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Infinite Horizon MDPs:

 An MDP:

e U, S, A, P:SXA > AW), r:5XA — |0,1] same as before
e instead of finite horizon H, we have a discount factor

o Objective: find policy & that maximizes our expected, discounted future reward:



Value function and Q functions:

Quantities that allow us to reason about the policy’s long-term effect:

o0
Value function V*(s) = Z yr(s,, a,)|sg = s,
h=0
0
Q function Q%(s,a) = E | ) v"r(s). ay) | (0. ap) = (s, a), m

h=0

What are upper and lower bounds on V”* and O”?

0 < V*s),0%s,a) < 1/(1 —vy)



Example of Policy Evaluation (e.g. computing V* and O”)

Consider the following deterministic MDP w/ 3 states & 2 actions

e Consider the policy
n(a) =B, n(b) =A,n(c) =A
« What is V*?

Vi(a) = y*/(1 —y)

Vi(b) = 1/(1 —y)

Vi) =y/(1 —y)




Bellman Consistency (theorem)

» Consider a fixed policy, 7 : S — A.

By definition, V*(s) = OQ”(s, 7(s))
 Bellman consistency conditions:

o VH(s) = (s, (5)) + YEg o p(. (s zsnl V()]

. Q%(s,a) = r(s,a) + YEy_p( 0 | V()]



Computation of V*

For a fixed policy, 7 : § — A,
We have the Bellman consistency conditions, for a given policy &

V(s) = (s, 2(s)) + 7 ) P(s'| s, 7(s))V(s)
How do we use this to find a solution?

What is the time complexity?

Do you see how to write this with matrix algebra®?



Let’s use Bellman Consistency for computing V*

Consider the following deterministic MDP w/ 3 states & 2 actions




Properties of an Optimal Policy 7 *

 Theorem: Every infinite horizon MDP has a optimal policy,
that

. i.e. there exists a policy 7* : S — A such that
Ve (s) > Vi(s) Vs, Vr eIl

(again 11 is the set of all time dependent, history dependent, stochastic policies)

.+ = we can write: V* = V" and O* = Q”*.
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Example of Optimal Policy 7*, discounted case

Consider the following deterministic MDP w/ 3 states & 2 actions

 What’s the optimal policy?
7*(s) = A, Vs

 \What is optimal value function, VZ = V*?

A YL S

V*(a) =
@ 1=y 1 —vy 1=y
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How do we compute 7~ and V*?

* Naively, we could compute the value of all policies and take the best one.

» Suppose | S| states, |A | actions.
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The Bellman Equations

e A function V : § — R satisfies the Bellman equations if
V(s) = max {r(s, a) + vEg piisa [V(S’)] } Vs

d

e Theorem:

. V satisfies the Bellman equations if and only if V = V7.

. The optimal policy is: 7" (s) = arg max {r(s, a) + yEg p(is.a) [V*(S’)] }

A
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Exercise: use the BE to the purported 7* is optimal

Consider the following deterministic MDP w/ 3 states & 2 actions

 What’s the optimal policy?
7*(s) = A, Vs

« What is optimal value function, VE = V*?

A YL S

V*(a) =
@ 1=y 1 —vy 1=y
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Detour: fix-point solution

Suppose we want to find an x* s.t. x* = f(x™), f: [a,b] ~ [a,b]

A naive approach to find x* :

Suppose f is a contraction mapping: Vx,x’, | f(x) —f(x")| < y|x— x|, fory € [0,]).
Then it converges, i.e. x’ = x*, ast — .

Observe |x' —x* | = [f(x"™") = flx™)| < y|x"" = x7)
If we want |x’ — x*| < €, then how should we set ?

e Want 7 such that
o —]/>
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Value lteration Algorithm:

Initialization: VV(s) = 0, Vs
Fort=0,..T—1

V*+l(s) = max {r(s, a) + }/2 P(s’| s, a)Vi(s") } Vs

s'es
Return: V' ()

n(s) = arg max {r(s, a) + vk p S,a)VT(S/)}

d

 What is the per iteration computational complexity of VI?
(assume scalar +, — , X , = are O(1) operations)
 Guarantee: VI is fix-point iteration, which contracts, so V' — V™, ast — oo
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Define Bellman Operator I :

. Any function V : S — R can also be viewed as a vectorin V € R,
. Define 7 : R = | ‘S‘, where

(97 V) (s) := max [r(s, a) + vy pis.a)V($)

» Bellman equations: V=95V
. Value iteration: V! « V!
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Convergence of Value lteration:

. The “infinity norm”: For any vector x € R?, define |x |, = max | x;]|
i

e Theorem: Given any V, V', we have:

Corollary: If we set iterations,

VI will return a value V7 s.t.

« VI then has computational complexity
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Policy Iteration (PI)
. Initialization: choose a policy 7° : S — A
e Forr=0,1,..T—1

1. Policy Evaluation: given ', compute Q”t(s, a):

2. Policy Improvement: set 7't!(s) := arg max QEI(S, a)
da

 What’s the computational complexity per iteration?
Let’s do this In parts:

« Computing %2

« Computing Q”t with V7

+ Computing z'*! with Q™"

Per iteration complexity:
 What about convergence?
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Convergence of Policy Iteration:

 [heorem: Pl has two properties:
» montone improvement: V”m(s) > Vﬂt(S)
+1 4
. “contraction”: ||V" — V¥ < 7IIVE = V||

1 1
. Corollary: If we set | = ln( ) iterations,
=y Vel =p)

PI will return a policy 7/t s.t. || V7 — V¥ <€

. With total computational complexity 0(( 1SI°+|S|°|A] )T)
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Summary:

 Key Concepts: Bellman equations; Value Iteration; Policy lteration

Attendance: Feedback:
bit.ly/3RcTCOT bit.ly/3RHtIxy
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http://bit.ly/3RHtlxy
http://bit.ly/3RcTC9T

Optional Material



First, a handy lemma

Lemma: for real functions f, ¢ : R — R, we have: | max f(x) — max g(x) | < max | f(x) — g(x) |

Proof: Suppose that max f(x) > max g(x) (the proof for the other case is analogous).
X X

Let X be a maximizer of . So we have that:

| max f(x) — max g(x) | = max f(x) — max g(x)

= f(x) — max g(x)

where the first equality holds with our supposition and the second is by def of x.

Continuing, < A% &)
< f(x)—g(x
< max [f(x) — g(x) |

X

where the first step uses that max g(x) > g(x) and the second is due to the max.
X

This proves the claim (the case when max f(x) < max g(x) is identical.
X X
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Convergence of Value lteration:

Lemma [contraction]: Given any V, V', we have:
| TV =TV =7lIV-Vl

Proof: Using the previous lemma,

[(TV)(s) = (TV)s)| = |max {r(s,a) +7

A

< max
d

= y max
a

< y max
a

< y max
S/

V'(S, Cl) + 4 _s’NP(-\S,a)V(S,) _ (F(S, Cl) + 4

= op( sl V() — VI(sT)]
_S’NP(-ls,a)[ | V(S,) — V,(S/) ‘ ]
[ V(s) = V()] =7l[V-V|,
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= epClsa) V) | = as {7(5,0) + ¥Eg p1s.0) V(51 §

_S’NP(- |s,a) V,(S ,) )




