Infinite Horizon MDPs

Lucas Janson and Sham Kakade

CS/Stat 184: Introduction to Reinforcement Learning Fall 2023

Today

- Recap
- Infinite Horizon MDPs
 - Policy Evaluation
 - Optimality & the Bellman Equations
 - Value Iteration
 - Policy Iteration

Recap

Bellman Consistency (theorem)

- For a fixed policy, $\pi:=\left\{\pi_0,\pi_1,...,\pi_{H-1}\right\},\,\pi_h:S\mapsto A,\,\forall h,$
- By definition, $V_h^{\pi}(s) = Q_h^{\pi}(s, \pi_h(s))$
- At H-1, $Q_{H-1}^{\pi}(s,a)=r(s,a)$, $V_{H-1}^{\pi}(s)=r(s,\pi_{H-1}(s))$
- Bellman consistency conditions: for a given policy π ,
 - $V_h^{\pi}(s) = r(s, \pi_h(s)) + \mathbb{E}_{s' \sim P(\cdot | s, \pi_h(s))} \left[V_{h+1}^{\pi}(s') \right]$

•
$$Q_h^{\pi}(s, a) = r(s, a) + \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[V_{h+1}^{\pi}(s') \right]$$

Computation of V^{π} via Backward Induction

- For a fixed policy, $\pi:=\left\{\pi_0,\pi_1,...,\pi_{H-1}\right\},\,\pi_h:S\mapsto A,\forall h,$ Bellman consistency \Longrightarrow we can compute V_h^π , assuming we know the MDP.
 - Init: $V_H^\pi(s)=0,\ \forall s\in S$ • For $h=H-1,\ldots 0$, set: $V_h^\pi(s)=r(s,\pi_h(s))+\mathbb{E}_{s'\sim P(\cdot|s,\pi_h(s))}\left[V_{h+1}^\pi(s')\right],\ \forall s\in S$
- What is the per iteration computational complexity of DP? (assume scalar $+, -, \times, \div$ are O(1) operations)
- What is the total computational complexity of DP?

Properties of an Optimal Policy π^*

- ullet Let Π be the set of all time dependent, history dependent, stochastic policies.
- **Theorem:** Every finite horizon MDP has a deterministic, history-independent optimal policy, that dominates all other policies, everywhere.
 - i.e. there exists a policy $\pi^\star := \left\{\pi_0^\star, \pi_1^\star, \ldots, \pi_{H-1}^\star\right\}, \ \pi_h^\star : S \mapsto A$ such that $V_h^{\pi^\star}(s) \geq V_h^\pi(s) \quad \forall s, h, \ \forall \pi \in \Pi$

The Bellman Equations

• A function $V=\{V_0,\ldots V_{H-1}\},\ V_h:S\to R$ satisfies the Bellman equations if $V_h(s)=\max_a\Big\{r(s,a)+\mathbb{E}_{s'\sim P(\cdot|s,a)}\big[V_{h+1}(s')\big]\Big\}\ ,\ \forall s$ (assume $V_H=0$).

Theorem:

- V satisfies the Bellman equations if and only if $V = V^*$.
- The optimal policy is: $\pi_h^*(s) = \arg\max_a \left\{ r(s,a) + \mathbb{E}_{s'\sim P(\cdot|s,a)} \left[V_{h+1}^*(s') \right] \right\}$.

Computation of V^{\star} with Dynamic Programming

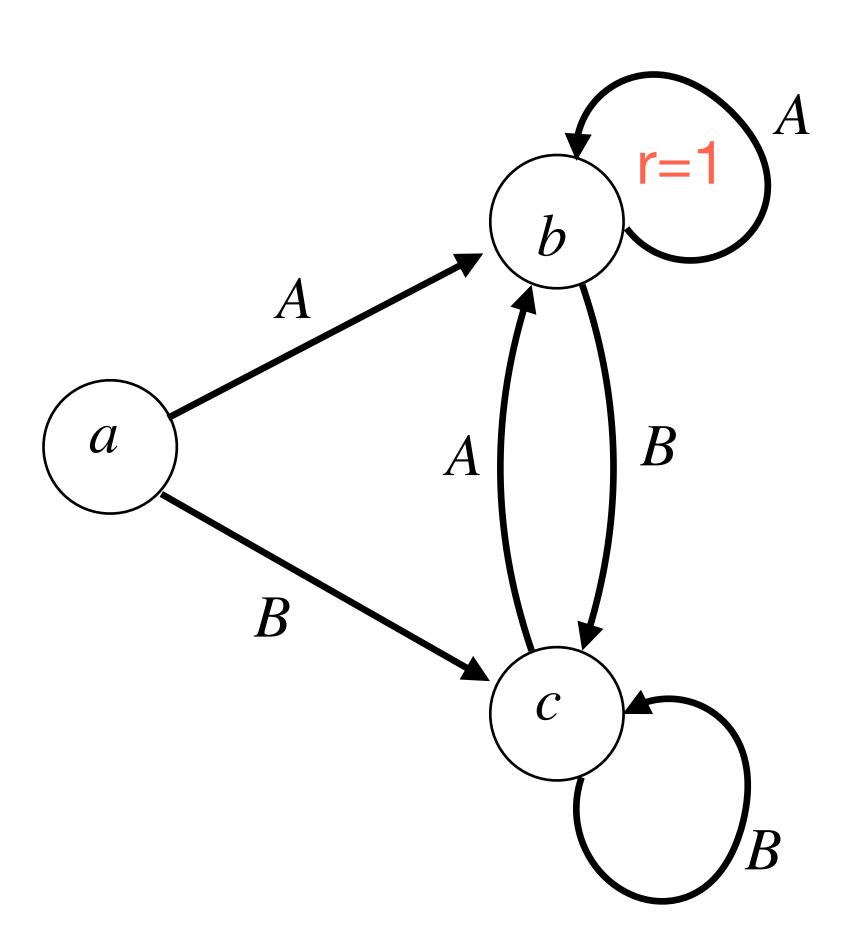
• Theorem: the following Dynamic Programming algorithm correctly computes π^* and V^* Prf: the Bellman equations directly lead to this backwards induction.

```
 \begin{split} \bullet & \text{ Initialize: } V_H^\pi(s) = 0 \ \forall s \in S \\ & \text{For t} = H-1, \ldots 0, \text{ set:} \\ & \bullet V_h^\star(s) = \max_{a} \left[ r(s,a) + \mathbb{E}_{s' \sim P(\cdot \mid s,a)} \left[ V_{h+1}^\star(s') \right] \right], \ \forall s \in S \\ & \bullet \pi_h^\star(s) = \arg\max_{a} \left[ r(s,a) + \mathbb{E}_{s' \sim P(\cdot \mid s,a)} \left[ V_{h+1}^\star(s') \right] \right], \ \forall s \in S \end{split}
```

- What is the per iteration computational complexity of DP? (assume scalar $+, -, \times, \div$ are O(1) operations)
- What is the total computational complexity of DP?

Example of Optimal Policy π^*

Consider the following deterministic MDP w/3 states & 2 actions, with H=3



- What's the optimal policy? $\pi_h^{\star}(s) = A, \forall s, h$
- What is optimal value function, $V^{\pi^*} = V^*$? $V_2^*(a) = 0, V_2^*(b) = 1, V_2^*(c) = 0$ $V_1^*(a) = 1, V_1^*(b) = 2, V_1^*(c) = 1$ $V_0^*(a) = 2, V_0^*(b) = 3, V_0^*(c) = 2$

Reward: r(b, A) = 1, & 0 everywhere else

Today:

Today

Recap

Infinite Horizon MDPs

- Policy Evaluation
- Optimality & the Bellman Equations
- Value Iteration
- Policy Iteration

Infinite Horizon MDPs:

- An MDP: $\mathcal{M} = \{\mu, S, A, P, r, \gamma\}$
 - μ , S, A, $P: S \times A \mapsto \Delta(S)$, $r: S \times A \to [0,1]$ same as before
 - instead of finite horizon H, we have a discount factor $\gamma \in [0,1)$

• Objective: find policy
$$\pi$$
 that maximizes our expected, discounted future reward:
$$\max_{\pi} \mathbb{E}\left[r(s_0, a_0) + \gamma r(s_1, a_1) + \gamma^2 r(s_2, a_2) + \dots \mid \pi\right]$$

The Setting and Our Objective

- Consider a deterministic, stationary policy $\pi: \mathcal{S} \mapsto A$
 - stationary means not history or time dependent
- Sampling a trajectory τ on an episode: for a given policy π
 - Sample an initial state $s_0 \sim \mu$:
 - For $t = 0, 1, 2, ... \infty$
 - Take action $a_t = \pi(s_t)$
 - Observe reward $r_t = r(s_t, a_t)$
 - Transition to (and observe) s_{t+1} where $s_{t+1} \sim P(\cdot \mid s_t, a_t)$
- The infinite trajectory: $\tau = \{s_0, a_0, r_0, s_1, a_1, r_1, ..., \}$

Today

- Recap
- Infinite Horizon MDPs

- Policy Evaluation
 - Optimality & the Bellman Equations
 - Value Iteration
 - Policy Iteration

Value function and Q functions:

Quantities that allow us to reason about the policy's long-term effect:

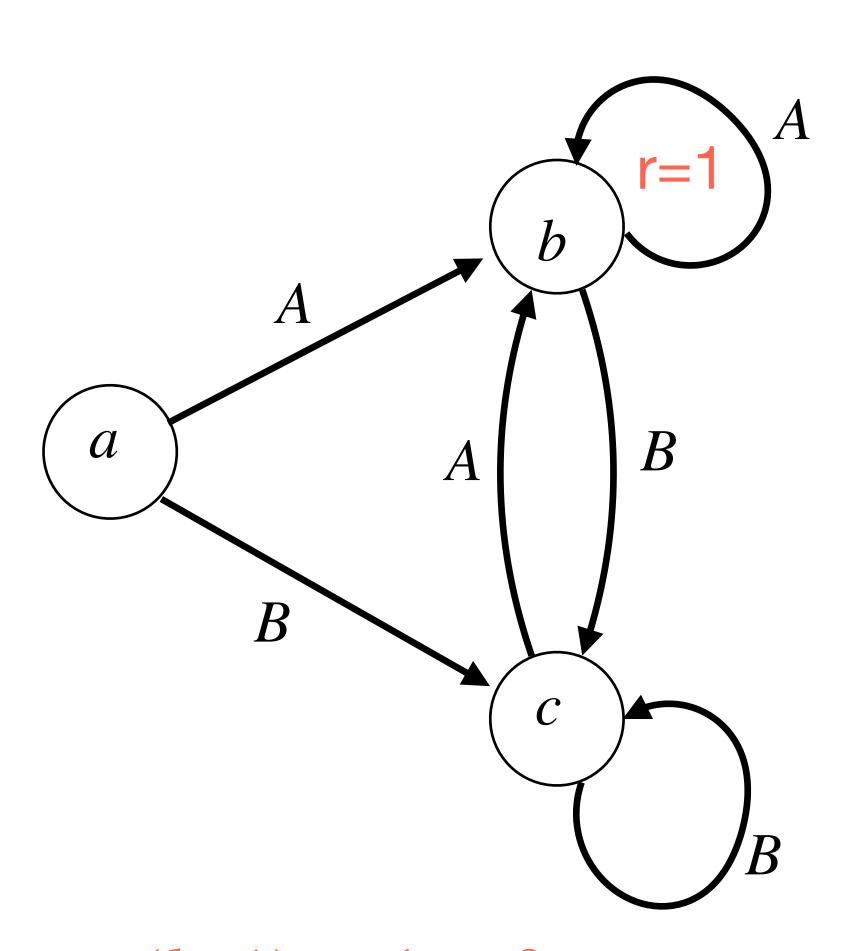
Value function
$$V^\pi(s)=\mathbb{E}\left[\left.\sum_{h=0}^\infty \gamma^h r(s_h,a_h)\right|s_0=s,\pi\right]$$

• Q function
$$Q^{\pi}(s,a) = \mathbb{E}\left[\left.\sum_{h=0}^{\infty} \gamma^h r(s_h,a_h)\,\right| (s_0,a_0) = (s,a),\pi\right]$$

• What are upper and lower bounds on V^π and Q^π

Example of Policy Evaluation (e.g. computing V^{π} and Q^{π})

Consider the following deterministic MDP w/ 3 states & 2 actions



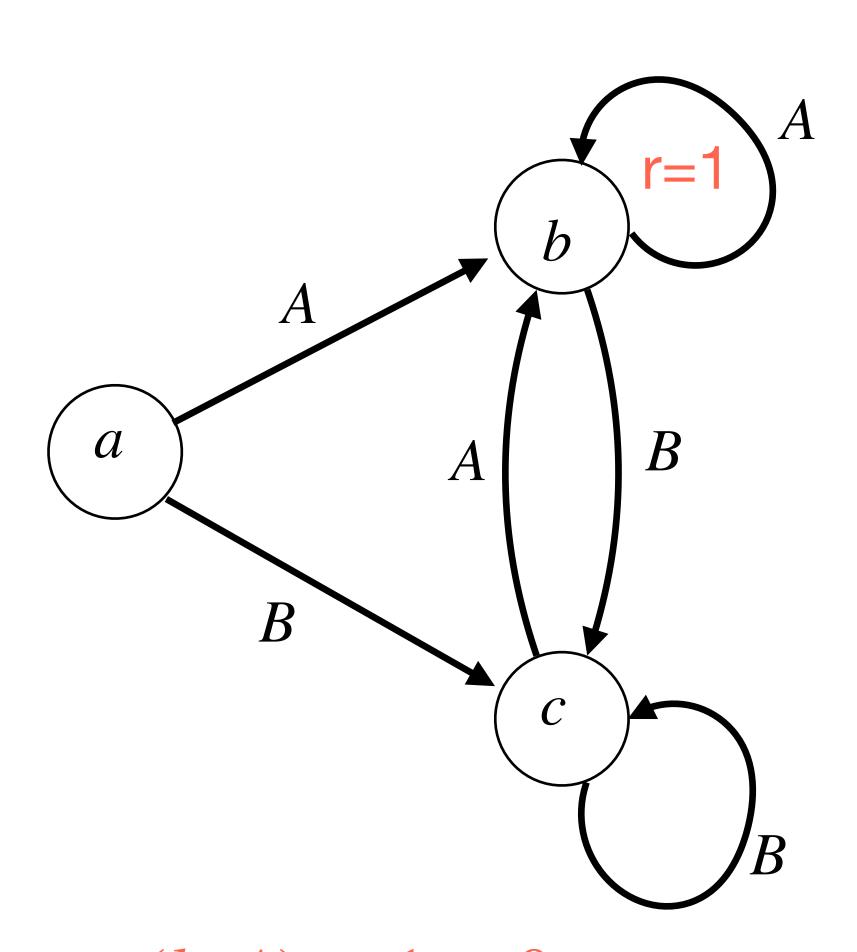
- Consider the policy $\pi(a) = B, \pi(b) = A, \pi(c) = A$
- What is V^{π} ? $V^{\pi}(a) =$

$$V^{\pi}(b) =$$

$$V^{\pi}(c) =$$

Example of Policy Evaluation (e.g. computing V^π and Q^π)

Consider the following deterministic MDP w/ 3 states & 2 actions



- Consider the policy $\pi(a) = B, \pi(b) = A, \pi(c) = A$
- What is V^{π} ? $V^{\pi}(a) = \gamma^2/(1-\gamma)$

$$V^{\pi}(b) = 1/(1-\gamma)$$

$$V^{\pi}(c) = \gamma/(1 - \gamma)$$

Reward: r(b, A) = 1, & 0 everywhere else

Bellman Consistency (theorem)

- Consider a fixed policy, $\pi: S \mapsto A$.
- By definition, $V^{\pi}(s) = Q^{\pi}(s, \pi(s))$
- Bellman consistency conditions:

•
$$V^{\pi}(s) = r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, \pi(s))}[V^{\pi}(s')]$$

•
$$Q^{\pi}(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} [V^{\pi}(s')]$$

(Optional) Proof: Bellman Consistency for V-function:

By definition and by the "tower" property of conditional expectations:

$$V^{\pi}(s) = \mathbb{E}\left[r(s_0, a_0) + \gamma r(s_1, a_1) + \gamma^2 r(s_2, a_2) + \dots \middle| s_0 = s\right]$$

$$= \mathbb{E}\left[r(s_0, a_0) + \mathbb{E}\left[\gamma r(s_1, a_1) + \gamma^2 r(s_2, a_2) + \dots \middle| s_0 = s, a_0, s_1\right] \middle| s_0 = s\right]$$

• By the Markov property:

$$= \mathbb{E}\left[r(s_0, a_0) + \gamma \mathbb{E}\left[r(s_1, a_1) + \gamma r(s_2, a_2) + \dots \middle| s_1\right] \middle| s_0 = s\right]$$

$$= \mathbb{E}\left[r(s_0, a_0) + \gamma V^{\pi}(s_1) \middle| s_h = s\right]$$

$$= r(s, \pi(s)) + \gamma \sum_{s'} P(s' | s, \pi(s)) V^{\pi}(s')$$

Computation of V^{π}

- For a fixed policy, $\pi: S \mapsto A$, let's compute its V (and Q) value functions.
- We have the Bellman consistency conditions, for a given policy π $V^{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{s'} P(s'|s, \pi(s)) V^{\pi}(s')$
- How do we use this to find a solution?

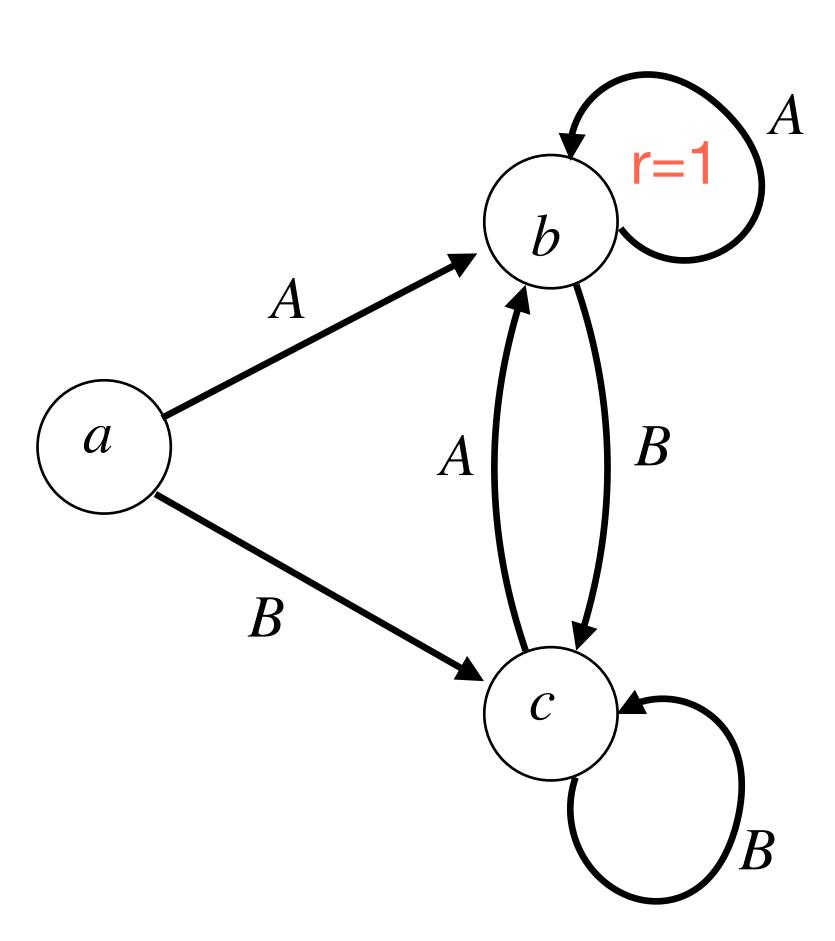
What is the time complexity?

Today

- Recap
- Infinite Horizon MDPs
 - Policy Evaluation
- Optimality & the Bellman Equations
 - Value Iteration
 - Policy Iteration

Example of Optimal Policy π^* , discounted case

Consider the following deterministic MDP w/ 3 states & 2 actions



- What's the optimal policy? $\pi^*(s) = A, \forall s$
- What is optimal value function, $V^{\pi^*} = V^*$?

$$V^{\star}(a) = \frac{\gamma}{1 - \gamma}, \ V^{\star}(b) = \frac{1}{1 - \gamma}, \ V^{\star}(c) = \frac{\gamma}{1 - \gamma}$$

How do we compute π^* and V^* ?

- Naively, we could compute the value of all policies and take the best one.
- Suppose |S| states, |A| actions. How many different stationary polices are there?

Properties of an Optimal Policy π^*

- **Theorem:** Every infinite horizon MDP has a stationary, deterministic optimal policy, that dominates all other policies, everywhere.
 - i.e. there exists a policy $\pi^{\star}: S \mapsto A$ such that $V^{\pi^{\star}}(s) \geq V^{\pi}(s) \ \forall s, \ \forall \pi \in \Pi$

(again Π is the set of all time dependent, history dependent, stochastic policies)

• \Longrightarrow we can write: $V^* = V^{\pi^*}$ and $Q^* = Q^{\pi^*}$.

Summary:

- Discounted infinite horizon MDP:
 - Concepts: Policy Eval; Bellman equations; Value Iteration

Attendance:

bit.ly/3RcTC9T

Feedback:

bit.ly/3RHtlxy

