, s$$



Let r_h denote the random variables $r_h = r(s_h, a_h)$ By definition and by the law of total expectation: $V_h^{\pi}(s) = \mathbb{E}\left[r_h + r_{h+1} + \ldots + r_{H-1} \middle| s_h = s\right]$ $= \mathbb{E}\left[r_h + \mathbb{E}\left[r_{h+1} + \ldots + r_{H-1} \middle| s_h = s, a_h\right]$

By the Markov property:

$$= \mathbb{E} \left[r_{h} + \mathbb{E} \left[r_{h+1} + \ldots + r_{H-1} \middle| s_{h+1} \right] \middle| s_{h} = s \right]$$

$$= \mathbb{E} \left[r_{h} + V_{h+1}^{\pi}(s_{h+1}) \middle| s_{h} = s \right]$$

$$= r(s_{h}, t_{h}(s) + E_{s}) \left[V_{n+1}(s_{h+1}) \right]$$

$$= r(s_{h}, t_{h}(s) + E_{s}) \left[V_{n+1}(s_{h+1}) \right]$$

$$s, a_h = \pi_h(s), s_{h+1} \bigg] \bigg| s_h = s \bigg]$$

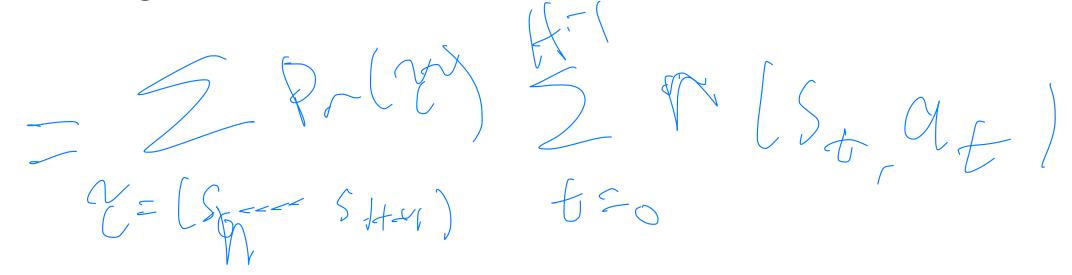
Let r_h denote the random variables $r_h = r(s_h, a_h)$ By definition and by the law of total expectation: $V_h^{\pi}(s) = \mathbb{E}\left[r_h + r_{h+1} + \dots + r_{H-1} \middle| s_h = s\right]$ $= \mathbb{E} \left[r_h + \mathbb{E} \left[r_{h+1} + \ldots + r_{H-1} \right] \right] S_h =$

By the Markov property:

$$= \mathbb{E} \left[r_{h} + \mathbb{E} \left[r_{h+1} + \dots + r_{H-1} \left| s_{h+1} \right] \right] \left| s_{h} = s \right]$$

$$= \mathbb{E} \left[r_{h} + V_{h+1}^{\pi}(s_{h+1}) \left| s_{h} = s \right]$$

$$= r(s, \pi_{h}(s)) + \sum_{s'} P(s' \mid s, \pi_{h}(s)) V_{h+1}^{\pi}(s')$$



$$s, a_h = \pi_h(s), s_{h+1} \left[s_h = s \right]$$

• For a fixed policy, $\pi := \{\pi_0, \pi_1, ..., \pi_{H-1}\}, \pi_h : S \mapsto A, \forall h$,

- For a fixed policy, $\pi := \{\pi_0, \pi_1, ..., \pi_{H-1}\}, \pi_h : S \mapsto A, \forall h$,
 - Init: $V_{H}^{\pi}(s) = 0$

- For a fixed policy, $\pi := \{\pi_0, \pi_1, ..., \pi_{H-1}\}, \pi_h : S \mapsto A, \forall h$,

• Init: $V_{H}^{\pi}(s) = 0$ • For t = H - 1, ...0, set: $V_{h}^{\pi}(s) = r(s, \pi_{h}(s)) + \mathbb{E}_{s' \sim P(\cdot | s, \pi_{h}(s))} [V_{h+1}^{\pi}(s')], \forall s \in S$ $V_{h}^{\pi}(s) = r(s, \pi_{h}(s)) + \mathbb{E}_{s' \sim P(\cdot | s, \pi_{h}(s))} [V_{h+1}^{\pi}(s')], \forall s \in S$

• For a fixed policy, $\pi := \{\pi_0, \pi_1, ..., \pi_{H-1}\}, \pi_h : S \mapsto A, \forall h$,

• Init:
$$V_{H}^{\pi}(s) = 0$$

• For $F = H - 1, ...0$, set:
 $V_{h}^{\pi}(s) = r(s, \pi_{h}(s)) + \mathbb{E}_{s' \sim P(\cdot | s, \pi_{h}(s))} \left[V_{h+1}^{\pi}(s') \right], \forall s \in S$

 What is the per iteration computational complexity of DP? (assume scalar +, -, ×, ÷ are O(1) operations)

Computation of V^{π}

- For a fixed policy, $\pi := \{\pi_0, \pi_1, \dots, \pi_H\}$ Bellman consistency \implies we can com
 - Init: $V_{H}^{\pi}(s) = 0$

• For
$$t = H - 1, \dots, 0$$
, set:

$$V_{h}^{\pi}(s) = r(s, \pi_{h}(s)) + \mathbb{E}_{s' \sim P(\cdot | s, \pi_{h}(s))} \left[V_{h+1}^{\pi}(s') \right], \, \forall s \in S$$

- What is the per iteration computational complexity of DP? (assume scalar $+, -, \times, \div$ are O(1) operations)

via Backward Induction

$$\mathcal{W}_{M} \neq \mathcal{M}_{M}$$

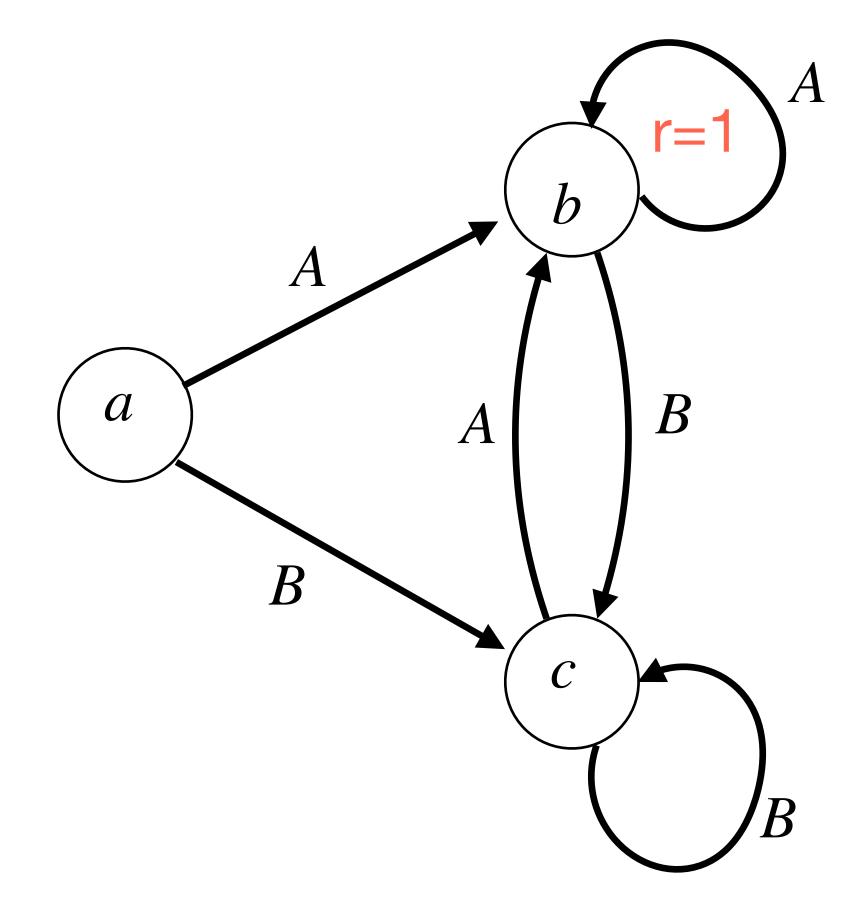
 $\mathcal{W}_{M} \neq \mathcal{M}_{M}$
 $\mathcal{W}_{h} = \mathcal{W}_{h}$
 $\mathcal{W}_{h} = \mathcal{W}_{h}$
 $\mathcal{W}_{h} = \mathcal{W}_{h}$
 $\mathcal{W}_{h} = \mathcal{W}_{h}$

• What is the total computational complexity of DP? () ($S^2 (S^2)$

- Recap
- Finite Horizon MDPs
 - Policy Evaluation

- Optimality
- Infinite Horizon MDPs

The Bellman Equations & Dynamic Programming

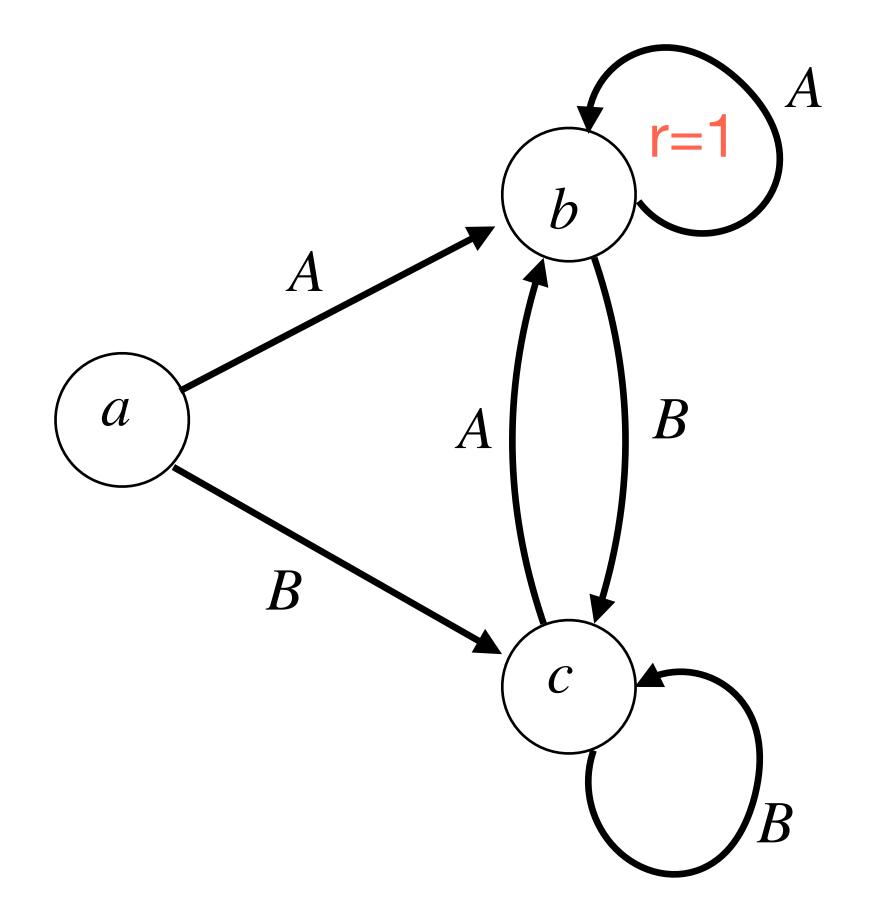


Reward: r(b, A) = 1, & 0 everywhere else

Example of Optimal Policy π^{\star}

Consider the following **deterministic** MDP w/3 states & 2 actions, with H = 3

Example of Optimal Policy π^{\star}



Reward: r(b, A) = 1, & 0 everywhere else

- Consider the following **deterministic** MDP w/3 states & 2 actions, with H = 3
 - What's the optimal policy? $\pi_h^{\star}(s) = A, \forall s, h$

Example of Optimal Policy π^{\star}



Reward: r(b, A) = 1, & 0 everywhere else

- Consider the following deterministic MDP w/3 states & 2 actions, with H = 3
 - What's the optimal policy? $\pi_h^{\star}(s) = A, \forall s, h$
 - What is optimal value function, $V^{\pi^*} = V^*$? $V_2^{\star}(a) = 0, V_2^{\star}(b) = 1, V_2^{\star}(c) = 0$

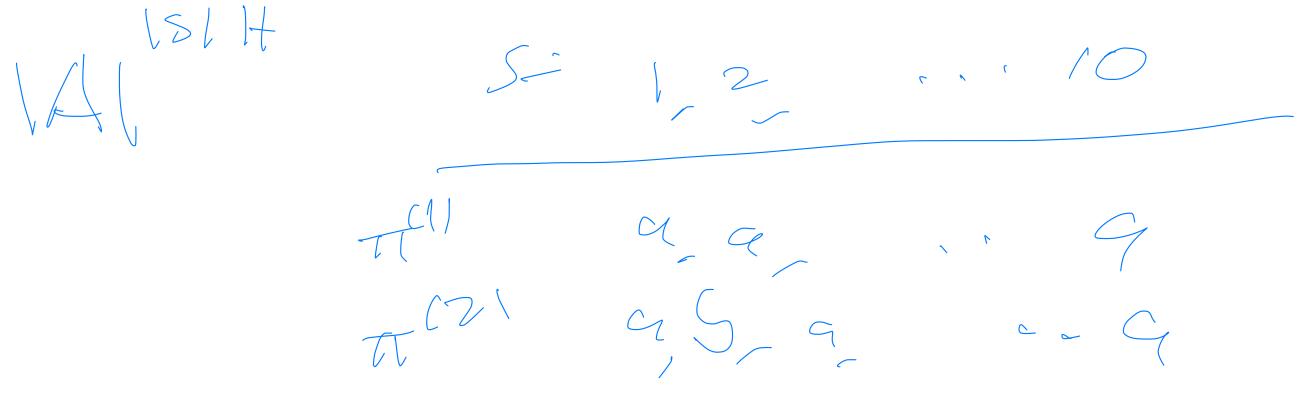
$$V_1^{\star}(a) = 1, V_1^{\star}(b) = 2, V_1^{\star}(c) = 1$$

 $V_0^{\star}(a) = 2, V_0^{\star}(b) = 3, V_0^{\star}(c) = 2$

Naively, we could compute the value of all policies and take the best one.

- Naively, we could compute the value of all policies and take the best one.
- Suppose |S| states, |A| actions, and horizon H. How many different polices there are?

of all policies and take the best one. Ind horizon H. $(\xi) = G$



|A| = 2

- Naively, we could compute the value of all policies and take the best one.
- Suppose |S| states, |A| actions, and horizon H.
 How many different polices there are?

• Can we do better?

of all policies and take the best one. In the dest one of H.

• Let Π be the set of all time dependent, history dependent, stochastic policies.

- Let Π be the set of all time dependent, history dependent, stochastic policies.
- **Theorem:** Every finite horizon MDP has a deterministic optimal policy, that dominates all other policies, everywhere.

Properties of an Optimal Policy π^*

- **Theorem:** Every finite horizon MDP has a deterministic optimal policy, that dominates all other policies, everywhere.

 $V_{h}^{\pi^{\star}}(s) \geq V_{h}^{\pi}(s) \quad \forall s, h, \forall \pi \in \Pi$

• Let Π be the set of all time dependent, history dependent, stochastic policies. Fhist, ind.

• i.e. there exists a policy $\pi^* := \{\pi_0^*, \pi_1^*, \dots, \pi_{H-1}^*\}, \pi_h^* : S \mapsto A$ such that f(x), f(x))

- **Theorem:** Every finite horizon MDP has a deterministic optimal policy, that dominates all other policies, everywhere.

 $V_h^{\pi^*}(s) \ge V_h^{\pi}(s) \quad \forall s, h, \ \forall \pi \in \Pi$ C V H • \implies we can write: $V_h^{\star} = V_h^{\pi^{\star}}$ and $Q_h^{\star} = Q_h^{\pi^{\star}}$.

• Let II be the set of all time dependent, history dependent, stochastic policies.

• i.e. there exists a policy $\pi^* := \{\pi_0^*, \pi_1^*, \dots, \pi_{H-1}^*\}, \pi_h^* : S \mapsto A$ such that

- Let Π be the set of all time dependent, history dependent, stochastic policies.
- **Theorem:** Every finite horizon MDP has a deterministic optimal policy, that dominates all other policies, everywhere.
 - i.e. there exists a policy $\pi^* := \{\pi_0^*, \pi_1^*, \dots, \pi_{H-1}^*\}, \pi_h^* : S \mapsto A$ such that $V_h^{\pi^*}(s) \ge V_h^{\pi}(s) \quad \forall s, h, \ \forall \pi \in \Pi$

- \implies we can write: $V_h^{\star} = V_h^{\pi^{\star}}$ and $Q_h^{\star} = Q_h^{\pi^{\star}}$.
- \implies the starting distribution μ doesn't determine π^{\star} .

Properties of an Optimal Policy π^* *history independent*

• **Theorem:** Every finite horizon MDP has a deterministic optimal policy, that dominates all other policies, everywhere.

- **Theorem:** Every finite horizon MDP has a deterministic optimal policy, that dominates all other policies, everywhere.
- What's the Proof Intuition?

- **Theorem:** Every finite horizon MDP has a deterministic optimal policy, that dominates all other policies, everywhere.
- What's the Proof Intuition?
 - $P(S^{-1}S_{a})$ the action.

• "Only the state matters": how got here doesn't matter to where we go next, conditioned on

- **Theorem:** Every finite horizon MDP has a deterministic optimal policy, that dominates all other policies, everywhere.
- What's the Proof Intuition? \bullet
 - the action.
 - point forward.

• "Only the state matters": how got here doesn't matter to where we go next, conditioned on

• "No Sunk Cost Fallacy": past rewards are history; we only care about our reward from this

- **Theorem:** Every finite horizon MDP has a deterministic optimal policy, that dominates all other policies, everywhere.
- What's the Proof Intuition?
 - the action.
 - point forward.
 - no FOMO/no regret/no dwelling on the past

• "Only the state matters": how got here doesn't matter to where we go next, conditioned on

• "No Sunk Cost Fallacy": past rewards are history; we only care about our reward from this

- **Theorem:** Every finite horizon MDP has a deterministic optimal policy, that dominates all other policies, everywhere.
- What's the Proof Intuition?
 - the action.
 - point forward.
 - no FOMO/no regret/no dwelling on the past
- (But, RL is general: think about redefining the state so you can do these.)

• "Only the state matters": how got here doesn't matter to where we go next, conditioned on

• "No Sunk Cost Fallacy": past rewards are history; we only care about our reward from this

Caveat: some legitimate reward functions are not additive/linear (so, naively, not an MDP).

- **Theorem:** Every finite horizon MDP has a deterministic optimal policy, that dominates all other policies, everywhere.
- What's the Proof Intuition?
 - the action.
 - point forward.
 - no FOMO/no regret/no dwelling on the past
- (But, RL is general: think about redefining the state so you can do these.)
- We write $V^{\pi^*} = V^*$.

• "Only the state matters": how got here doesn't matter to where we go next, conditioned on

• "No Sunk Cost Fallacy": past rewards are history; we only care about our reward from this

Caveat: some legitimate reward functions are not additive/linear (so, naively, not an MDP).

- Recap
- Finite Horizon MDPs
 - Policy Evaluation
 - Optimality
- The Bellman Equations & Dynamic Programming
 - Infinite Horizon MDPs

• A function $V = \{V_0, \dots, V_{H-1}\}, V_h : S \to R$ satisfies the Bellman equations if $V_h(s) = \max_a \left\{ r(s, a) + \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[V_{h+1}(s') \right] \right\}, \forall s$ (assume $V_H = 0$).

- A function $V = \{V_0, \dots, V_{H-1}\}, V_h : S \to R$ satisfies the Bellman equations if $V_h(s) = \max_a \left\{ r(s, a) + \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[V_{h+1}(s') \right] \right\}, \forall s$ (assume $V_H = 0$).
- **Theorem:** V satisfies the Bellman equations if and only if $V = V^{\star}$.

- A function $V = \{V_0, \dots, V_{H-1}\}, V_h : S \to R$ satisfies the Bellman equations if $V_h(s) = \max_a \left\{ r(s, a) + \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[V_{h+1}(s') \right] \right\}, \forall s$ (assume $V_H = 0$).
- **Theorem:** V satisfies the Bellman equations if and only if $V = V^{\star}$.
- The optimal policy is: $\pi_h^{\star}(s) = \arg m_h^{\star}(s)$

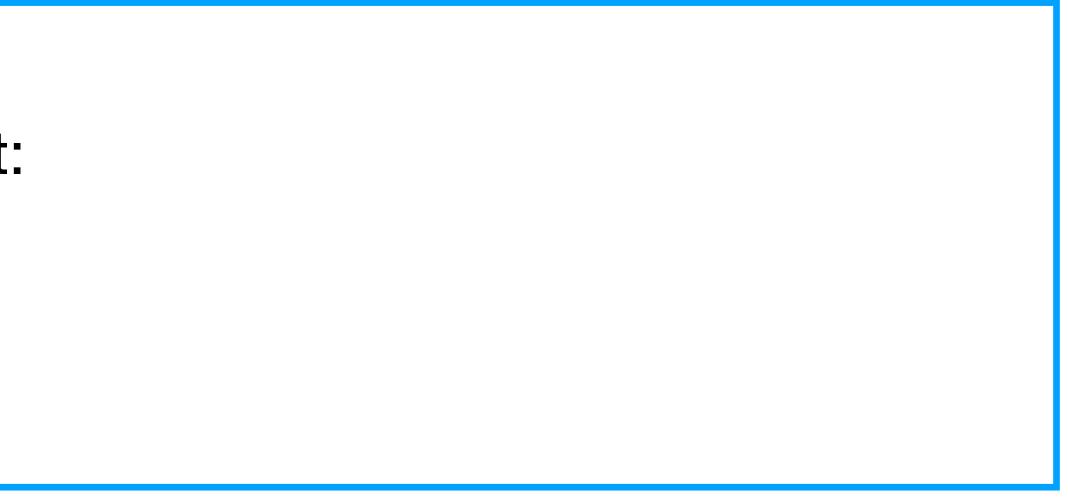
$$\underset{a}{\operatorname{ax}}\left\{r(s,a)+\mathbb{E}_{s'\sim P(\cdot|s,a)}\left[V_{h+1}^{\star}(s')\right]\right\}.$$

Prf: the Bellman equations directly lead to this backwards induction.

Prf: the Bellman equations directly lead to this backwards induction.

• Initialize:
$$V_{H}^{\pi}(s) = 0$$

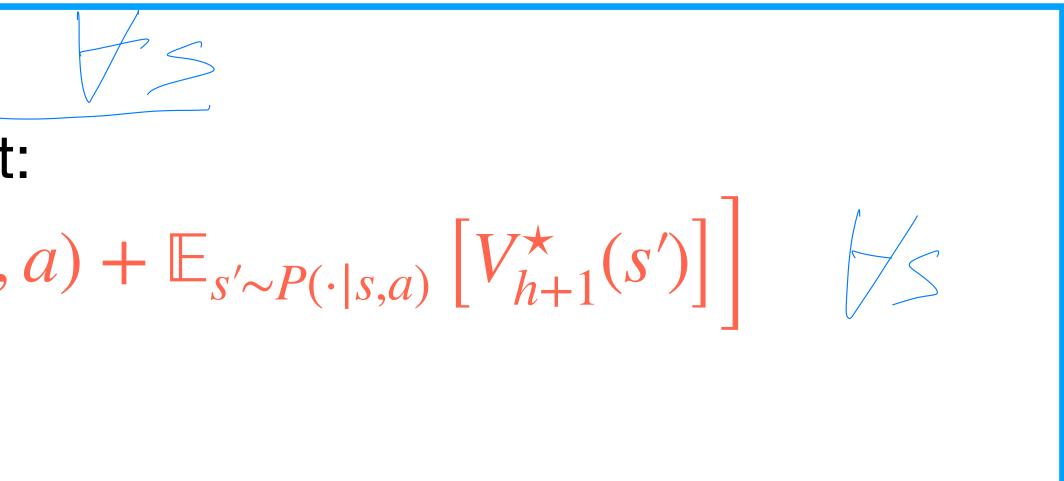
For t= $H - 1, ...0$, set



Prf: the Bellman equations directly lead to this backwards induction.

• Initialize:
$$V_{H}^{\pi}(s) = 0$$

For t= $H - 1, \dots 0$, set
• $V_{h}^{\star}(s) = \max_{a} \left[r(s, a) \right]$



Prf: the Bellman equations directly lead to this backwards induction.

• Initialize:
$$V_{H}^{\pi}(s) = 0$$
 $\not \not = S$
For t= $H - 1, \dots 0$, set:
• $V_{h}^{\star}(s) = \max_{a} \left[r(s, a) + \mathbb{E}_{s' \sim P(\cdot | s, a)} \left[V_{h+1}^{\star}(s') \right] \right]$ $\not = S$
• $\pi_{h}^{\star}(s) = \arg\max_{a} \left[r(s, a) + \mathbb{E}_{s' \sim P(\cdot | s, a)} \left[V_{h+1}^{\star}(s') \right] \right]$ $\not = S$

Prf: the Bellman equations directly lead to this backwards induction.

• Initialize:
$$V_{H}^{\pi}(s) = 0$$

For t= $H - 1, ...0$, set:
• $V_{h}^{\star}(s) = \max_{a} \left[r(s, a) + \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[V_{h+1}^{\star}(s') \right] \right]$
• $\pi_{h}^{\star}(s) = \arg\max_{a} \left[r(s, a) + \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[V_{h+1}^{\star}(s') \right] \right]$

• What is the per iteration computational complexity of DP? (assume scalar $+, -, \times, \div$ are O(1) operations)

Prf: the Bellman equations directly lead to this backwards induction.

• Initialize:
$$V_{H}^{\pi}(s) = 0$$

For t= $H - 1, ...0$, set:
• $V_{h}^{\star}(s) = \max_{a} \left[r(s, a) + \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[V_{h+1}^{\star}(s') \right] \right]$
• $\pi_{h}^{\star}(s) = \arg\max_{a} \left[r(s, a) + \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[V_{h+1}^{\star}(s') \right] \right]$

- What is the per iteration computational complexity of DP? (assume scalar +, -, \times , \div are O(1) operations)
- What is the total computational complexity of DP?

Summary:

Dynamic Programming lets us efficiently compute optimal policies. • We remember the results on "sub-problems" Optimal policies are history independent.

Attendance: bit.ly/3RcTC9T

Feedback: bit.ly/3RHtlxy

- Recap
- Finite Horizon MDPs
 - Policy Evaluation
 - Optimality
 - The Bellman Equations & Dynamic Programming Infinite Horizon MDPs

Finite Horizon Markov Decision Processes (MDPs):

• An MDP: $\mathcal{M} = \{\mu, S, A, P, r, \gamma\}$

• An MDP: $\mathcal{M} = \{\mu, S, A, P, r, \gamma\}$ • μ , *S*, *A*, *P* : *S* × *A* $\mapsto \Delta(S)$, *r* : *S* × *A* \rightarrow [0,1] same as before

- An MDP: $\mathcal{M} = \{\mu, S, A, P, r, \gamma\}$
 - μ , S, A, P : $S \times A \mapsto \Delta(S)$, $r : S \times A \rightarrow [0,1]$ same as before
 - instead of finite horizon H, we have a discount factor $\gamma \in [0,1)$

 $\times A \rightarrow [0,1]$ same as before a discount factor $\gamma \in [0,1)$

- An MDP: $\mathcal{M} = \{\mu, S, A, P, r, \gamma\}$
 - $\mu, S, A, P: S \times A \mapsto \Delta(S), r: S \times A \rightarrow [0,1]$ same as before
 - instead of finite horizon H, we have a discount factor $\gamma \in [0,1)$

• Objective: find policy π that maximizes our expected, discounted future reward: $\max_{\pi} \mathbb{E} \left[r(s_0, a_0) + \gamma r(s_1, a_1) + \gamma^2 r(s_2, a_2) + \dots \right] \pi$

The Setting and Our Objective

The Setting and Our Objective

- Consider a "stationary" policy $\pi : S \mapsto A$
 - "stationary" means not history or time dependent

The Setting and Our Objective

- Consider a "stationary" policy $\pi: S \mapsto A$
 - "stationary" means not history or time dependent
- Sampling a trajectory τ on an episode: for a given policy π
 - Sample an initial state $s_0 \sim \mu$:
 - For $t = 0, 1, 2, ..., \infty$
 - Take action $a_t = \pi(s_t)$
 - Observe reward $r_t = r(s_t, a_t)$
 - Transition to (and observe) s_{t+1} where $s_{t+1} \sim P(\cdot | s_t, a_t)$ $\tau = \{s_0, a_0, r_0, s_1, a_1, r_1, \dots, \}$

- Recap
- Infinite Horizon MDPs
 - Policy Evaluation
 - Optimality & the Bellman Equations
 - Value Iteration
 - Policy Iteration

• Quantities that allow us to reason about the policy's long-term effect:

• Quantities that allow us to reason about the policy's long-term effect: • Value function $V^{\pi}(s) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h})\right]$

$$s_0 = s, \pi$$

• Quantities that allow us to reason about the policy's long-term effect: Value function $V^{\pi}(s) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h})\right]$

• Q function
$$Q^{\pi}(s, a) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \middle| (s_{0}, a_{0}) = (s, a), \pi\right]$$

$$\left| s_0 = s, \pi \right|$$

• Quantities that allow us to reason about the policy's long-term effect: • Value function $V^{\pi}(s) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h})\right]$

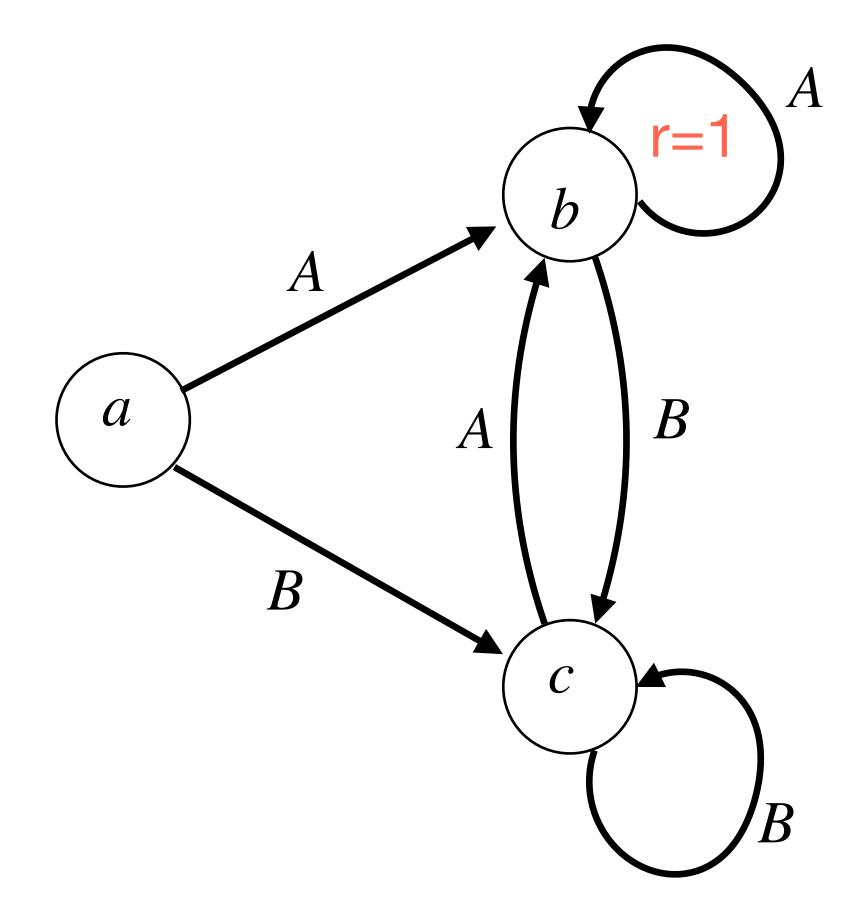
• Q function
$$Q^{\pi}(s, a) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^{h} r(s_{h}, a_{h}) \middle| (s_{0}, a_{0}) = (s, a), \pi\right]$$

• What are upper and lower bounds on V^{π} and Q^{π}

$$s_0 = s, \pi$$

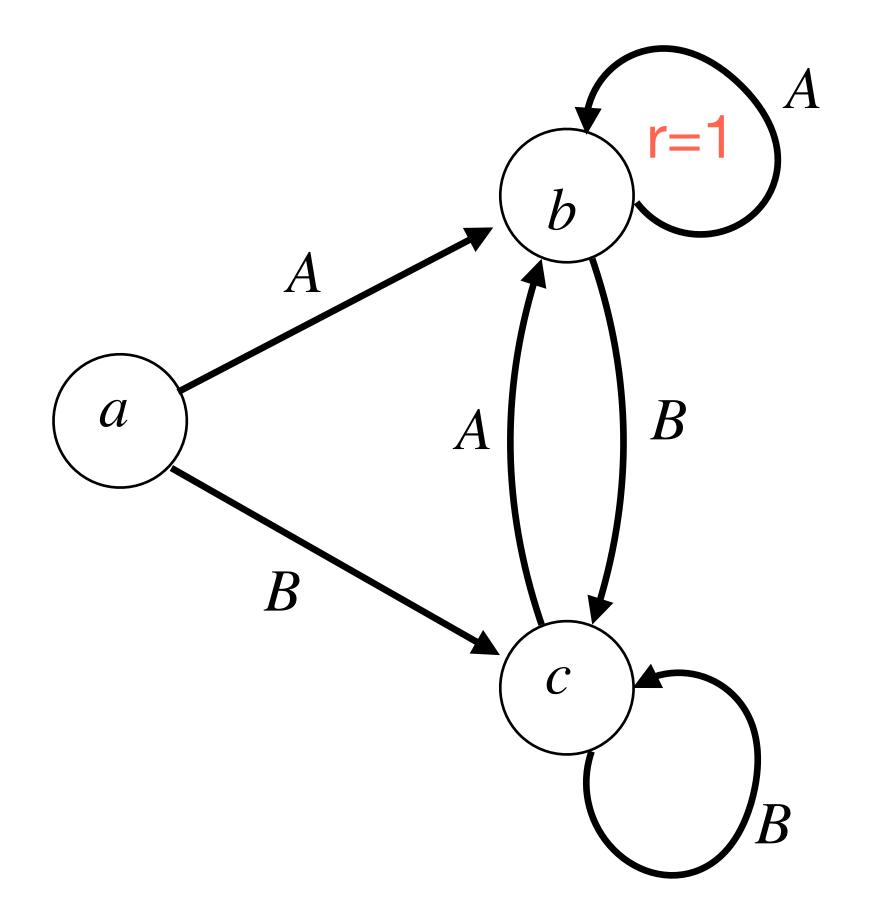
Example of Policy Evaluation (e.g. computing V^{π} and Q^{π})

Consider the following deterministic MDP w/ 3 states & 2 actions



Reward: r(b, A) = 1, & 0 everywhere else

Example of Policy Evaluation (e.g. computing V^{π} and Q^{π})

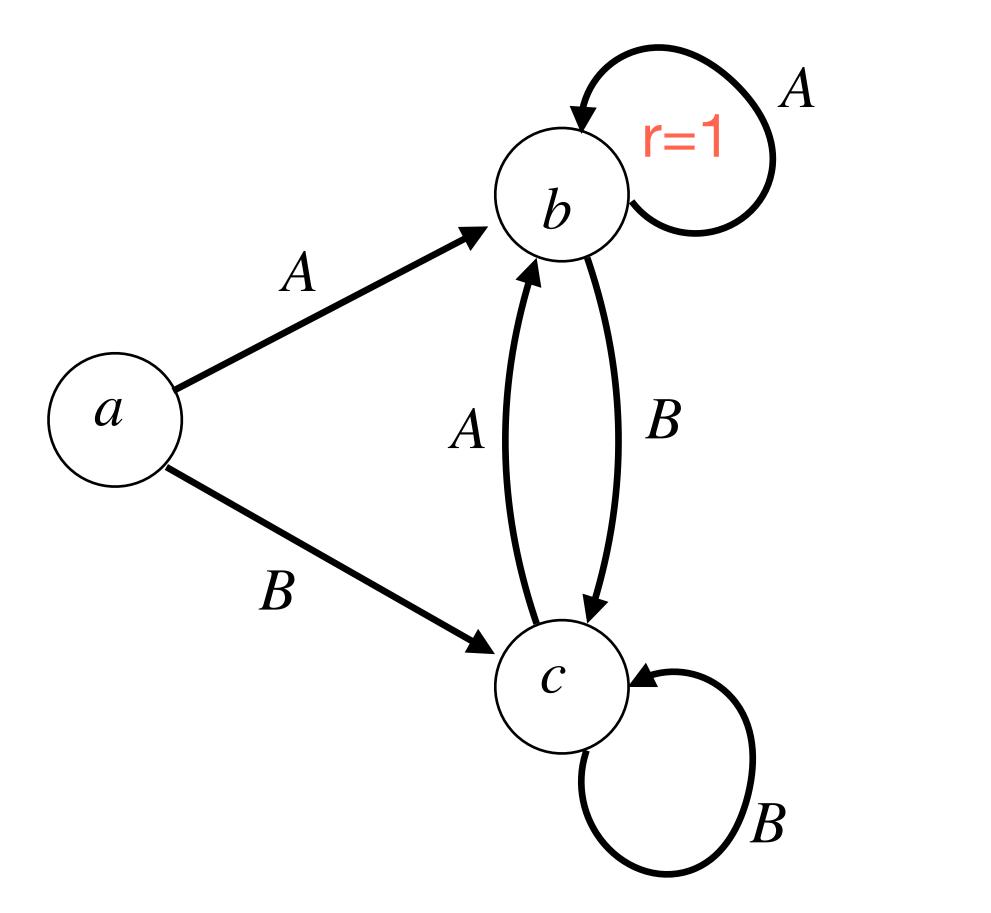


Reward: r(b, A) = 1, & 0 everywhere else

- Consider the following **deterministic** MDP w/ 3 states & 2 actions
 - Consider the policy $\pi(a) = B, \pi(b) = A, \pi(c) = A$

Example of Policy Evaluation (e.g. computing V^{π} and Q^{π})

Consider the following deterministic MDP w/ 3 states & 2 actions



Reward: r(b, A) = 1, & 0 everywhere else

- Consider the policy $\pi(a) = B, \pi(b) = A, \pi(c) = A$
- What is V^{π} ? $V^{\pi}(a) =$

 $V^{\pi}(b) =$

$V^{\pi}(c) =$