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Recap



Bellman Consistency (theorem)

For a fixed policy, 7 := {71'0, Tis oo 7Z'H_1}, m S = AV,
By definition, V/'(s) = O,(s, 7,(5))

AtH—1,0; (s,a) =r(s,a), V;_,(s) = r(s, my_i(s))
Sellman consistency conditions: for a given policy ,

e Vi($) = r(s, m(9) + By opismsy [Vie (8]

+ 05(s.a) = r(8,@) + Eg_pjs) [V 8]




Computation of V* via Backward Induction

o For afixed policy, 7 .= {71'0, Ty, ...,7Z'H_1}, T, S A,Vh,

Bellman consistency = we can compute V7, assuming we know the MDP.

o Init: V,(5) =0, Vs €5

e Forh=H—-1,...0, set:
Vis) = r(s, m(9) + Egopifsmsn [Vi1 80, Vs € S

 What is the per iteration computational complexity of DP?

(assume scalar +, — , X , = are O(1) operations)
 What is the total computational complexity of DP?



Properties of an Optimal Policy 7 *

« Let I1 be the set of all time dependent, history dependent, stochastic policies.

 Theorem: Every finite horizon MDP has a
optimal policy, that

e I.e. there exists a policy T* = {ﬂ*, 771*, e ng_l}, ﬂ; Y —» A such that
VZ'(s) > VA(s) Vs,h, Vo Tl



The Bellman Equations

» AfunctionV=1{V,,...Vy_;}, V, : § = R satisfies the Bellman equations if
Vh(S) — IMax {F(S, Cl) + _S’NP(°‘S,CI) [Vh-l-l(s/)] } ; VS

(@assume V; = 0).

e Theorem:

« V satisfies the Bellman equations if and only if V = V7.

. The optimal policy is: 7, *(s) = arg max {r(s, a) + =N an a)[ +1(S )] }

d



Computation of V* with Dynamic Programming

 [heorem: the following Dynamic Programming algorithm correctly computes 7* and V*
Prf: the Bellman equations directly lead to this backwards induction.

e Initialize: V/,(s) =0 Vs & 5
Fort=H — 1,...0, set:

h+

. VX(s) = max [r(s, a) + Eypiisa) | Vi 1(S’)]], Vs €S

d

. m(s) = arg max [r(s, a) + Ey p.is.0 [V,zjrl(s’)]], Vs e S

d

 What is the per iteration computational complexity of DP?

(assume scalar +, — , X , = are O(1) operations)
 What is the total computational complexity of DP?



Example of Optimal Policy 7*

Consider the following deterministic MDP w/ 3 states & 2 actions, with

 What’s the optimal policy?
7 (s) = A, Vs, h

« What is optimal value function, VT = V*?
Vz*(a) = (),Vz*(b) = 1,V;(C‘) = (
V¥a) = 1,Vi(b) =2,Vi(c) =1
Vi(a) =2,V (b) =3,V (c) =2
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Infinite Horizon MDPs:

 An MDP:

e U, S, A, P:SXA > AW), r:5XA — |0,1] same as before
e instead of finite horizon H, we have a discount factor

o Objective: find policy & that maximizes our expected, discounted future reward:
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The Setting and Our Objective

e Consider a deterministic, stationary policy
e stationary means not history or time dependent

o Sampling a trajectory 7 on an episode: for a given policy &
« Sample an initial state s, ~ u:
e Fort=0,1,2,...00
» Take action a, = 7n(s,)
» Observe reward r, = r(s,, a,)
» Transition to (and observe) s,, ; where s,. | ~ P( - |s,, a,)
« The infinite trajectory:
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Value function and Q functions:

Quantities that allow us to reason about the policy’s long-term effect:

o0
Value function V*(s) = Z y'r(s,, a,)|so = s, 7
h=0
0
Q function Q%(s,a) = E | ) v"r(s). ay) | (0. ap) = (s, a), m

h=0

What are upper and lower bounds on V* and Q”
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Example of Policy Evaluation (e.g. computing V* and O”)

Consider the following deterministic MDP w/ 3 states & 2 actions

e Consider the policy

n(a) =B, n(b) =A,n(c) =A
« What is V*?

Vi(a) =

Vi(b) =

Vie) =
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Example of Policy Evaluation (e.g. computing V* and O”)

Consider the following deterministic MDP w/ 3 states & 2 actions

e Consider the policy
n(a) =B, n(b) =A,n(c) =A
« What is V*?

Vi(a) = y*/(1 —y)

Vi(b) = 1/(1 —y)

Vi) =y/(1 —y)
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Bellman Consistency (theorem)

» Consider a fixed policy, 7 : S — A.

By definition, V*(s) = OQ”(s, 7(s))
 Bellman consistency conditions:

o VH(s) = (s, (5)) + YEg o p(. (s zsnl V()]

. Q%(s,a) = r(s,a) + YEy_p( 0 | V()]
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Proof: Bellman Consistency for V-function:

* By definition and by the “tower” property of conditional expectations:

Vi(s) = b [r(so, ag) + yr(s;,ap) + }/zr(sz, ) + ... |8y = S]

- [r(so, ag) + [E [yr(sl, a,) + y°r(sy, ay) + ... | Sy = 5, a, S1] So = S]

* By the Markov property:

= [ [r(sy, ay) + yE |r(s;, ay) + yr(s,, a,) + ... S1] So = S]

= I [’”(S()a ag) +yV*i(s)) | s, = S]

= r(s, n(s)) + yz P(s’|s, n(s)) V*(s')
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Computation of V*

For a fixed policy, 7 : § — A,
We have the Bellman consistency conditions, for a given policy &

V(s) = (s, 2(s)) + 7 ) P(s'| s, 7(s))V(s)
How do we use this to find a solution?

What is the time complexity?
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Example of Optimal Policy 7*, discounted case

Consider the following deterministic MDP w/ 3 states & 2 actions

 What’s the optimal policy?
7*(s) = A, Vs

 \What is optimal value function, VZ = V*?

A YL S

V*(a) =
@ 1=y 1 —vy 1=y
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How do we compute 7~ and V*?

* Naively, we could compute the value of all policies and take the best one.

» Suppose | S| states, |A | actions.
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Properties of an Optimal Policy 7 *

 Theorem: Every infinite horizon MDP has a optimal policy,
that

. i.e. there exists a policy 7* : S — A such that
Ve (s) > Vi(s) Vs, Vr eIl

(again 11 is the set of all time dependent, history dependent, stochastic policies)

.+ = we can write: V* = V" and O* = Q”*.
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Summary:

* Concepts: Policy Eval; Bellman equations; Value lteration

Attendance: Feedback:
bit.ly/3RcTCOT bit.ly/3RHtIxy
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http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

