
Reinforcement Learning &  
Multi-Armed Bandits  

 
Lucas Janson and Sham Kakade 
CS/Stat 184: Introduction to Reinforcement Learning  

Fall 2023

1

Today

• Recap

• Finite Horizon MDPs

• Policy Evaluation

• Optimality

• The Bellman Equations & Dynamic Programming

• Infinite Horizon MDPs

2

· HWO die Thurs
.

Recap

3

Finite Horizon Markov Decision Processes (MDPs):

• An MDP:

• is a distribution over initial states  

(sometimes we assume we start a given state)

• a set of states

• a set of actions

• specifies the dynamics model,  

i.e. is the probability of transitioning to form states under action

•

• For now, let’s assume this is a deterministic function

• (sometimes we use a cost)

• A time horizon

ℳ = {μ, S, A, P, r, H}
μ

s0
S
A
P : S × A ↦ Δ(S)

P(s′ |s, a) s′ s a
r : S × A → [0,1]

c : S × A → [0,1]
H ∈ ℕ

4

The Episodic Setting and Trajectories

• Policy

• deterministic policies: ; stochastic policies:

• we also consider time-dependent policies (but not a function of the history)

• Sampling a trajectory on an episode: for a given policy

• Sample an initial state :

• For

• Take action

• Observe reward

• Transition to (and observe) where

• The sampled trajectory is

π := {π0, π1, …, πH−1}
πt : S ↦ A πt : S ↦ Δ(A)

τ π
s0 ∼ μ

t = 0,1,2,…H − 1
at ∼ πt(⋅ |st)

rt = r(st, at)
st+1 st+1 ∼ P(⋅ |st, at)

τ = {s0, a0, r0, s1, a1, r1, …, sH−1, aH−1, rH−1}

5

2400Se
C with Pr . -(9/s)t t

-
-

The Probability of a Trajectory & The Objective

• Probability of trajectory: let denote the probability of observing trajectory
 when acting under with .

• Shorthand: we sometimes write or when and/or are clear from context.

• The rewards in this trajectory must be (else).

• For stochastic:

• For deterministic:

 
 

• Objective: find policy that maximizes our expected cumulative episodic reward: 
	  

ρπ,μ(τ)
τ = {s0, a0, r0, s1, a1, r1, …, sH−1, aH−1, rH−1} π s0 ∼ μ

ρ ρπ π μ
rt = r(st, at) ρπ(τ) = 0

π
ρπ(τ) = μ(s0)π(a0 |s0)P(s1 |s0, a0)…π(aH−2 |sH−2)P(sH−1 |sH−2, aH−2)π(aH−1 |sH−1)

π
ρπ(τ) = μ(s0)1(a0 = π(s0))P(s1 |s0, a0)…P(sH−1 |sH−2, aH−2)1(aH−1 = π(sH−1))

π
max

π
,τ∼ρπ [r(s0, a0) + r(s1, a1) + … + r(sH−1, aH−1)]

6

Value function and Q functions:

Quantities that allow us to reason policy’s long-term effect:

• Value function  

• Q function  

• At the last stage, for a stochastic policy,:  
 

	 	  

Vπ
h (s) = , [

H−1

∑
t=h

r(st, at) sh = s]
Qπ

h (s, a) = , [
H−1

∑
t=h

r(st, at) (sh, ah) = (s, a)]

Qπ
H−1(s, a) = r(s, a) Vπ

H−1(s) = ∑
a

πH−1(a |s)r(s, a)

7

Example of Policy Evaluation (e.g. computing and)Vπ Qπ

Consider the following deterministic MDP w/ 3 states & 2 actions, with H = 3

a

b

c

A

B

A B

A

B

Reward: , & everywhere elser(b, A) = 1 0

• Consider the deterministic policy  
 

• What is ?

  
  

π0(s) = A, π1(s) = A, π2(s) = B, ∀s

Vπ

Vπ
2(a) = 0,Vπ

2(b) = 0,Vπ
2(c) = 0

Vπ
1(a) = 0,Vπ

1(b) = 1,Vπ
1(c) = 0

Vπ
0(a) = 1,Vπ

0(b) = 2,Vπ
0(c) = 1

8

r=1

Today:

9

Today

10

• Recap

• Finite Horizon MDPs

• Policy Evaluation

• Optimality

• The Bellman Equations & Dynamic Programming

• Infinite Horizon MDPs

compute

E(V (sol)

Bellman Consistency

11

Bellman Consistency
• For a fixed policy, ,π := {π0, π1, …, πH−1}, πh : S ↦ A, ∀h

11

Bellman Consistency
• For a fixed policy, ,π := {π0, π1, …, πH−1}, πh : S ↦ A, ∀h
• By definition, Vπ

h (s) = Qπ
h (s, πh(s))

11

Bellman Consistency
• For a fixed policy, ,π := {π0, π1, …, πH−1}, πh : S ↦ A, ∀h
• By definition, Vπ

h (s) = Qπ
h (s, πh(s))

• At , , H − 1 Qπ
H−1(s, a) = r(s, a) Vπ

H−1(s) = r(s, πH−1(s))

11

Bellman Consistency
• For a fixed policy, ,π := {π0, π1, …, πH−1}, πh : S ↦ A, ∀h
• By definition, Vπ

h (s) = Qπ
h (s, πh(s))

• At , , H − 1 Qπ
H−1(s, a) = r(s, a) Vπ

H−1(s) = r(s, πH−1(s))
• Bellman consistency conditions: for a given policy ,π

11

Bellman Consistency
• For a fixed policy, ,π := {π0, π1, …, πH−1}, πh : S ↦ A, ∀h
• By definition, Vπ

h (s) = Qπ
h (s, πh(s))

• At , , H − 1 Qπ
H−1(s, a) = r(s, a) Vπ

H−1(s) = r(s, πH−1(s))
• Bellman consistency conditions: for a given policy ,π
•  
 
Vπ

h (s) = r(s, πh(s)) + ,s′ ∼P(⋅|s,πh(s)) [Vπ
h+1(s′)]

11

me

EP(5/1s,Tuls) Vx(s)

Bellman Consistency
• For a fixed policy, ,π := {π0, π1, …, πH−1}, πh : S ↦ A, ∀h
• By definition, Vπ

h (s) = Qπ
h (s, πh(s))

• At , , H − 1 Qπ
H−1(s, a) = r(s, a) Vπ

H−1(s) = r(s, πH−1(s))
• Bellman consistency conditions: for a given policy ,π
•  
 
Vπ

h (s) = r(s, πh(s)) + ,s′ ∼P(⋅|s,πh(s)) [Vπ
h+1(s′)]

• Qπ
h (s, a) = r(s, a) + ,s′ ∼P(⋅|s,a) [Vπ

h+1(s′)]

11

-

=v(sa)I F (an(s, (5)]
- sp C · (s

.a)

Notation

12

Notation
• means sampling from x ∼ D D

12

Notation
• means sampling from x ∼ D D
• means sampling from the distribution ,  

i.e. choosing action with probability
a ∼ π(⋅ |s) π(⋅ |s)

a π(a |s)

12

Notation
• means sampling from x ∼ D D
• means sampling from the distribution ,  

i.e. choosing action with probability
a ∼ π(⋅ |s) π(⋅ |s)

a π(a |s)
• For a distribution over a finite set , 
	

D .
Ex∼D[f(x)] = ∑

x∈.
D(x)f(x)

12

Notation
• means sampling from x ∼ D D
• means sampling from the distribution ,  

i.e. choosing action with probability
a ∼ π(⋅ |s) π(⋅ |s)

a π(a |s)
• For a distribution over a finite set , 
	

D .
Ex∼D[f(x)] = ∑

x∈.
D(x)f(x)

• We use the notation:  
	 Es′ ∼P(⋅|s,a)[f(s′)] = ∑

s′ ∈S
P(s′ |s, a)f(s′)

12

Proof: Bellman Consistency for V-function:

13

Proof: Bellman Consistency for V-function:
Let denote the random variables rh rh = r(sh, ah)

13

vi(S) : E(r(smaultrSue
,

anne) -
- NSA-

,
9r)]

Proof: Bellman Consistency for V-function:
Let denote the random variables rh rh = r(sh, ah)
By definition and by the law of total expectation:  

Vπ
h (s) = , [rh + rh+1 + … + rH−1 sh = s]

13

PrX
,
Y

E(X] = ECE(X)]

Proof: Bellman Consistency for V-function:
Let denote the random variables rh rh = r(sh, ah)
By definition and by the law of total expectation:  

Vπ
h (s) = , [rh + rh+1 + … + rH−1 sh = s]

  = , [rh + , [rh+1 + … + rH−1 sh = s, ah = πh(s), sh+1] sh = s]

13

Proof: Bellman Consistency for V-function:
Let denote the random variables rh rh = r(sh, ah)
By definition and by the law of total expectation:  

Vπ
h (s) = , [rh + rh+1 + … + rH−1 sh = s]

  = , [rh + , [rh+1 + … + rH−1 sh = s, ah = πh(s), sh+1] sh = s]
By the Markov property: 

= , [rh + , [rh+1 + … + rH−1 sh+1] sh = s]

13

I Palante
,

.. san
,anrl=a

Sn+1

Pr(An+1
.

... Si
, Hr) Sasi)

Proof: Bellman Consistency for V-function:
Let denote the random variables rh rh = r(sh, ah)
By definition and by the law of total expectation:  

Vπ
h (s) = , [rh + rh+1 + … + rH−1 sh = s]

  = , [rh + , [rh+1 + … + rH−1 sh = s, ah = πh(s), sh+1] sh = s]
By the Markov property: 

= , [rh + , [rh+1 + … + rH−1 sh+1] sh = s]
= , [rh + Vπ

h+1(sh+1) sh = s]

13

= Wisn
,
tals) + Espl-Isns1Vn .

(Swx))

Proof: Bellman Consistency for V-function:
Let denote the random variables rh rh = r(sh, ah)
By definition and by the law of total expectation:  

Vπ
h (s) = , [rh + rh+1 + … + rH−1 sh = s]

  = , [rh + , [rh+1 + … + rH−1 sh = s, ah = πh(s), sh+1] sh = s]
By the Markov property: 

= , [rh + , [rh+1 + … + rH−1 sh+1] sh = s]
= , [rh + Vπ

h+1(sh+1) sh = s]
= r(s, πh(s)) + ∑

s′

P(s′ |s, πh(s)) Vπ
h+1(s′)

13

-

-
[Prl) Is

,

as-

= (So ---- SH) t
=

o

h

Computation of via Backward InductionVπ

14

Computation of via Backward InductionVπ

• For a fixed policy, , 
Bellman consistency we can compute , assuming we know the MDP.

π := {π0, π1, …, πH−1}, πh : S ↦ A, ∀h
⟹ Vπ

h

14

Computation of via Backward InductionVπ

• For a fixed policy, , 
Bellman consistency we can compute , assuming we know the MDP.

π := {π0, π1, …, πH−1}, πh : S ↦ A, ∀h
⟹ Vπ

h

• Init: Vπ
H(s) = 0

14

Computation of via Backward InductionVπ

• For a fixed policy, , 
Bellman consistency we can compute , assuming we know the MDP.

π := {π0, π1, …, πH−1}, πh : S ↦ A, ∀h
⟹ Vπ

h

• Init: Vπ
H(s) = 0

• For t= , set: H − 1,…0
Vπ

h (s) = r(s, πh(s)) + ,s′ ∼P(⋅|s,πh(s)) [Vπ
h+1(s′)], ∀s ∈ S

14

Vs) =
rIS
,
mes)) + EP(s-15, 4n2S) Vs)

Computation of via Backward InductionVπ

• For a fixed policy, , 
Bellman consistency we can compute , assuming we know the MDP.

π := {π0, π1, …, πH−1}, πh : S ↦ A, ∀h
⟹ Vπ

h

• What is the per iteration computational complexity of DP? 
(assume scalar are operations)+, − , × , ÷ O(1)

• Init: Vπ
H(s) = 0

• For t= , set: H − 1,…0
Vπ

h (s) = r(s, πh(s)) + ,s′ ∼P(⋅|s,πh(s)) [Vπ
h+1(s′)], ∀s ∈ S

14

t

⑩

OCSH)

Computation of via Backward InductionVπ

• For a fixed policy, , 
Bellman consistency we can compute , assuming we know the MDP.

π := {π0, π1, …, πH−1}, πh : S ↦ A, ∀h
⟹ Vπ

h

• What is the per iteration computational complexity of DP? 
(assume scalar are operations)+, − , × , ÷ O(1)

• What is the total computational complexity of DP?

• Init: Vπ
H(s) = 0

• For t= , set: H − 1,…0
Vπ

h (s) = r(s, πh(s)) + ,s′ ∼P(⋅|s,πh(s)) [Vπ
h+1(s′)], ∀s ∈ S

14

Suppose
all we

Wanted was

V
-

(So)

O(S2H)

Today

15

• Recap

• Finite Horizon MDPs

• Policy Evaluation

• Optimality

• The Bellman Equations & Dynamic Programming

• Infinite Horizon MDPs

Consider the following deterministic MDP w/ 3 states & 2 actions, with H = 3

a

b

c

A

B

A B

A

B

Reward: , & everywhere elser(b, A) = 1 0

Example of Optimal Policy π⋆

16

r=1

Consider the following deterministic MDP w/ 3 states & 2 actions, with H = 3

a

b

c

A

B

A B

A

B

Reward: , & everywhere elser(b, A) = 1 0

• What’s the optimal policy? 
 π⋆

h (s) = A, ∀s, h

Example of Optimal Policy π⋆

16

r=1

Consider the following deterministic MDP w/ 3 states & 2 actions, with H = 3

a

b

c

A

B

A B

A

B

Reward: , & everywhere elser(b, A) = 1 0

• What’s the optimal policy? 
 π⋆

h (s) = A, ∀s, h

• What is optimal value function, ? 
 

 
 

 

Vπ⋆ = V⋆

V⋆
2 (a) = 0,V⋆

2 (b) = 1,V⋆
2 (c) = 0

V⋆
1 (a) = 1,V⋆

1 (b) = 2,V⋆
1 (c) = 1

V⋆
0 (a) = 2,V⋆

0 (b) = 3,V⋆
0 (c) = 2

Example of Optimal Policy π⋆

16

r=1

How do we compute and ?π⋆ V⋆

17

How do we compute and ?π⋆ V⋆

• Naively, we could compute the value of all policies and take the best one.

17

How do we compute and ?π⋆ V⋆

• Naively, we could compute the value of all policies and take the best one.
• Suppose states, actions, and horizon .  

How many different polices there are?  
 
 

|S | |A | H

17

in(9)
=
a

15 It

Al S 1
, 3
- 10

- 11 = 2

(1)
T 4

- a -
↑ 9

T
12 4

,

3
,
a
,

ca 9

i

3

How do we compute and ?π⋆ V⋆

• Naively, we could compute the value of all policies and take the best one.
• Suppose states, actions, and horizon .  

How many different polices there are?  
 
 

|S | |A | H

• Can we do better?

17

18

Properties of an Optimal Policy π⋆

18

Properties of an Optimal Policy π⋆

• Let be the set of all time dependent, history dependent, stochastic policies. Π

18

Properties of an Optimal Policy π⋆

• Let be the set of all time dependent, history dependent, stochastic policies. Π

• Theorem: Every finite horizon MDP has a deterministic optimal policy, that
dominates all other policies, everywhere.

18

Properties of an Optimal Policy π⋆

• Let be the set of all time dependent, history dependent, stochastic policies. Π

• Theorem: Every finite horizon MDP has a deterministic optimal policy, that
dominates all other policies, everywhere.
• i.e. there exists a policy such that 
	 	 ,  
 

π⋆ := {π⋆
0 , π⋆

1 , …, π⋆
H−1}, π⋆

h : S ↦ A
Vπ⋆

h (s) ≥ Vπ
h (s) ∀s, h ∀π ∈ Π

x
hist . ind

I f(x) q(x)
S

X⑮ Xt y
*

X
g

18

Properties of an Optimal Policy π⋆

• Let be the set of all time dependent, history dependent, stochastic policies. Π

• Theorem: Every finite horizon MDP has a deterministic optimal policy, that
dominates all other policies, everywhere.
• i.e. there exists a policy such that 
	 	 ,  
 

π⋆ := {π⋆
0 , π⋆

1 , …, π⋆
H−1}, π⋆

h : S ↦ A
Vπ⋆

h (s) ≥ Vπ
h (s) ∀s, h ∀π ∈ Π

• we can write: and .⟹ V⋆
h = Vπ⋆

h Q⋆
h = Qπ⋆

h

x v

18

Properties of an Optimal Policy π⋆

• Let be the set of all time dependent, history dependent, stochastic policies. Π

• Theorem: Every finite horizon MDP has a deterministic optimal policy, that
dominates all other policies, everywhere.
• i.e. there exists a policy such that 
	 	 ,  
 

π⋆ := {π⋆
0 , π⋆

1 , …, π⋆
H−1}, π⋆

h : S ↦ A
Vπ⋆

h (s) ≥ Vπ
h (s) ∀s, h ∀π ∈ Π

• we can write: and .⟹ V⋆
h = Vπ⋆

h Q⋆
h = Qπ⋆

h

• the starting distribution doesn’t determine .⟹ μ π⋆

history-

↓
IndependenI
--

What's the Proof Intuition?

19

What's the Proof Intuition?
• Theorem: Every finite horizon MDP has a deterministic optimal policy, that

dominates all other policies, everywhere.  

19

What's the Proof Intuition?
• Theorem: Every finite horizon MDP has a deterministic optimal policy, that

dominates all other policies, everywhere.  

• What's the Proof Intuition?

19

What's the Proof Intuition?
• Theorem: Every finite horizon MDP has a deterministic optimal policy, that

dominates all other policies, everywhere.  

• What's the Proof Intuition?
• “Only the state matters”: how got here doesn’t matter to where we go next, conditioned on

the action.

19

P(s)s,a)

What's the Proof Intuition?
• Theorem: Every finite horizon MDP has a deterministic optimal policy, that

dominates all other policies, everywhere.  

• What's the Proof Intuition?
• “Only the state matters”: how got here doesn’t matter to where we go next, conditioned on

the action.
• “No Sunk Cost Fallacy”: past rewards are history; we only care about our reward from this

point forward.

19

What's the Proof Intuition?
• Theorem: Every finite horizon MDP has a deterministic optimal policy, that

dominates all other policies, everywhere.  

• What's the Proof Intuition?
• “Only the state matters”: how got here doesn’t matter to where we go next, conditioned on

the action.
• “No Sunk Cost Fallacy”: past rewards are history; we only care about our reward from this

point forward.
• no FOMO/no regret/no dwelling on the past  

19

-

o
mist independent--

What's the Proof Intuition?
• Theorem: Every finite horizon MDP has a deterministic optimal policy, that

dominates all other policies, everywhere.  

• What's the Proof Intuition?
• “Only the state matters”: how got here doesn’t matter to where we go next, conditioned on

the action.
• “No Sunk Cost Fallacy”: past rewards are history; we only care about our reward from this

point forward.
• no FOMO/no regret/no dwelling on the past  

• Caveat: some legitimate reward functions are not additive/linear (so, naively, not an MDP).  
(But, RL is general: think about redefining the state so you can do these.)  

19

What's the Proof Intuition?
• Theorem: Every finite horizon MDP has a deterministic optimal policy, that

dominates all other policies, everywhere.  

• What's the Proof Intuition?
• “Only the state matters”: how got here doesn’t matter to where we go next, conditioned on

the action.
• “No Sunk Cost Fallacy”: past rewards are history; we only care about our reward from this

point forward.
• no FOMO/no regret/no dwelling on the past  

• Caveat: some legitimate reward functions are not additive/linear (so, naively, not an MDP).  
(But, RL is general: think about redefining the state so you can do these.)  

• We write . Vπ⋆ = V⋆

19

Today

20

• Recap

• Finite Horizon MDPs

• Policy Evaluation

• Optimality

• The Bellman Equations & Dynamic Programming

• Infinite Horizon MDPs

The Bellman Equations

21

The Bellman Equations
• A function , satisfies the Bellman equations if 
	 ,  

(assume). 

V = {V0, …VH−1} Vh : S → R
Vh(s) = max

a {r(s, a) + ,s′ ∼P(⋅|s,a)[Vh+1(s′)]} ∀s

VH = 0

21

The Bellman Equations
• A function , satisfies the Bellman equations if 
	 ,  

(assume). 

V = {V0, …VH−1} Vh : S → R
Vh(s) = max

a {r(s, a) + ,s′ ∼P(⋅|s,a)[Vh+1(s′)]} ∀s

VH = 0

• Theorem: V satisfies the Bellman equations if and only if . V = V⋆

21

The Bellman Equations
• A function , satisfies the Bellman equations if 
	 ,  

(assume). 

V = {V0, …VH−1} Vh : S → R
Vh(s) = max

a {r(s, a) + ,s′ ∼P(⋅|s,a)[Vh+1(s′)]} ∀s

VH = 0

• Theorem: V satisfies the Bellman equations if and only if . V = V⋆

• The optimal policy is: .π⋆
h (s) = arg max

a {r(s, a) + ,s′ ∼P(⋅|s,a)[V⋆
h+1(s′)]}

21

Computation of with Dynamic ProgrammingV⋆

22

Computation of with Dynamic ProgrammingV⋆

• Theorem: the following Dynamic Programming algorithm correctly computes and  
Prf: the Bellman equations directly lead to this backwards induction.

π⋆ V⋆

22

Computation of with Dynamic ProgrammingV⋆

• Theorem: the following Dynamic Programming algorithm correctly computes and  
Prf: the Bellman equations directly lead to this backwards induction.

π⋆ V⋆

• Initialize:  
For t= , set:

Vπ
H(s) = 0

H − 1,…0

22

Computation of with Dynamic ProgrammingV⋆

• Theorem: the following Dynamic Programming algorithm correctly computes and  
Prf: the Bellman equations directly lead to this backwards induction.

π⋆ V⋆

• Initialize:  
For t= , set:

Vπ
H(s) = 0

H − 1,…0
• V⋆

h (s) = max
a [r(s, a) + ,s′ ∼P(⋅|s,a) [V⋆

h+1(s′)]]

22

-

Es

Es

Computation of with Dynamic ProgrammingV⋆

• Theorem: the following Dynamic Programming algorithm correctly computes and  
Prf: the Bellman equations directly lead to this backwards induction.

π⋆ V⋆

• Initialize:  
For t= , set:

Vπ
H(s) = 0

H − 1,…0
• V⋆

h (s) = max
a [r(s, a) + ,s′ ∼P(⋅|s,a) [V⋆

h+1(s′)]]
• π⋆

h (s) = arg max
a [r(s, a) + ,s′ ∼P(⋅|s,a) [V⋆

h+1(s′)]]

22

Es

IUs

Computation of with Dynamic ProgrammingV⋆

• Theorem: the following Dynamic Programming algorithm correctly computes and  
Prf: the Bellman equations directly lead to this backwards induction.

π⋆ V⋆

• Initialize:  
For t= , set:

Vπ
H(s) = 0

H − 1,…0
• V⋆

h (s) = max
a [r(s, a) + ,s′ ∼P(⋅|s,a) [V⋆

h+1(s′)]]
• π⋆

h (s) = arg max
a [r(s, a) + ,s′ ∼P(⋅|s,a) [V⋆

h+1(s′)]]
• What is the per iteration computational complexity of DP? 

(assume scalar are operations)+, − , × , ÷ O(1)

22

Computation of with Dynamic ProgrammingV⋆

• Theorem: the following Dynamic Programming algorithm correctly computes and  
Prf: the Bellman equations directly lead to this backwards induction.

π⋆ V⋆

• Initialize:  
For t= , set:

Vπ
H(s) = 0

H − 1,…0
• V⋆

h (s) = max
a [r(s, a) + ,s′ ∼P(⋅|s,a) [V⋆

h+1(s′)]]
• π⋆

h (s) = arg max
a [r(s, a) + ,s′ ∼P(⋅|s,a) [V⋆

h+1(s′)]]
• What is the per iteration computational complexity of DP? 

(assume scalar are operations)+, − , × , ÷ O(1)
• What is the total computational complexity of DP?

22

0 (s AH)

Summary:
• Dynamic Programming lets us efficiently compute optimal policies.
• We remember the results on “sub-problems”

• Optimal policies are history independent.

Feedback:

bit.ly/3RHtlxy

23

Attendance: 
bit.ly/3RcTC9T

• Recap

• Finite Horizon MDPs

• Policy Evaluation

• Optimality

• The Bellman Equations & Dynamic Programming

• Infinite Horizon MDPs

Today

24

Finite Horizon Markov Decision Processes (MDPs):

25

• An MDP: ℳ = {μ, S, A, P, r, γ}

Finite Horizon Markov Decision Processes (MDPs):

25

• An MDP: ℳ = {μ, S, A, P, r, γ}
• , same as beforeμ S, A, P : S × A ↦ Δ(S), r : S × A → [0,1]

Finite Horizon Markov Decision Processes (MDPs):

25

• An MDP: ℳ = {μ, S, A, P, r, γ}
• , same as beforeμ S, A, P : S × A ↦ Δ(S), r : S × A → [0,1]
• instead of finite horizon , we have a discount factor H γ ∈ [0,1)

Finite Horizon Markov Decision Processes (MDPs):

25

• An MDP: ℳ = {μ, S, A, P, r, γ}
• , same as beforeμ S, A, P : S × A ↦ Δ(S), r : S × A → [0,1]
• instead of finite horizon , we have a discount factor H γ ∈ [0,1)

Finite Horizon Markov Decision Processes (MDPs):

25

• Objective: find policy that maximizes our expected, discounted future reward: 
 

π
max

π
' [r(s0, a0) + γr(s1, a1) + γ2r(s2, a2) + … . . π]

The Setting and Our Objective

26

• Consider a “stationary” policy

• “stationary” means not history or time dependent

π : S ↦ A

The Setting and Our Objective

26

• Consider a “stationary” policy

• “stationary” means not history or time dependent

π : S ↦ A

• Sampling a trajectory on an episode: for a given policy

• Sample an initial state :

• For

• Take action

• Observe reward

• Transition to (and observe) where  

τ π
s0 ∼ μ

t = 0,1,2,…∞
at = π(st)

rt = r(st, at)
st+1 st+1 ∼ P(⋅ |st, at)

τ = {s0, a0, r0, s1, a1, r1, …, }

The Setting and Our Objective

26

Today

27

• Recap

• Infinite Horizon MDPs

• Policy Evaluation

• Optimality & the Bellman Equations

• Value Iteration

• Policy Iteration

Value function and Q functions:

28

Value function and Q functions:
• Quantities that allow us to reason about the policy’s long-term effect:

28

Value function and Q functions:
• Quantities that allow us to reason about the policy’s long-term effect:

• Value function  

 
 

Vπ(s) = ' [
∞

∑
h=0

γhr(sh, ah) s0 = s, π]

28

Value function and Q functions:
• Quantities that allow us to reason about the policy’s long-term effect:

• Value function  

 
 

Vπ(s) = ' [
∞

∑
h=0

γhr(sh, ah) s0 = s, π]

• Q function  

 

Qπ(s, a) = ' [
∞

∑
h=0

γhr(sh, ah) (s0, a0) = (s, a), π]

28

Value function and Q functions:
• Quantities that allow us to reason about the policy’s long-term effect:

• Value function  

 
 

Vπ(s) = ' [
∞

∑
h=0

γhr(sh, ah) s0 = s, π]

• Q function  

 

Qπ(s, a) = ' [
∞

∑
h=0

γhr(sh, ah) (s0, a0) = (s, a), π]
• What are upper and lower bounds on and  Vπ Qπ

28

Example of Policy Evaluation (e.g. computing and)Vπ Qπ

Consider the following deterministic MDP w/ 3 states & 2 actions

a

b

c

A

B

A B

A

B

Reward: , & everywhere elser(b, A) = 1 0
29

r=1

Example of Policy Evaluation (e.g. computing and)Vπ Qπ

Consider the following deterministic MDP w/ 3 states & 2 actions

a

b

c

A

B

A B

A

B

Reward: , & everywhere elser(b, A) = 1 0

• Consider the policy  
π(a) = B, π(b) = A, π(c) = A

29

r=1

Example of Policy Evaluation (e.g. computing and)Vπ Qπ

Consider the following deterministic MDP w/ 3 states & 2 actions

a

b

c

A

B

A B

A

B

Reward: , & everywhere elser(b, A) = 1 0

• Consider the policy  
π(a) = B, π(b) = A, π(c) = A

• What is ? 
 

 
 

 
 
 

Vπ

Vπ(a) =

Vπ(b) =

Vπ(c) =

29

r=1

