Infinite Horizon MDPs: Value and Policy Iteration

Lucas Janson and Sham Kakade

CS/Stat 184: Introduction to Reinforcement Learning Fall 2023

Today

- Recap
- Infinite Horizon MDPs
 - Optimality & the Bellman Equations
 - Value Iteration
 - Policy Iteration

Recap

Infinite Horizon MDPs:

- An MDP: $\mathcal{M} = \{\mu, S, A, P, r, \gamma\}$
 - μ , S, A, $P: S \times A \mapsto \Delta(S)$, $r: S \times A \rightarrow [0,1]$ same as before
 - instead of finite horizon H, we have a discount factor $\gamma \in [0,1)$

• Objective: find policy
$$\pi$$
 that maximizes our expected, discounted future reward:
$$\max_{\pi} \mathbb{E}\left[r(s_0, a_0) + \gamma r(s_1, a_1) + \gamma^2 r(s_2, a_2) + \dots \mid \pi\right]$$

Value function and Q functions:

Quantities that allow us to reason about the policy's long-term effect:

Value function
$$V^\pi(s)=\mathbb{E}\left[\left.\sum_{h=0}^\infty \gamma^h r(s_h,a_h)\right|s_0=s,\pi\right]$$

• Q function
$$Q^{\pi}(s,a) = \mathbb{E}\left[\left.\sum_{h=0}^{\infty} \gamma^h r(s_h,a_h)\,\right| (s_0,a_0) = (s,a),\pi\right]$$

• What are upper and lower bounds on V^π and Q^π ?

$$0 \le V^{\pi}(s), Q^{\pi}(s, a) \le 1/(1 - \gamma)$$

Example of Policy Evaluation (e.g. computing V^π and Q^π)

Consider the following deterministic MDP w/ 3 states & 2 actions

- Consider the policy $\pi(a) = B, \pi(b) = A, \pi(c) = A$
- What is V^{π} ? $V^{\pi}(a) = \gamma^2/(1-\gamma)$

$$V^{\pi}(b) = 1/(1-\gamma)$$

$$V^{\pi}(c) = \gamma/(1 - \gamma)$$

Reward: r(b, A) = 1, & 0 everywhere else

Bellman Consistency (theorem)

- Consider a fixed policy, $\pi: S \mapsto A$.
- By definition, $V^{\pi}(s) = Q^{\pi}(s, \pi(s))$
- Bellman consistency conditions:

•
$$V^{\pi}(s) = r(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, \pi(s))}[V^{\pi}(s')]$$

•
$$Q^{\pi}(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} [V^{\pi}(s')]$$

Computation of V^{π}

- For a fixed policy, $\pi:S\mapsto A$, let's compute its V (and Q) value functions.
- We have the Bellman consistency conditions, for a given policy π $V^{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{s'} P(s'|s, \pi(s)) V^{\pi}(s')$
- How do we use this to find a solution?

What is the time complexity?

• Do you see how to write this with matrix algebra?

Let's use Bellman Consistency for computing V^{π}

Consider the following deterministic MDP w/ 3 states & 2 actions

Reward: r(b, A) = 1, & 0 everywhere else

Properties of an Optimal Policy π^*

- **Theorem:** Every infinite horizon MDP has a stationary, deterministic optimal policy, that dominates all other policies, everywhere.
 - i.e. there exists a policy $\pi^{\star}: S \mapsto A$ such that $V^{\pi^{\star}}(s) \geq V^{\pi}(s) \ \forall s, \ \forall \pi \in \Pi$

(again Π is the set of all time dependent, history dependent, stochastic policies)

• \Longrightarrow we can write: $V^* = V^{\pi^*}$ and $Q^* = Q^{\pi^*}$.

Example of Optimal Policy π^* , discounted case

Consider the following deterministic MDP w/ 3 states & 2 actions

- What's the optimal policy? $\pi^*(s) = A, \forall s$
- What is optimal value function, $V^{\pi^*} = V^*$?

$$V^{\star}(a) = \frac{\gamma}{1 - \gamma}, \ V^{\star}(b) = \frac{1}{1 - \gamma}, \ V^{\star}(c) = \frac{\gamma}{1 - \gamma}$$

Reward: r(b, A) = 1, & 0 everywhere else

How do we compute π^* and V^* ?

- Naively, we could compute the value of all policies and take the best one.
- Suppose |S| states, |A| actions. How many different stationary polices are there? $|A|^{|S|}$

Today

- Recap
- Infinite Horizon MDPs
- Optimality & the Bellman Equations
 - Value Iteration
 - Policy Iteration

The Bellman Equations

• A function $V:S \to R$ satisfies the Bellman equations if

$$V(s) = \max_{a} \left\{ r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} [V(s')] \right\}, \forall s$$

Theorem:

• V satisfies the Bellman equations if and only if $V = V^*$.

. The optimal policy is:
$$\pi^*(s) = \arg\max_a \left\{ r(s,a) + \gamma \mathbb{E}_{s'\sim P(\cdot|s,a)} \left[V^*(s') \right] \right\}$$
.

Exercise: use the BE to the purported π^* is optimal

Consider the following deterministic MDP w/ 3 states & 2 actions

- What's the optimal policy? $\pi^*(s) = A, \forall s$
- What is optimal value function, $V^{\pi^{\star}} = V^{\star}$?

$$V^{\star}(a) = \frac{\gamma}{1-\gamma}, \ V^{\star}(b) = \frac{1}{1-\gamma}, \ V^{\star}(c) = \frac{\gamma}{1-\gamma}$$

Reward: r(b, A) = 1, & 0 everywhere else

Today

- Recap
- Infinite Horizon MDPs
 - Optimality & the Bellman Equations
- Value Iteration
 - Policy Iteration

Detour: fix-point solution

- Suppose we want to find an x^* s.t. $x^* = f(x^*)$, $f: [a, b] \mapsto [a, b]$
- A naive approach to find x^* :
 - Initialize $x^0 \in [a, b]$, repeat: $x^{t+1} = f(x^t)$
- Suppose f is a contraction mapping: $\forall x, x', |f(x) f(x')| \leq \gamma |x x'|$, for $\gamma \in [0,1)$. Then it converges, i.e. $x^t \to x^*$, as $t \to \infty$.
- Observe $|x^{t} x^{*}| = |f(x^{t-1}) f(x^{*})| \le \gamma |x^{t-1} x^{*}|$
- If we want $|x^t x^*| \le \epsilon$, then how should we set t?
 - Want t such that $\gamma^t(b-a) \leq \epsilon$
 - $\Longrightarrow t \ge \ln((b-a)/\epsilon)/(1-\gamma)$

Value Iteration Algorithm:

- 1. Initialization: $V^0(s) = 0$, $\forall s$ 2. For t = 0, ... T 1 $V^{t+1}(s) = \max_{a} \left\{ r(s, a) + \gamma \sum_{s' \in S} P(s' | s, a) V^t(s') \right\}, \ \forall s$ 3. Return: $V^T(s)$ $\pi(s) = \arg\max_{a} \left\{ r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} V^T(s') \right\}$
- What is the per iteration computational complexity of VI? (assume scalar $+, -, \times, \div$ are O(1) operations)
- Guarantee: VI is fix-point iteration, which contracts, so $V^t \to V^{\star}$, as $t \to \infty$

Define Bellman Operator $\widetilde{\mathcal{I}}$:

- Any function $V: S \mapsto \mathbb{R}$ can also be viewed as a vector in $V \in \mathbb{R}^{|S|}$.
- Define $\mathcal{T}: \mathbb{R}^{|S|} \mapsto \mathbb{R}^{|S|}$, where

$$(\mathcal{T}V)(s) := \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V(s') \right]$$

- Bellman equations: $V = \mathcal{I}V$
- Value iteration: $V^{t+1} \leftarrow \mathcal{I}V^t$

Convergence of Value Iteration:

- . The "infinity norm": For any vector $x \in \mathbb{R}^d$, define $|x|_{\infty} = \max_i |x_i|$
- Theorem: Given any V, V', we have: $\|\mathscr{T}V \mathscr{T}V'\|_{\infty} \le \gamma \|V V'\|_{\infty}$

- Corollary: If we set $T=\frac{1}{1-\gamma}\ln\left(\frac{1}{\epsilon(1-\gamma)}\right)$ iterations, VI will return a value V^T s.t. $\|V^T-V^\star\|_\infty \leq \epsilon$.
 - VI then has computational complexity $O(|S|^2|A|T)$.

Today

- Recap
- Infinite Horizon MDPs
 - Optimality & the Bellman Equations
 - Value Iteration

Policy Iteration (PI)

- Initialization: choose a policy $\pi^0: S \mapsto A$
- For t = 0, 1, ..., T-1
 - 1. Policy Evaluation: given π^t , compute $Q^{\pi^t}(s, a)$:
 - 2. Policy Improvement: set $\pi^{t+1}(s) := \arg \max_{a} Q^{\pi^t}(s, a)$
- What's the computational complexity per iteration?
 Let's do this in parts:
 - Computing V^{π^t} :
 - Computing Q^{π^t} with V^{π^t} :
 - Computing π^{t+1} with Q^{π^t} :

Per iteration complexity:

What about convergence?

Convergence of Policy Iteration:

- Theorem: PI has two properties:
 - montone improvement: $V^{\pi^{t+1}}(s) \ge V^{\pi^t}(s)$
 - "contraction": $||V^{\pi^{t+1}} V^{\star}||_{\infty} \leq \gamma ||V^{\pi^t} V^{\star}||_{\infty}$

- Corollary: If we set $T=\frac{1}{1-\gamma}\ln(\frac{1}{\epsilon(1-\gamma)})$ iterations, PI will return a policy π^{t+1} s.t. $\|V^{\pi^{t+1}}-V^{\star}\|_{\infty}\leq \epsilon$
 - with total computational complexity $O\left(\left(|S|^3 + |S|^2 |A|\right)T\right)$.

Summary:

- Discounted infinite horizon MDP:
 - Key Concepts: Bellman equations; Value Iteration; Policy Iteration

Attendance:

bit.ly/3RcTC9T

Feedback:

bit.ly/3RHtlxy

Optional Material

First, a handy lemma

Lemma: for real functions $f, g: R \to R$, we have: $|\max_{x} f(x) - \max_{x} g(x)| \le \max_{x} |f(x) - g(x)|$

Proof: Suppose that $\max_{x} f(x) \ge \max_{x} g(x)$ (the proof for the other case is analogous).

Let \widetilde{x} be a maximizer of f. So we have that:

$$|\max_{x} f(x) - \max_{x} g(x)| = \max_{x} f(x) - \max_{x} g(x)$$
$$= f(\widetilde{x}) - \max_{x} g(x)$$

where the first equality holds with our supposition and the second is by def of \tilde{x} .

Continuing,

$$\leq f(\widetilde{x}) - g(\widetilde{x})$$

$$\leq \max_{x} |f(x) - g(x)|$$

where the first step uses that $\max_{x} g(x) \ge g(\tilde{x})$ and the second is due to the max.

This proves the claim (the case when $\max f(x) \le \max g(x)$ is identical.

.

Convergence of Value Iteration:

Lemma [contraction]: Given any V, V', we have:

$$\|\mathcal{T}V - \mathcal{T}V'\|_{\infty} \le \gamma \|V - V'\|_{\infty}$$

Proof: Using the previous lemma,

$$\begin{split} |(\mathcal{T}V)(s) - (\mathcal{T}V')(s)| &= \left| \max_{a} \left\{ r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} V(s') \right\} - \max_{a} \left\{ r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} V'(s') \right\} \right| \\ &\leq \max_{a} \left| r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} V(s') - \left(r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} V'(s') \right) \right| \\ &= \gamma \max_{a} \left| \mathbb{E}_{s' \sim P(\cdot|s,a)} [V(s') - V'(s')] \right| \\ &\leq \gamma \max_{a} \mathbb{E}_{s' \sim P(\cdot|s,a)} [|V(s') - V'(s')|] \\ &\leq \gamma \max_{s'} |V(s') - V'(s')| = \gamma ||V - V'||_{\infty} \end{split}$$