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High-level summary: estimate action quality, add exploration bonus, then argmax
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UCBVI: Put All Together
For n = 1 → N :

3. Estimate  ̂Pn : ̂Pn
h(s′ |s, a) = Nn

h(s, a, s′ )
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h(s, a) , ∀s, a, s′ , h
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Linear MDP Definition

Feature map  is known to the learner! 
(We assume reward is known, i.e.,  is known)
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= ϕ(s, a)⊤wh

V⋆
h (s) = max

a
ϕ(s, a)⊤wh, π⋆

h (s) = arg max
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Indeed we can show that  

Is linear with respect to  as well, for any 

Qπ
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1. Learn transition model  from all previous data { ̂Pn
h}H−1

h=0 {si
h, ai

h, si
h+1}n−1

i=0

2. Design reward bonus bn
h(s, a), ∀s, a

3. Plan: πn+1 = VI ({ ̂Pn}h, {rh + bn
h})

At the beginning of iteration n:

14
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How to choose ?bn
h(s, a)

Chebyshev-like approach, similar to in linUCB (will cover next lecture):

bn
h(s, a) = β ϕ(s, a)⊤(An

h)−1ϕ(s, a), β = Õ (dH)
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Today
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• Recap

• UCB-VI for tabular MDPs

• UCB-VI for linear MDPs

• Contextual bandits intro
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E.g., in online advertising there may not be a single best ad to show all users 
on all websites:
• maybe some types of users prefer one ad while others prefer another, or 
• maybe one type of ad works better on certain websites while another 

works better on other websites
Which user comes in next is random, but we have some context to tell 
situations apart and hence learn different optimal actions

In a bandit, we are presented with the same decision at every time
In practice, often decisions are not the same every time
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Context at time  encoded into a variable  that we see before choosing our actiont xt

Accordingly, we should also choose our action  in a way that depends on , i.e., 
our action should be chosen by a function of  (a policy), namely, 

at xt
xt πt(xt)

If we knew everything about the environment, we’d want to use the optimal policy

π⋆(xt) := arg max

k∈{1,…,K}
μ(k)(xt), where μ(k)(x) := &r∼ν(k)(x)[r]

 then affects the reward distributions of each arm, i.e., if we choose arm , we get a 
reward that is drawn from a distribution that depends on , namely, 

xt k
xt ν(k)(xt)

 is drawn i.i.d. at each time point from a distribution  on sample space xt νx /

 is the policy we compare to in computing regretπ⋆
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Formally, a contextual bandit is the following interactive learning process:
For t = 0 → T − 1

2. Learner pulls arm at = πt(xt) ∈ {1,…, K}
3. Learner observes reward  from arm  in context rt ∼ ν(at)(xt) at xt

1. Learner sees context xt ∼ νx
 policy learned from 

all data seen so far

πt

Note that if the context distribution  always returns the same value (e.g., 0), then 
the contextual bandit reduces to the original multi-armed bandit

νx

 might seem unfamiliar since we haven’t talked about a policy in bandits before, but 
actually we’ve always had it, it’s just that without context, we didn’t need a name or 

notation for it because it was so simple!

πt

Independent of any previous data
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What was  for UCB? (  has no argument because there was no context)πt πt

πt = arg max
k

UCB(k)
t

For Thompson sampling?
 was a randomized policy that sampled from the posterior distribution of πt k⋆

Now what about contextual versions?
Thompson sampling with contexts is conceptually identical!

but now this is  (usually  ) distributions, so need more complicated priorK |"| ≫ K
Still can update distribution on  after each reward {ν(k)(x)}k∈{1,…,K},x∈" rt ∼ ν(at)(xt)

Still start from a prior on , {ν(k)(x)}k∈{1,…,K},x∈"

Still know posterior over  that can draw from to choose ; this is k⋆(xt) at πt(xt)
22
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UCB algorithm also conceptually identical as long as  finite:
|"|
πt(xt) = arg max
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̂μ(k)
t (xt)+ ln(2TK |"| /δ)/2N(k)
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• Added  argument to  and  since we now keep track of the sample 
mean and number of arm pulls separately for each value of the context
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t

• Added  inside the log because our union bound argument is now over 
all arm mean estimates , of which there are  instead of just 

|"|
̂μ(k)
t (x) K |"| K

But when  is really big (or even infinite), this will be really bad!|"|
Solution: share information across contexts , i.e., don’t treat  and  as 

completely different distributions which have nothing to do with one another
xt ν(k)(x) ν(k)(x′ )

Example: showing an ad on a NYT article on politics vs a NYT article on sports: 
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• Added  inside the log because our union bound argument is now over 
all arm mean estimates , of which there are  instead of just 

|"|
̂μ(k)
t (x) K |"| K

But when  is really big (or even infinite), this will be really bad!|"|
Solution: share information across contexts , i.e., don’t treat  and  as 

completely different distributions which have nothing to do with one another
xt ν(k)(x) ν(k)(x′ )

Example: showing an ad on a NYT article on politics vs a NYT article on sports: 
Not identical readership, but still both on NYT, so probably still similar readership!
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Need a model for , e.g., a linear model: μ(k)(x) μ(k)(x) = θ⊤
k x

   w/o linear model, need to learn 4 different  values for each arm |"| = 4 ⇒ μ(k)(x) k

E.g., placing ads on NYT or WSJ (encoded as 0 or 1 in the first entry of ), for articles 
on politics or sports (encoded as 0 or 1 in the second entry of ) 

x
x ⇒ x ∈ {0,1}2

With linear model there are just 2 parameters: the two entries of θk ∈ ℝ2

Lower dimension makes learning easier, but model could be wrong/biased

Choosing the best model, fitting it, and quantifying uncertainty are

 really questions of supervised learning



Today
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• Recap

• UCB-VI for tabular MDPs

• UCB-VI for linear MDPs

• Contextual bandits intro



Summary:

Feedback: 

bit.ly/3RHtlxy
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Attendance: 
bit.ly/3RcTC9T

UCBVI algorithm applies UCB idea to MDPs to achieve exploration/exploitation trade-off


