
UCB-VI and Contextual Bandits  
 

Lucas Janson and Sham Kakade 
CS/Stat 184: Introduction to Reinforcement Learning  

Fall 2023

Today

2

• Recap

• UCB-VI for tabular MDPs

• UCB-VI for linear MDPs

• Contextual bandits intro

Recall: Value Iteration (VI)
VI = DP is a backwards in time approach for computing the optimal policy:  

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

3

Recall: Value Iteration (VI)
VI = DP is a backwards in time approach for computing the optimal policy:  

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

3

Recall: Value Iteration (VI)
VI = DP is a backwards in time approach for computing the optimal policy:  

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a)

3

Recall: Value Iteration (VI)
VI = DP is a backwards in time approach for computing the optimal policy:  

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a)

3

Recall: Value Iteration (VI)
VI = DP is a backwards in time approach for computing the optimal policy:  

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a)

V⋆
H−1 = max

a
Q⋆

H−1(s, a) = Q⋆
H−1(s, π⋆

H−1(s))

3

Recall: Value Iteration (VI)
VI = DP is a backwards in time approach for computing the optimal policy:  

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a)

V⋆
H−1 = max

a
Q⋆

H−1(s, a) = Q⋆
H−1(s, π⋆

H−1(s))

2. Assuming we have computed , i.e., assuming
we know how to perform optimally starting at , then:

V⋆
h+1, h ≤ H − 2

h + 1

3

Recall: Value Iteration (VI)
VI = DP is a backwards in time approach for computing the optimal policy:  

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a)

V⋆
H−1 = max

a
Q⋆

H−1(s, a) = Q⋆
H−1(s, π⋆

H−1(s))

2. Assuming we have computed , i.e., assuming
we know how to perform optimally starting at , then:

V⋆
h+1, h ≤ H − 2

h + 1

Q⋆
h (s, a) = r(s, a) + $s′ ∼P(s,a)V⋆

h+1(s′)

3

Recall: Value Iteration (VI)
VI = DP is a backwards in time approach for computing the optimal policy:  

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a)

V⋆
H−1 = max

a
Q⋆

H−1(s, a) = Q⋆
H−1(s, π⋆

H−1(s))

2. Assuming we have computed , i.e., assuming
we know how to perform optimally starting at , then:

V⋆
h+1, h ≤ H − 2

h + 1

Q⋆
h (s, a) = r(s, a) + $s′ ∼P(s,a)V⋆

h+1(s′)

π⋆
h (s) = arg max

a
Q⋆

h (s, a),
3

Recall: Value Iteration (VI)
VI = DP is a backwards in time approach for computing the optimal policy:  

π⋆ = {π⋆
0 , π⋆

1 , …, π⋆
H−1}

1. Start at ,H − 1

Q⋆
H−1(s, a) = r(s, a) π⋆

H−1(s) = arg max
a

Q⋆
H−1(s, a)

V⋆
H−1 = max

a
Q⋆

H−1(s, a) = Q⋆
H−1(s, π⋆

H−1(s))

2. Assuming we have computed , i.e., assuming
we know how to perform optimally starting at , then:

V⋆
h+1, h ≤ H − 2

h + 1

Q⋆
h (s, a) = r(s, a) + $s′ ∼P(s,a)V⋆

h+1(s′)

π⋆
h (s) = arg max

a
Q⋆

h (s, a), V⋆
h = max

a
Q⋆

h (s, a)
3

Recall: UCB

4

For :t = 0,…, T − 1
Choose the arm with the highest upper confidence bound, i.e.,

at = arg max
k∈{1,…,K}

̂μ(k)
t + ln(2TK/δ)/2N(k)

t

Recall: UCB

4

For :t = 0,…, T − 1
Choose the arm with the highest upper confidence bound, i.e.,

at = arg max
k∈{1,…,K}

̂μ(k)
t + ln(2TK/δ)/2N(k)

t

High-level summary: estimate action quality, add exploration bonus, then argmax

UCBVI: Tabular optimism in the face of uncertainty

Inside iteration n :

5

Assume reward function knownrh(s, a)

UCBVI: Tabular optimism in the face of uncertainty

Inside iteration n :

Use all previous data to estimate transitions ̂Pn
1, …, ̂Pn

H−1

5

Assume reward function knownrh(s, a)

UCBVI: Tabular optimism in the face of uncertainty

Inside iteration n :

Use all previous data to estimate transitions ̂Pn
1, …, ̂Pn

H−1

Design reward bonus bn
h(s, a), ∀s, a, h

5

Assume reward function knownrh(s, a)

UCBVI: Tabular optimism in the face of uncertainty

Inside iteration n :

Use all previous data to estimate transitions ̂Pn
1, …, ̂Pn

H−1

Optimistic planning with learned model: πn = VI ({ ̂Pn
h, rh + bn

h}H−1
h=1)

Design reward bonus bn
h(s, a), ∀s, a, h

5

Assume reward function knownrh(s, a)

UCBVI: Tabular optimism in the face of uncertainty

Inside iteration n :

Use all previous data to estimate transitions ̂Pn
1, …, ̂Pn

H−1

Optimistic planning with learned model: πn = VI ({ ̂Pn
h, rh + bn

h}H−1
h=1)

Collect a new trajectory by executing in the true system starting from πn {Ph}H−1
h=0 s0

Design reward bonus bn
h(s, a), ∀s, a, h

5

Assume reward function knownrh(s, a)

Model Estimation
Let us consider the very beginning of episode :n

*n
h = {si

h, ai
h, si

h+1}n−1
i=1 , ∀h

6

Model Estimation
Let us consider the very beginning of episode :n

*n
h = {si

h, ai
h, si

h+1}n−1
i=1 , ∀h

Let’s also maintain some statistics using these datasets:

6

Model Estimation
Let us consider the very beginning of episode :n

*n
h = {si

h, ai
h, si

h+1}n−1
i=1 , ∀h

Let’s also maintain some statistics using these datasets:

Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h, Nn
h(s, a, s′) =

n−1

∑
i=1

1{(si
h, ai

h, si
h+1) = (s, a, s′)}, ∀s, a, h

6

Model Estimation
Let us consider the very beginning of episode :n

*n
h = {si

h, ai
h, si

h+1}n−1
i=1 , ∀h

Let’s also maintain some statistics using these datasets:

Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h, Nn
h(s, a, s′) =

n−1

∑
i=1

1{(si
h, ai

h, si
h+1) = (s, a, s′)}, ∀s, a, h

Estimate model :̂Pn
h(s′ |s, a), ∀s, a, s′ , h

̂Pn
h(s′ |s, a) = Nn

h(s, a, s′)
Nn

h(s, a)
6

Today

7

• Recap

• UCB-VI for tabular MDPs

• UCB-VI for linear MDPs

• Contextual bandits intro

Reward Bonus Design and Value Iteration
Recall: *n

h = {si
h, ai

h, si
h+1}n−1

i=1 , ∀h, Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

8

Reward Bonus Design and Value Iteration
Recall: *n

h = {si
h, ai

h, si
h+1}n−1

i=1 , ∀h, Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

Define: bn
h(s, a) = cH

log (|S | |A |HN/δ)
Nn

h(s, a)

8

Reward Bonus Design and Value Iteration
Recall: *n

h = {si
h, ai

h, si
h+1}n−1

i=1 , ∀h, Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

Define: bn
h(s, a) = cH

log (|S | |A |HN/δ)
Nn

h(s, a)
Encourage to explore

new state-actions

8

Reward Bonus Design and Value Iteration
Recall: *n

h = {si
h, ai

h, si
h+1}n−1

i=1 , ∀h, Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

Define: bn
h(s, a) = cH

log (|S | |A |HN/δ)
Nn

h(s, a)
Encourage to explore

new state-actions

Value Iteration (aka DP) at episode using and n { ̂Pn
h}h {rh + bn

h}h

8

Reward Bonus Design and Value Iteration
Recall: *n

h = {si
h, ai

h, si
h+1}n−1

i=1 , ∀h, Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

Define: bn
h(s, a) = cH

log (|S | |A |HN/δ)
Nn

h(s, a)
Encourage to explore

new state-actions

Value Iteration (aka DP) at episode using and n { ̂Pn
h}h {rh + bn

h}h

̂Vn
H(s) = 0,∀s

8

Reward Bonus Design and Value Iteration
Recall: *n

h = {si
h, ai

h, si
h+1}n−1

i=1 , ∀h, Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

Define: bn
h(s, a) = cH

log (|S | |A |HN/δ)
Nn

h(s, a)
Encourage to explore

new state-actions

Value Iteration (aka DP) at episode using and n { ̂Pn
h}h {rh + bn

h}h

̂Vn
H(s) = 0,∀s Q̂n

h(s, a) = min {rh(s, a) + bn
h(s, a) + $s′ ∼ ̂Pn

h(⋅|s,a) [̂Vn
h+1(s′)], H}, ∀s, a

8

Reward Bonus Design and Value Iteration
Recall: *n

h = {si
h, ai

h, si
h+1}n−1

i=1 , ∀h, Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

Define: bn
h(s, a) = cH

log (|S | |A |HN/δ)
Nn

h(s, a)
Encourage to explore

new state-actions

Value Iteration (aka DP) at episode using and n { ̂Pn
h}h {rh + bn

h}h

̂Vn
H(s) = 0,∀s

̂Vn
h(s) = max

a
Q̂n

h(s, a), πn
h(s) = arg max

a
Q̂n

h(s, a), ∀s

Q̂n
h(s, a) = min {rh(s, a) + bn

h(s, a) + $s′ ∼ ̂Pn
h(⋅|s,a) [̂Vn

h+1(s′)], H}, ∀s, a

8

Reward Bonus Design and Value Iteration
Recall: *n

h = {si
h, ai

h, si
h+1}n−1

i=1 , ∀h, Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

Define: bn
h(s, a) = cH

log (|S | |A |HN/δ)
Nn

h(s, a)
Encourage to explore

new state-actions

Value Iteration (aka DP) at episode using and n { ̂Pn
h}h {rh + bn

h}h

̂Vn
H(s) = 0,∀s

̂Vn
h(s) = max

a
Q̂n

h(s, a), πn
h(s) = arg max

a
Q̂n

h(s, a), ∀s ̂Vn
h ∞

≤ H, ∀h, n

Q̂n
h(s, a) = min {rh(s, a) + bn

h(s, a) + $s′ ∼ ̂Pn
h(⋅|s,a) [̂Vn

h+1(s′)], H}, ∀s, a

8

Reward Bonus Design and Value Iteration
Recall: *n

h = {si
h, ai

h, si
h+1}n−1

i=1 , ∀h, Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h,

Define: bn
h(s, a) = cH

log (|S | |A |HN/δ)
Nn

h(s, a)
Encourage to explore

new state-actions

Value Iteration (aka DP) at episode using and n { ̂Pn
h}h {rh + bn

h}h

̂Vn
H(s) = 0,∀s

̂Vn
h(s) = max

a
Q̂n

h(s, a), πn
h(s) = arg max

a
Q̂n

h(s, a), ∀s ̂Vn
h ∞

≤ H, ∀h, n

Q̂n
h(s, a) = min {rh(s, a) + bn

h(s, a) + $s′ ∼ ̂Pn
h(⋅|s,a) [̂Vn

h+1(s′)], H}, ∀s, a

8

 specifically chosen so that with high probabilitybn
h(s, a) V⋆

h (s) ≤ ̂Vn
h(s)

UCBVI: Put All Together
For n = 1 → N :

3. Estimate ̂Pn : ̂Pn
h(s′ |s, a) = Nn

h(s, a, s′)
Nn

h(s, a) , ∀s, a, s′ , h

1. Set Nn
h(s, a) =

n−1

∑
i=1

1{(si
h, ai

h) = (s, a)}, ∀s, a, h

2. Set Nn
h(s, a, s′) =

n−1

∑
i=1

1{(si
h, ai

h, si
h+1) = (s, a, s′)}, ∀s, a, a′ , h

4. Plan: πn = VI ({ ̂Pn
h, rh + bn

h}h), with bn
h(s, a) = cH

log(|S | |A |HN/δ)
Nn

h(s, a)
5. Execute πn : {sn

0 , an
0 , rn

0 , …, sn
H−1, an

H−1, rn
H−1, sn

H}

9

High-level Idea: Exploration Exploitation Tradeoff
Upper bound per-episode regret: by construction of V⋆

0 (s0) − Vπn

0 (s0) ≤ ̂Vn
0(s0) − Vπn

0 (s0) bn
h

10

High-level Idea: Exploration Exploitation Tradeoff
Upper bound per-episode regret: by construction of V⋆

0 (s0) − Vπn

0 (s0) ≤ ̂Vn
0(s0) − Vπn

0 (s0) bn
h

1. What if is small? ̂Vn
0(s0) − Vπn

0 (s0)

10

High-level Idea: Exploration Exploitation Tradeoff
Upper bound per-episode regret: by construction of V⋆

0 (s0) − Vπn

0 (s0) ≤ ̂Vn
0(s0) − Vπn

0 (s0) bn
h

1. What if is small? ̂Vn
0(s0) − Vπn

0 (s0)

Then is close to , i.e., we are doing exploitationπn π⋆

10

High-level Idea: Exploration Exploitation Tradeoff
Upper bound per-episode regret: by construction of V⋆

0 (s0) − Vπn

0 (s0) ≤ ̂Vn
0(s0) − Vπn

0 (s0) bn
h

2. What if is large? ̂Vn
0(s0) − Vπn

0 (s0)

1. What if is small? ̂Vn
0(s0) − Vπn

0 (s0)

Then is close to , i.e., we are doing exploitationπn π⋆

10

High-level Idea: Exploration Exploitation Tradeoff
Upper bound per-episode regret: by construction of V⋆

0 (s0) − Vπn

0 (s0) ≤ ̂Vn
0(s0) − Vπn

0 (s0) bn
h

2. What if is large? ̂Vn
0(s0) − Vπn

0 (s0)

1. What if is small? ̂Vn
0(s0) − Vπn

0 (s0)

Then is close to , i.e., we are doing exploitationπn π⋆

10

Some must be large (or some estimation errors must be large, but with high probability
any with high error must have small and hence high)

bn
h(s, a) ̂Pn

h(⋅ |s, a)
̂Pn
h(⋅ |s, a) Nn

h(s, a) bn
h(s, a)

High-level Idea: Exploration Exploitation Tradeoff
Upper bound per-episode regret: by construction of V⋆

0 (s0) − Vπn

0 (s0) ≤ ̂Vn
0(s0) − Vπn

0 (s0) bn
h

2. What if is large? ̂Vn
0(s0) − Vπn

0 (s0)

1. What if is small? ̂Vn
0(s0) − Vπn

0 (s0)

Then is close to , i.e., we are doing exploitationπn π⋆

10

Some must be large (or some estimation errors must be large, but with high probability
any with high error must have small and hence high)

bn
h(s, a) ̂Pn

h(⋅ |s, a)
̂Pn
h(⋅ |s, a) Nn

h(s, a) bn
h(s, a)

Large means is being encouraged to do , since it will apparently have very high reward,
i.e., exploration

bn
h(s, a) πn (s, a)

High-level Idea: Exploration Exploitation Tradeoff
Upper bound per-episode regret: by construction of V⋆

0 (s0) − Vπn

0 (s0) ≤ ̂Vn
0(s0) − Vπn

0 (s0) bn
h

2. What if is large? ̂Vn
0(s0) − Vπn

0 (s0)

1. What if is small? ̂Vn
0(s0) − Vπn

0 (s0)

Then is close to , i.e., we are doing exploitationπn π⋆

$ [RegretN] := $ [
N

∑
n=1

(V⋆ − Vπn)] ≤ Õ (H2 SAN)
10

Some must be large (or some estimation errors must be large, but with high probability
any with high error must have small and hence high)

bn
h(s, a) ̂Pn

h(⋅ |s, a)
̂Pn
h(⋅ |s, a) Nn

h(s, a) bn
h(s, a)

Large means is being encouraged to do , since it will apparently have very high reward,
i.e., exploration

bn
h(s, a) πn (s, a)

Today

11

• Recap

• UCB-VI for tabular MDPs

• UCB-VI for linear MDPs

• Contextual bandits intro

Linear MDP Definition

Finite horizon time-dependent episodic MDP ℳ = {S, A, H, {r}h, {P}h, s0}

 could be large or even continuous, hence poly is not acceptableS & A (|S | , |A |)

12

Linear MDP Definition

Finite horizon time-dependent episodic MDP ℳ = {S, A, H, {r}h, {P}h, s0}

 could be large or even continuous, hence poly is not acceptableS & A (|S | , |A |)

Ph(s′ |s, a) = μ⋆
h (s′) ⋅ ϕ(s, a), μ⋆

h : S ↦ ℝd, ϕ : S × A ↦ ℝd

12

Linear MDP Definition

Finite horizon time-dependent episodic MDP ℳ = {S, A, H, {r}h, {P}h, s0}

 could be large or even continuous, hence poly is not acceptableS & A (|S | , |A |)

Ph(s′ |s, a) = μ⋆
h (s′) ⋅ ϕ(s, a), μ⋆

h : S ↦ ℝd, ϕ : S × A ↦ ℝd

r(s, a) = θ⋆
h ⋅ ϕ(s, a), θ⋆

h ∈ ℝd

12

Linear MDP Definition

Feature map is known to the learner!
(We assume reward is known, i.e., is known)

ϕ
θ⋆

Finite horizon time-dependent episodic MDP ℳ = {S, A, H, {r}h, {P}h, s0}

 could be large or even continuous, hence poly is not acceptableS & A (|S | , |A |)

Ph(s′ |s, a) = μ⋆
h (s′) ⋅ ϕ(s, a), μ⋆

h : S ↦ ℝd, ϕ : S × A ↦ ℝd

r(s, a) = θ⋆
h ⋅ ϕ(s, a), θ⋆

h ∈ ℝd

12

Planning in Linear MDP: Value Iteration
Ph(⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝ|S|×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
h)⊤ϕ(s, a), θ⋆

h ∈ ℝd

13

Planning in Linear MDP: Value Iteration
Ph(⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝ|S|×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
h)⊤ϕ(s, a), θ⋆

h ∈ ℝd

V⋆
H(s) = 0,∀s,

13

Planning in Linear MDP: Value Iteration
Ph(⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝ|S|×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
h)⊤ϕ(s, a), θ⋆

h ∈ ℝd

V⋆
H(s) = 0,∀s,

Q⋆
h (s, a) = rh(s, a) + $s′ ∼Ph(⋅|s,a)V⋆

h+1(s′)

13

Planning in Linear MDP: Value Iteration
Ph(⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝ|S|×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
h)⊤ϕ(s, a), θ⋆

h ∈ ℝd

V⋆
H(s) = 0,∀s,

Q⋆
h (s, a) = rh(s, a) + $s′ ∼Ph(⋅|s,a)V⋆

h+1(s′)

= θ⋆
h ⋅ ϕ(s, a) + (μ⋆

h ϕ(s, a))⊤ V⋆
h+1

13

Planning in Linear MDP: Value Iteration
Ph(⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝ|S|×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
h)⊤ϕ(s, a), θ⋆

h ∈ ℝd

V⋆
H(s) = 0,∀s,

Q⋆
h (s, a) = rh(s, a) + $s′ ∼Ph(⋅|s,a)V⋆

h+1(s′)

= θ⋆
h ⋅ ϕ(s, a) + (μ⋆

h ϕ(s, a))⊤ V⋆
h+1

= ϕ(s, a)⊤(θ⋆
h + (μ⋆

h)⊤V⋆
h+1)

13

Planning in Linear MDP: Value Iteration
Ph(⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝ|S|×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
h)⊤ϕ(s, a), θ⋆

h ∈ ℝd

V⋆
H(s) = 0,∀s,

Q⋆
h (s, a) = rh(s, a) + $s′ ∼Ph(⋅|s,a)V⋆

h+1(s′)

= θ⋆
h ⋅ ϕ(s, a) + (μ⋆

h ϕ(s, a))⊤ V⋆
h+1

= ϕ(s, a)⊤(θ⋆
h + (μ⋆

h)⊤V⋆
h+1)

= ϕ(s, a)⊤wh

13

Planning in Linear MDP: Value Iteration
Ph(⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝ|S|×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
h)⊤ϕ(s, a), θ⋆

h ∈ ℝd

V⋆
H(s) = 0,∀s,

Q⋆
h (s, a) = rh(s, a) + $s′ ∼Ph(⋅|s,a)V⋆

h+1(s′)

= θ⋆
h ⋅ ϕ(s, a) + (μ⋆

h ϕ(s, a))⊤ V⋆
h+1

= ϕ(s, a)⊤(θ⋆
h + (μ⋆

h)⊤V⋆
h+1)

= ϕ(s, a)⊤wh

V⋆
h (s) = max

a
ϕ(s, a)⊤wh, π⋆

h (s) = arg max
a

ϕ(s, a)⊤wh

13

Planning in Linear MDP: Value Iteration
Ph(⋅ |s, a) = μ⋆

h ϕ(s, a), μ⋆
h ∈ ℝ|S|×d, ϕ(s, a) ∈ ℝd

rh(s, a) = (θ⋆
h)⊤ϕ(s, a), θ⋆

h ∈ ℝd

V⋆
H(s) = 0,∀s,

Q⋆
h (s, a) = rh(s, a) + $s′ ∼Ph(⋅|s,a)V⋆

h+1(s′)

= θ⋆
h ⋅ ϕ(s, a) + (μ⋆

h ϕ(s, a))⊤ V⋆
h+1

= ϕ(s, a)⊤(θ⋆
h + (μ⋆

h)⊤V⋆
h+1)

= ϕ(s, a)⊤wh

V⋆
h (s) = max

a
ϕ(s, a)⊤wh, π⋆

h (s) = arg max
a

ϕ(s, a)⊤wh

Indeed we can show that

Is linear with respect to as well, for any

Qπ
h (⋅ , ⋅)

ϕ π, h

13

UCBVI in Linear MDPs

At the beginning of iteration n:

14

UCBVI in Linear MDPs

1. Learn transition model from all previous data { ̂Pn
h}H−1

h=0 {si
h, ai

h, si
h+1}n−1

i=0

At the beginning of iteration n:

14

UCBVI in Linear MDPs

1. Learn transition model from all previous data { ̂Pn
h}H−1

h=0 {si
h, ai

h, si
h+1}n−1

i=0

2. Design reward bonus bn
h(s, a), ∀s, a

At the beginning of iteration n:

14

UCBVI in Linear MDPs

1. Learn transition model from all previous data { ̂Pn
h}H−1

h=0 {si
h, ai

h, si
h+1}n−1

i=0

2. Design reward bonus bn
h(s, a), ∀s, a

3. Plan: πn+1 = VI ({ ̂Pn}h, {rh + bn
h})

At the beginning of iteration n:

14

How to estimate ?{ ̂Pn
h}H−1

h=0

15

How to estimate ?{ ̂Pn
h}H−1

h=0
Denote with zero everywhere except the entry corresponding to δ(s) ∈ ℝ|S| s

15

How to estimate ?{ ̂Pn
h}H−1

h=0
Denote with zero everywhere except the entry corresponding to δ(s) ∈ ℝ|S| s

Given , note that s, a &s′ ∼Ph(⋅|s,a) [δ(s′)] = Ph(⋅ |s, a) = μ⋆
h ϕ(s, a)

15

How to estimate ?{ ̂Pn
h}H−1

h=0
Denote with zero everywhere except the entry corresponding to δ(s) ∈ ℝ|S| s

Penalized Linear Regression:

min
μ

n−1

∑
i=1

∥μϕ(si
h, ai

h) − δ(si
h+1)∥2

2 + λ∥μ∥2
F

Given , note that s, a &s′ ∼Ph(⋅|s,a) [δ(s′)] = Ph(⋅ |s, a) = μ⋆
h ϕ(s, a)

15

How to estimate ?{ ̂Pn
h}H−1

h=0
Denote with zero everywhere except the entry corresponding to δ(s) ∈ ℝ|S| s

Penalized Linear Regression:

min
μ

n−1

∑
i=1

∥μϕ(si
h, ai

h) − δ(si
h+1)∥2

2 + λ∥μ∥2
F

Given , note that s, a &s′ ∼Ph(⋅|s,a) [δ(s′)] = Ph(⋅ |s, a) = μ⋆
h ϕ(s, a)

̂μn
h = (An

h)−1
n−1

∑
i=1

δ(si
h+1)ϕ(si

h, ai
h)⊤An

h =
n−1

∑
i=1

ϕ(si
h, ai

h)ϕ(si
h, ai

h)⊤ + λI

15

How to estimate ?{ ̂Pn
h}H−1

h=0
Denote with zero everywhere except the entry corresponding to δ(s) ∈ ℝ|S| s

Penalized Linear Regression:

min
μ

n−1

∑
i=1

∥μϕ(si
h, ai

h) − δ(si
h+1)∥2

2 + λ∥μ∥2
F

Given , note that s, a &s′ ∼Ph(⋅|s,a) [δ(s′)] = Ph(⋅ |s, a) = μ⋆
h ϕ(s, a)

̂μn
h = (An

h)−1
n−1

∑
i=1

δ(si
h+1)ϕ(si

h, ai
h)⊤An

h =
n−1

∑
i=1

ϕ(si
h, ai

h)ϕ(si
h, ai

h)⊤ + λI

̂Pn
h(⋅ |s, a) = ̂μn

hϕ(s, a)
15

How to choose ?bn
h(s, a)

Chebyshev-like approach, similar to in linUCB (will cover next lecture):

bn
h(s, a) = β ϕ(s, a)⊤(An

h)−1ϕ(s, a), β = Õ (dH)

16

linUCB-VI: Put All Together
For n = 1 → N :

3. Estimate ̂Pn : ̂Pn
h(⋅ |s, a) = ̂μn

hϕ(s, a)

1. Set An
h =

n−1

∑
i=1

ϕ(si
h, ai

h)ϕ(si
h, ai

h)⊤ + λI

2. Set ̂μn
h = (An

h)−1
n−1

∑
i=1

δ(si
h+1)ϕ(si

h, ai
h)⊤

4. Plan: πn = VI ({ ̂Pn
h, rh + bn

h}h), with bn
h(s, a) = cdH ϕ(s, a)⊤(An

h)−1ϕ(s, a)

5. Execute πn : {sn
0 , an

0 , rn
0 , …, sn

H−1, an
H−1, rn

H−1, sn
H}

17

linUCB-VI: Put All Together
For n = 1 → N :

3. Estimate ̂Pn : ̂Pn
h(⋅ |s, a) = ̂μn

hϕ(s, a)

1. Set An
h =

n−1

∑
i=1

ϕ(si
h, ai

h)ϕ(si
h, ai

h)⊤ + λI

2. Set ̂μn
h = (An

h)−1
n−1

∑
i=1

δ(si
h+1)ϕ(si

h, ai
h)⊤

4. Plan: πn = VI ({ ̂Pn
h, rh + bn

h}h), with bn
h(s, a) = cdH ϕ(s, a)⊤(An

h)−1ϕ(s, a)

5. Execute πn : {sn
0 , an

0 , rn
0 , …, sn

H−1, an
H−1, rn

H−1, sn
H}

17

& [RegretN] := & [
N

∑
n=1

(V⋆ − Vπn)] ≤ Õ (H2d1.5 N)

linUCB-VI: Put All Together
For n = 1 → N :

3. Estimate ̂Pn : ̂Pn
h(⋅ |s, a) = ̂μn

hϕ(s, a)

1. Set An
h =

n−1

∑
i=1

ϕ(si
h, ai

h)ϕ(si
h, ai

h)⊤ + λI

2. Set ̂μn
h = (An

h)−1
n−1

∑
i=1

δ(si
h+1)ϕ(si

h, ai
h)⊤

4. Plan: πn = VI ({ ̂Pn
h, rh + bn

h}h), with bn
h(s, a) = cdH ϕ(s, a)⊤(An

h)−1ϕ(s, a)

5. Execute πn : {sn
0 , an

0 , rn
0 , …, sn

H−1, an
H−1, rn

H−1, sn
H}

17

& [RegretN] := & [
N

∑
n=1

(V⋆ − Vπn)] ≤ Õ (H2d1.5 N)
No dependence!S, A

Today

18

• Recap

• UCB-VI for tabular MDPs

• UCB-VI for linear MDPs

• Contextual bandits intro

Beyond simple bandits

19

Beyond simple bandits

19

In a bandit, we are presented with the same decision at every time

Beyond simple bandits

19

In a bandit, we are presented with the same decision at every time
In practice, often decisions are not the same every time

Beyond simple bandits

19

E.g., in online advertising there may not be a single best ad to show all users
on all websites:

In a bandit, we are presented with the same decision at every time
In practice, often decisions are not the same every time

Beyond simple bandits

19

E.g., in online advertising there may not be a single best ad to show all users
on all websites:
• maybe some types of users prefer one ad while others prefer another, or

In a bandit, we are presented with the same decision at every time
In practice, often decisions are not the same every time

Beyond simple bandits

19

E.g., in online advertising there may not be a single best ad to show all users
on all websites:
• maybe some types of users prefer one ad while others prefer another, or
• maybe one type of ad works better on certain websites while another

works better on other websites

In a bandit, we are presented with the same decision at every time
In practice, often decisions are not the same every time

Beyond simple bandits

19

E.g., in online advertising there may not be a single best ad to show all users
on all websites:
• maybe some types of users prefer one ad while others prefer another, or
• maybe one type of ad works better on certain websites while another

works better on other websites
Which user comes in next is random, but we have some context to tell
situations apart and hence learn different optimal actions

In a bandit, we are presented with the same decision at every time
In practice, often decisions are not the same every time

Contextual bandit environment

20

Contextual bandit environment

20

Context at time encoded into a variable that we see before choosing our actiont xt

Contextual bandit environment

20

Context at time encoded into a variable that we see before choosing our actiont xt

 is drawn i.i.d. at each time point from a distribution on sample space xt νx /

Contextual bandit environment

20

Context at time encoded into a variable that we see before choosing our actiont xt

 then affects the reward distributions of each arm, i.e., if we choose arm , we get a
reward that is drawn from a distribution that depends on , namely,

xt k
xt ν(k)(xt)

 is drawn i.i.d. at each time point from a distribution on sample space xt νx /

Contextual bandit environment

20

Context at time encoded into a variable that we see before choosing our actiont xt

Accordingly, we should also choose our action in a way that depends on , i.e.,
our action should be chosen by a function of (a policy), namely,

at xt
xt πt(xt)

 then affects the reward distributions of each arm, i.e., if we choose arm , we get a
reward that is drawn from a distribution that depends on , namely,

xt k
xt ν(k)(xt)

 is drawn i.i.d. at each time point from a distribution on sample space xt νx /

Contextual bandit environment

20

Context at time encoded into a variable that we see before choosing our actiont xt

Accordingly, we should also choose our action in a way that depends on , i.e.,
our action should be chosen by a function of (a policy), namely,

at xt
xt πt(xt)

If we knew everything about the environment, we’d want to use the optimal policy

π⋆(xt) := arg max

k∈{1,…,K}
μ(k)(xt), where μ(k)(x) := &r∼ν(k)(x)[r]

 then affects the reward distributions of each arm, i.e., if we choose arm , we get a
reward that is drawn from a distribution that depends on , namely,

xt k
xt ν(k)(xt)

 is drawn i.i.d. at each time point from a distribution on sample space xt νx /

Contextual bandit environment

20

Context at time encoded into a variable that we see before choosing our actiont xt

Accordingly, we should also choose our action in a way that depends on , i.e.,
our action should be chosen by a function of (a policy), namely,

at xt
xt πt(xt)

If we knew everything about the environment, we’d want to use the optimal policy

π⋆(xt) := arg max

k∈{1,…,K}
μ(k)(xt), where μ(k)(x) := &r∼ν(k)(x)[r]

 then affects the reward distributions of each arm, i.e., if we choose arm , we get a
reward that is drawn from a distribution that depends on , namely,

xt k
xt ν(k)(xt)

 is drawn i.i.d. at each time point from a distribution on sample space xt νx /

 is the policy we compare to in computing regretπ⋆

Contextual bandit environment (cont’d)

21

Formally, a contextual bandit is the following interactive learning process:

Contextual bandit environment (cont’d)

21

Formally, a contextual bandit is the following interactive learning process:
For t = 0 → T − 1

Contextual bandit environment (cont’d)

21

Formally, a contextual bandit is the following interactive learning process:
For t = 0 → T − 1

1. Learner sees context xt ∼ νx

Contextual bandit environment (cont’d)

21

Formally, a contextual bandit is the following interactive learning process:
For t = 0 → T − 1

1. Learner sees context xt ∼ νx Independent of any previous data

Contextual bandit environment (cont’d)

21

Formally, a contextual bandit is the following interactive learning process:
For t = 0 → T − 1

2. Learner pulls arm at = πt(xt) ∈ {1,…, K}
1. Learner sees context xt ∼ νx Independent of any previous data

Contextual bandit environment (cont’d)

21

Formally, a contextual bandit is the following interactive learning process:
For t = 0 → T − 1

2. Learner pulls arm at = πt(xt) ∈ {1,…, K}
1. Learner sees context xt ∼ νx

 policy learned from

all data seen so far

πt

Independent of any previous data

Contextual bandit environment (cont’d)

21

Formally, a contextual bandit is the following interactive learning process:
For t = 0 → T − 1

2. Learner pulls arm at = πt(xt) ∈ {1,…, K}
3. Learner observes reward from arm in context rt ∼ ν(at)(xt) at xt

1. Learner sees context xt ∼ νx
 policy learned from

all data seen so far

πt

Independent of any previous data

Contextual bandit environment (cont’d)

21

Formally, a contextual bandit is the following interactive learning process:
For t = 0 → T − 1

2. Learner pulls arm at = πt(xt) ∈ {1,…, K}
3. Learner observes reward from arm in context rt ∼ ν(at)(xt) at xt

1. Learner sees context xt ∼ νx
 policy learned from

all data seen so far

πt

Note that if the context distribution always returns the same value (e.g., 0), then
the contextual bandit reduces to the original multi-armed bandit

νx

Independent of any previous data

Contextual bandit environment (cont’d)

21

Formally, a contextual bandit is the following interactive learning process:
For t = 0 → T − 1

2. Learner pulls arm at = πt(xt) ∈ {1,…, K}
3. Learner observes reward from arm in context rt ∼ ν(at)(xt) at xt

1. Learner sees context xt ∼ νx
 policy learned from

all data seen so far

πt

Note that if the context distribution always returns the same value (e.g., 0), then
the contextual bandit reduces to the original multi-armed bandit

νx

 might seem unfamiliar since we haven’t talked about a policy in bandits before, but
actually we’ve always had it, it’s just that without context, we didn’t need a name or

notation for it because it was so simple!

πt

Independent of any previous data

Contextual bandit algorithms
What was for UCB? (has no argument because there was no context)πt πt

22

Contextual bandit algorithms
What was for UCB? (has no argument because there was no context)πt πt

πt = arg max
k

UCB(k)
t

22

Contextual bandit algorithms
What was for UCB? (has no argument because there was no context)πt πt

πt = arg max
k

UCB(k)
t

For Thompson sampling?

22

Contextual bandit algorithms
What was for UCB? (has no argument because there was no context)πt πt

πt = arg max
k

UCB(k)
t

For Thompson sampling?
 was a randomized policy that sampled from the posterior distribution of πt k⋆

22

Contextual bandit algorithms
What was for UCB? (has no argument because there was no context)πt πt

πt = arg max
k

UCB(k)
t

For Thompson sampling?
 was a randomized policy that sampled from the posterior distribution of πt k⋆

Now what about contextual versions?

22

Contextual bandit algorithms
What was for UCB? (has no argument because there was no context)πt πt

πt = arg max
k

UCB(k)
t

For Thompson sampling?
 was a randomized policy that sampled from the posterior distribution of πt k⋆

Now what about contextual versions?
Thompson sampling with contexts is conceptually identical!

22

Contextual bandit algorithms
What was for UCB? (has no argument because there was no context)πt πt

πt = arg max
k

UCB(k)
t

For Thompson sampling?
 was a randomized policy that sampled from the posterior distribution of πt k⋆

Now what about contextual versions?
Thompson sampling with contexts is conceptually identical!

Still start from a prior on , {ν(k)(x)}k∈{1,…,K},x∈/

22

Contextual bandit algorithms
What was for UCB? (has no argument because there was no context)πt πt

πt = arg max
k

UCB(k)
t

For Thompson sampling?
 was a randomized policy that sampled from the posterior distribution of πt k⋆

Now what about contextual versions?
Thompson sampling with contexts is conceptually identical!

but now this is (usually) distributions, so need more complicated priorK |/| ≫ K
Still start from a prior on , {ν(k)(x)}k∈{1,…,K},x∈/

22

Contextual bandit algorithms
What was for UCB? (has no argument because there was no context)πt πt

πt = arg max
k

UCB(k)
t

For Thompson sampling?
 was a randomized policy that sampled from the posterior distribution of πt k⋆

Now what about contextual versions?
Thompson sampling with contexts is conceptually identical!

but now this is (usually) distributions, so need more complicated priorK |/| ≫ K
Still can update distribution on after each reward {ν(k)(x)}k∈{1,…,K},x∈/ rt ∼ ν(at)(xt)

Still start from a prior on , {ν(k)(x)}k∈{1,…,K},x∈/

22

Contextual bandit algorithms
What was for UCB? (has no argument because there was no context)πt πt

πt = arg max
k

UCB(k)
t

For Thompson sampling?
 was a randomized policy that sampled from the posterior distribution of πt k⋆

Now what about contextual versions?
Thompson sampling with contexts is conceptually identical!

but now this is (usually) distributions, so need more complicated priorK |"| ≫ K
Still can update distribution on after each reward {ν(k)(x)}k∈{1,…,K},x∈" rt ∼ ν(at)(xt)

Still start from a prior on , {ν(k)(x)}k∈{1,…,K},x∈"

Still know posterior over that can draw from to choose ; this is k⋆(xt) at πt(xt)
22

UCB for contextual bandits

23

UCB for contextual bandits

23

UCB algorithm also conceptually identical as long as finite:
|"|
πt(xt) = arg max

k
̂μ(k)
t (xt)+ ln(2TK |"| /δ)/2N(k)

t (xt)

UCB for contextual bandits

23

UCB algorithm also conceptually identical as long as finite:
|"|
πt(xt) = arg max

k
̂μ(k)
t (xt)+ ln(2TK |"| /δ)/2N(k)

t (xt)

• Added argument to and since we now keep track of the sample
mean and number of arm pulls separately for each value of the context

xt ̂μ(k)
t N(k)

t

UCB for contextual bandits

23

UCB algorithm also conceptually identical as long as finite:
|"|
πt(xt) = arg max

k
̂μ(k)
t (xt)+ ln(2TK |"| /δ)/2N(k)

t (xt)

• Added argument to and since we now keep track of the sample
mean and number of arm pulls separately for each value of the context

xt ̂μ(k)
t N(k)

t

• Added inside the log because our union bound argument is now over
all arm mean estimates , of which there are instead of just

|"|
̂μ(k)
t (x) K |"| K

UCB for contextual bandits

23

UCB algorithm also conceptually identical as long as finite:
|"|
πt(xt) = arg max

k
̂μ(k)
t (xt)+ ln(2TK |"| /δ)/2N(k)

t (xt)

• Added argument to and since we now keep track of the sample
mean and number of arm pulls separately for each value of the context

xt ̂μ(k)
t N(k)

t

• Added inside the log because our union bound argument is now over
all arm mean estimates , of which there are instead of just

|"|
̂μ(k)
t (x) K |"| K

But when is really big (or even infinite), this will be really bad!|"|

UCB for contextual bandits

23

UCB algorithm also conceptually identical as long as finite:
|"|
πt(xt) = arg max

k
̂μ(k)
t (xt)+ ln(2TK |"| /δ)/2N(k)

t (xt)

• Added argument to and since we now keep track of the sample
mean and number of arm pulls separately for each value of the context

xt ̂μ(k)
t N(k)

t

• Added inside the log because our union bound argument is now over
all arm mean estimates , of which there are instead of just

|"|
̂μ(k)
t (x) K |"| K

But when is really big (or even infinite), this will be really bad!|"|
Solution: share information across contexts , i.e., don’t treat and as

completely different distributions which have nothing to do with one another
xt ν(k)(x) ν(k)(x′)

UCB for contextual bandits

23

UCB algorithm also conceptually identical as long as finite:
|"|
πt(xt) = arg max

k
̂μ(k)
t (xt)+ ln(2TK |"| /δ)/2N(k)

t (xt)

• Added argument to and since we now keep track of the sample
mean and number of arm pulls separately for each value of the context

xt ̂μ(k)
t N(k)

t

• Added inside the log because our union bound argument is now over
all arm mean estimates , of which there are instead of just

|"|
̂μ(k)
t (x) K |"| K

But when is really big (or even infinite), this will be really bad!|"|
Solution: share information across contexts , i.e., don’t treat and as

completely different distributions which have nothing to do with one another
xt ν(k)(x) ν(k)(x′)

Example: showing an ad on a NYT article on politics vs a NYT article on sports:

UCB for contextual bandits

23

UCB algorithm also conceptually identical as long as finite:
|"|
πt(xt) = arg max

k
̂μ(k)
t (xt)+ ln(2TK |"| /δ)/2N(k)

t (xt)

• Added argument to and since we now keep track of the sample
mean and number of arm pulls separately for each value of the context

xt ̂μ(k)
t N(k)

t

• Added inside the log because our union bound argument is now over
all arm mean estimates , of which there are instead of just

|"|
̂μ(k)
t (x) K |"| K

But when is really big (or even infinite), this will be really bad!|"|
Solution: share information across contexts , i.e., don’t treat and as

completely different distributions which have nothing to do with one another
xt ν(k)(x) ν(k)(x′)

Example: showing an ad on a NYT article on politics vs a NYT article on sports:
Not identical readership, but still both on NYT, so probably still similar readership!

Modeling in contextual bandits

24

Modeling in contextual bandits

24

Need a model for , e.g., a linear model: μ(k)(x) μ(k)(x) = θ⊤
k x

Modeling in contextual bandits

24

Need a model for , e.g., a linear model: μ(k)(x) μ(k)(x) = θ⊤
k x

E.g., placing ads on NYT or WSJ (encoded as 0 or 1 in the first entry of), for articles
on politics or sports (encoded as 0 or 1 in the second entry of)

x
x ⇒ x ∈ {0,1}2

Modeling in contextual bandits

24

Need a model for , e.g., a linear model: μ(k)(x) μ(k)(x) = θ⊤
k x

 w/o linear model, need to learn 4 different values for each arm |"| = 4 ⇒ μ(k)(x) k

E.g., placing ads on NYT or WSJ (encoded as 0 or 1 in the first entry of), for articles
on politics or sports (encoded as 0 or 1 in the second entry of)

x
x ⇒ x ∈ {0,1}2

Modeling in contextual bandits

24

Need a model for , e.g., a linear model: μ(k)(x) μ(k)(x) = θ⊤
k x

 w/o linear model, need to learn 4 different values for each arm |"| = 4 ⇒ μ(k)(x) k

E.g., placing ads on NYT or WSJ (encoded as 0 or 1 in the first entry of), for articles
on politics or sports (encoded as 0 or 1 in the second entry of)

x
x ⇒ x ∈ {0,1}2

With linear model there are just 2 parameters: the two entries of θk ∈ ℝ2

Modeling in contextual bandits

24

Need a model for , e.g., a linear model: μ(k)(x) μ(k)(x) = θ⊤
k x

 w/o linear model, need to learn 4 different values for each arm |"| = 4 ⇒ μ(k)(x) k

E.g., placing ads on NYT or WSJ (encoded as 0 or 1 in the first entry of), for articles
on politics or sports (encoded as 0 or 1 in the second entry of)

x
x ⇒ x ∈ {0,1}2

With linear model there are just 2 parameters: the two entries of θk ∈ ℝ2

Lower dimension makes learning easier, but model could be wrong/biased

Modeling in contextual bandits

24

Need a model for , e.g., a linear model: μ(k)(x) μ(k)(x) = θ⊤
k x

 w/o linear model, need to learn 4 different values for each arm |"| = 4 ⇒ μ(k)(x) k

E.g., placing ads on NYT or WSJ (encoded as 0 or 1 in the first entry of), for articles
on politics or sports (encoded as 0 or 1 in the second entry of)

x
x ⇒ x ∈ {0,1}2

With linear model there are just 2 parameters: the two entries of θk ∈ ℝ2

Lower dimension makes learning easier, but model could be wrong/biased

Choosing the best model, fitting it, and quantifying uncertainty are

 really questions of supervised learning

Today

25

• Recap

• UCB-VI for tabular MDPs

• UCB-VI for linear MDPs

• Contextual bandits intro

Summary:

Feedback:

bit.ly/3RHtlxy

26

Attendance: 
bit.ly/3RcTC9T

UCBVI algorithm applies UCB idea to MDPs to achieve exploration/exploitation trade-off

