
Chapter 1

Markov Decision Processes

1

Contents

1 Markov Decision Processes 1
1.1 Introduction . 3
1.2 Finite horizon MDPs . 4

1.2.1 Policies . 5
1.2.2 Trajectories . 6
1.2.3 Value functions . 6

The one-step (Bellman) consistency equation 7
The Bellman operator . 8

1.2.4 Policy evaluation . 8
Dynamic programming . 8

1.2.5 Optimal policies . 10
Dynamic programming . 11

1.3 Infinite horizon MDPs . 13
1.3.1 Differences from finite-horizon . 13

Discounted rewards . 13
Stationary policies . 13
Value functions and Bellman consistency 14

1.3.2 The Bellman operator is a contraction mapping 14
1.3.3 Tabular case (linear algebraic notation) 15
1.3.4 Policy evaluation . 16

Tabular case for deterministic policies 16
Iterative policy evaluation . 17

1.3.5 Optimal policies . 18
Value iteration . 18
Policy iteration . 20

1.4 Summary . 22

2

CONTENTS 1.1. INTRODUCTION

1.1 Introduction

The field of RL studies how an agent can learn to make sequential decisions in an interactive
environment. This is a very general problem! How can we formalize this task in a way that is
both sufficiently general yet also tractable enough for fruitful analysis?

Let’s consider some examples of sequential decision problems to identify the key common
properties we’d like to capture:

• Board games like chess or Go, where the player takes turns with the opponent to make
moves on the board.

• Video games like Super Mario Bros or Breakout, where the player controls a character to
reach the goal.

• Robotic control, where the robot can move and interact with the real-world environment
to complete some task.

All of these fit into the RL framework. Furthermore, these are environments where the state
transitions, the “rules” of the environment, only depend on the most recent state and action.
This is called the Markov property.

Definition 1.1.1: Markov property

An interactive environment satisfies theMarkov property if the probability of transitioning
to a new state only depends on the current state and action:

P(sh+1 | s0, a0, . . . , sh, ah) = P (sh+1 | sh, ah)

where P : S×A → ∆(S) describes the state transitions. (We’ll elaborate on this notation
later in the chapter.)

We’ll see that this simple assumption leads to a rich set of problems and algorithms. Envi-
ronments with the Markov property are called Markov decision processes (MDPs) and will be
the focus of this chapter.

Exercise: What information might be encoded in the state for each of the above examples?
What might the valid set of actions be? Describe the state transitions heuristically and verify
that they satisfy the Markov property.

MDPs are usually classified as finite-horizon, where the interactions end after some finite
number of time steps, or infinite-horizon, where the interactions can continue indefinitely. We’ll
begin with the finite-horizon case and discuss the infinite-horizon case in the second half of the
chapter.

In each setting, we’ll describe how to evaluate different policies (strategies for choosing
actions) and how to compute (or approximate) the optimal policy for a given MDP. We’ll
introduce the Bellman consistency condition, which allows us to analyze the whole series of
interactions in terms of individual timesteps.

3

CONTENTS 1.2. FINITE HORIZON MDPS

1.2 Finite horizon MDPs

Definition 1.2.1: Finite-horizon Markov decision process

The components of a finite-horizon Markov decision process are:

1. The state that the agent interacts with. We use S to denote the set of possible
states, called the state space.

2. The actions that the agent can take. We use A to denote the set of possible actions,
called the action space.

3. Some initial state distribution µ ∈ ∆(S).

4. The state transitions (a.k.a. dynamics) P : S × A → ∆(S) that describe what
state the agent transitions to after taking an action.

5. The reward signal. In this course we’ll take it to be a deterministic function on
state-action pairs, r : S × A → R, but in general many results will extend to a
stochastic reward signal.

6. A time horizon H ∈ N that specifies the number of interactions in an episode.

Combined together, these objects specify a finite-horizon Markov decision process:

M = (S,A, µ, P, r,H).

Example 1.2.1: Tidying MDP

Let’s consider an extremely simple decision problem throughout this chapter: the task of
keeping your room tidy!

Your room has the possible states S = {orderly,messy}. You can take either of the
actions A = {tidy, ignore}. The room starts off orderly.

The state transitions are as follows: if you tidy the room, it becomes (or remains)
orderly; if you ignore the room, it might become messy.

The rewards are as follows: You get penalized for tidying an orderly room (a waste of
time) or ignoring a messy room, but you get rewarded for ignoring an orderly room (since
you can enjoy). Tidying a messy room is a chore that gives no reward.

These are summarized in the following table:

s a P (orderly | s, a) P (messy | s, a) r(s, a)
orderly tidy 1 0 −1
orderly ignore 0.7 0.3 1
messy tidy 1 0 0
messy ignore 0 1 −1

4

CONTENTS 1.2. FINITE HORIZON MDPS

Consider a time horizon of H = 7 days (one interaction per day). Let t = 0 correspond
to Monday and t = 6 correspond to Sunday.

1.2.1 Policies

Definition 1.2.2: Policies

A policy π describes the agent’s strategy: which actions it takes in a given situation. A
key goal of RL is to find the optimal policy that maximizes the total reward on average.

There are three axes along which policies can vary: their outputs, inputs, and time-
dependence. We’ll discuss each of these in turn.

1. Deterministic or stochastic. A deterministic policy outputs actions while a stochas-
tic policy outputs distributions over actions.

2. State-dependent or history-dependent. A state-dependent (a.k.a. “Markovian”)
policy only depends on the current state, while a history-dependent policy depends
on the sequence of past states, actions, and rewards. We’ll only consider state-
dependent policies in this course.

3. Stationary or time-dependent. A stationary policy remains the same function at
all time steps, while a time-dependent policy π = {π0, . . . , πH−1} specifies a different
function πh at each time step h.

A fascinating result is that every finite-horizon MDP has an optimal deterministic time-
dependent policy! Intuitively, the Markov property implies that the current state contains all
the information we need to make the optimal decision. We’ll prove this result constructively later
in the chapter.

Example 1.2.2: Tidying policies

Here are some possible policies for the tidying MDP (1.2.1):

• Always tidy: π(s) = tidy.

• Only tidy on weekends: πh(s) = tidy if h ∈ {5, 6} and πh(s) = ignore otherwise.

• Only tidy if the room is messy: πh(messy) = tidy and πh(orderly) = ignore for all h.

5

CONTENTS 1.2. FINITE HORIZON MDPS

1.2.2 Trajectories

Definition 1.2.3: Trajectories

A sequence of states, actions, and rewards is called a trajectory:

τ = (s0, a0, r0, . . . , sH−1, aH−1, rH−1)

where rh = r(sh, ah). (Note that sources differ as to whether to include the reward at the
final time step. This is a minor detail.)

Once we’ve chosen a policy, we can sample trajectories by repeatedly choosing actions ac-
cording to the policy, transitioning according to the state transitions, and observing the rewards.
That is, a policy induces a distribution ρπ over trajectories. (We assume that µ and P are clear
from context.)

Example 1.2.3: Trajectories in the tidying environment

Here is a possible trajectory for the tidying example:

t 0 1 2 3 4 5 6
s orderly orderly orderly messy messy orderly orderly
a tidy ignore ignore ignore tidy ignore ignore
r −1 1 1 −1 0 1 1

Could any of the policies in 1.2.2 have generated this trajectory?

Note that for a state-dependent policy, using the Markov property (1.1.1), we can specify this
probability distribution in an autoregressive way (i.e. one timestep at a time):

Definition 1.2.4: Autoregressive trajectory distribution

ρπ(τ) := µ(s0)π0(a0 | s0)P (s1 | s0, a0) · · ·P (sH−1 | sH−2, aH−2)πH−1(aH−1 | sH−1)

Exercise: How would you modify this to include stochastic rewards?

For a deterministic policy π, we have that πh(a | s) = I[a = πh(s)]; that is, the probability
of taking an action is 1 if it’s the unique action prescribed by the policy for that state and 0
otherwise. In this case, the only randomness in sampling trajectories comes from the initial state
distribution µ and the state transitions P .

1.2.3 Value functions

The main goal of RL is to find a policy that maximizes the average total reward r0 + · · ·+ rH−1.
(Note that this is a random variable that depends on the policy.) Let’s introduce some notation
for analyzing this quantity.

A policy’s value function is its expected total reward starting in a given state at a given

6

CONTENTS 1.2. FINITE HORIZON MDPS

time:

Definition 1.2.5: Value function

V π
h (s) := E

τ∼ρπ
[rh + · · ·+ rH−1 | sh = s]

Similarly, we can define the action-value function (aka the Q-function) as the expected
total reward when starting in a given state and taking a given action:

Definition 1.2.6: Action-value function

Qπ
h(s, a) := E

τ∼ρπ
[rh + · · ·+ rH−1 | sh = s, ah = a]

Note that the value function is just the average action-value over actions drawn from the
policy:

V π
h (s) = E

a∼πh(s)
[Qπ

h(s, a)]

and the action-value can be expressed in terms of the value of the following state:

Qπ
h(s, a) = r(s, a) + E

s′∼P (s,a)
[V π

h+1(s
′)]

The one-step (Bellman) consistency equation

Note that by simply considering the cumulative reward as the sum of the current reward and
the future cumulative reward, we can describe the value function recursively (in terms of itself).
This is named the Bellman consistency equation after Richard Bellman (1920–1984), who
is credited with introducing dynamic programming in 1953.

Definition 1.2.7: Bellman consistency equation for the value function

V π
h (s) = E

a∼πh(s)
s′∼P (s,a)

[r(s, a) + V π
h+1(s

′)] (1.1)

Exercise: Verify that this equation holds by expanding V π
h (s) and V π

h+1(s
′).

One can analogously derive the Bellman consistency equation for the action-value function:

Definition 1.2.8: Bellman consistency equation for action-values

Qπ
h(s, a) = r(s, a) + E

s′∼P (s,a)
a′∼πh+1(s

′)

[Qπ
h+1(s

′, a′)]

7

CONTENTS 1.2. FINITE HORIZON MDPS

Remark 1.2.1: The Bellman consistency equation for deterministic policies

Note that for deterministic policies, the Bellman consistency equation simplifies to

V π
h (s) = r(s, πh(s)) + E

s′∼P (s,πh(s))
[V π

h+1(s
′)]

Qπ
h(s, a) = r(s, a) + E

s′∼P (s,a)
[Qπ

h+1(s
′, πh+1(s

′))]

The Bellman operator

Fix a policy π. Consider the higher-order operator that takes in a “value function” v : S → R
and returns the r.h.s. of the Bellman equation for that “value function”:

Definition 1.2.9: Bellman operator

[J π(v)](s) := E
a∼π(s)

s′∼P (s,a)

[r(s, a) + v(s′)].

We’ll call J π : (S → R)→ (S → R) the Bellman operator of π. Note that it’s defined on
any “value function” mapping states to real numbers; v doesn’t have to be a well-defined value
function for some policy (hence the lowercase notation). The Bellman operator also gives us a
concise way to express the Bellman consistency equation (1.1):

V π
h = J π(V π

h+1)

Intuitively, the output of the Bellman operator, a new “value function”, evaluates states as
follows: from a given state, take one action according to π, observe the reward, and then evaluate
the next state using the input “value function”.

When we discuss infinite-horizon MDPs, the Bellman operator will turn out to be more than
just a notational convenience: We’ll use it to construct algorithms for computing the optimal
policy.

1.2.4 Policy evaluation

How can we actually compute the value function of a given policy? This is the task of policy
evaluation.

Dynamic programming

The Bellman consistency equation (1.1) gives us a convenient algorithm for evaluating stationary
policies: it expresses the value function at timestep h as a function of the value function at
timestep h + 1. This means we can start at the end of the time horizon, where the value is
known, and work backwards in time, using the Bellman consistency equation to compute the
value function at each time step.

8

CONTENTS 1.2. FINITE HORIZON MDPS

Definition 1.2.10: Dynamic programming for policy evaluation

Vh(s)← 0 for all t ∈ {0, . . . , H}, s ∈ S
for t = H − 1, . . . , 0 do

for s ∈ S, a ∈ A, s′ ∈ S do
Vh(s)← Vh(s) + πh(a | s)P (s′ | s, a)[r(s, a) + Vh+1(s

′)]
end for

end for

This clearly runs in time O(H · |S|2 · |A|) by counting the loops.

Exercise: Do you see where we compute Qπ
h along the way? Make this step explicit.

Example 1.2.4: Tidying policy evaluation

Let’s evaluate the policy from 1.2.2 that tidies if and only if the room is messy. We’ll use
the Bellman consistency equation to compute the value function at each time step.

V π
H−1(orderly) = r(orderly, ignore)

= 1

V π
H−1(messy) = r(messy, tidy)

= 0

V π
H−2(orderly) = r(orderly, ignore) + E

s′∼P (orderly,ignore)
[V π

H−1(s
′)]

= 1 + 0.7 · V π
H−1(orderly) + 0.3 · V π

H−1(messy)

= 1 + 0.7 · 1 + 0.3 · 0
= 1.7

V π
H−2(messy) = r(messy, tidy) + E

s′∼P (messy,tidy)
[V π

H−1(s
′)]

= 0 + 1 · V π
H−1(orderly) + 0 · V π

H−1(messy)

= 1

V π
H−3(orderly) = r(orderly, ignore) + E

s′∼P (orderly,ignore)
[V π

H−2(s
′)]

= 1 + 0.7 · V π
H−2(orderly) + 0.3 · V π

H−2(messy)

= 1 + 0.7 · 1.7 + 0.3 · 1
= 2.49

V π
H−3(messy) = r(messy, tidy) + E

s′∼P (messy,tidy)
[V π

H−2(s
′)]

= 0 + 1 · V π
H−2(orderly) + 0 · V π

H−2(messy)

= 1.7

etc. You may wish to repeat this computation for the other policies to get a better sense
of this algorithm.

9

CONTENTS 1.2. FINITE HORIZON MDPS

1.2.5 Optimal policies

We’ve just seen how to evaluate a given policy. But how can we find the optimal policy for a
given environment?

Definition 1.2.11: Optimal policies

We call a policy optimal, and denote it by π⋆, if it does at least as well as any other policy
π (including stochastic and history-dependent ones) in all situations:

V π⋆

h (s) = E
τ∼ρπ⋆

[rh + · · ·+ rH−1 | sh = s]

≥ E
τ∼ρπ

[rh + · · ·+ rH−1 | τh] ∀π, τh, h ∈ [H]
(1.2)

where we condition on the trajectory up to time h, denoted τh = (s0, a0, r0, . . . , sh), where
sh = s.

Convince yourself that all optimal policies must have the same value function. We call this the
optimal value function and denote it by V ⋆

h (s). The same goes for the action-value function
Q⋆

h(s, a).

It is a stunning fact that every finite-horizon MDP has an optimal policy that is time-
dependent and deterministic. In particular, we can construct such a policy by acting greedily
with respect to the optimal action-value function:

π⋆
h(s) = arg max

a
Q⋆

h(s, a).

Theorem 1.2.1: It is optimal to be greedy w.r.t. the optimal value function

Let V ⋆ and Q⋆ denote the optimal value and action-value functions. Consider the greedy
policy

π̂h(s) := arg max
a

Q⋆
h(s, a).

We aim to show that π̂ is optimal; that is, V π̂ = V ⋆.

Fix an arbitrary state s ∈ S and time h ∈ [H].

Firstly, by the definition of V ⋆, we already know V ⋆
h (s) ≥ V π̂

h (s). So for equality to
hold we just need to show that V ⋆

h (s) ≤ V π̂
h (s). We’ll first show that the Bellman operator

J π̂ never decreases V ⋆
h . Then we’ll apply this result recursively to show that V ⋆ = V π̂.

Lemma: J π̂ never decreases V ⋆
h (elementwise):

[J π̂(V ⋆
h+1)](s) ≥ V ⋆

h (s).

Proof:

10

CONTENTS 1.2. FINITE HORIZON MDPS

V ⋆
h (s) = max

π∈Π
V π
h (s)

= max
π∈Π

E
a∼π(...)

[
r(s, a) + E

s′∼P (s,a)
V π
h+1(s

′)

]
Bellman consistency

≤ max
π∈Π

E
a∼π(...)

[
r(s, a) + E

s′∼P (s,a)
V ⋆
h+1(s

′)

]
definition of V ⋆

= max
a

[
r(s, a) + E

s′∼P (s,a)
V ⋆
h+1(s

′)

]
only depends on π via a

= [J π̂(V ⋆
h+1)](s).

Note that the chosen action a ∼ π(. . .) above might depend on the past history; this isn’t
shown in the notation and doesn’t affect our result (make sure you see why).

We can now apply this result recursively to get

V ⋆
t (s) ≤ V π̂

t (s)

as follows. (Note that even though π̂ is deterministic, we’ll use the a ∼ π̂(s) notation to
make it explicit that we’re sampling a trajectory from it.)

V ⋆
t (s) ≤ [J π̂(V ⋆

h+1)](s)

= E
a∼π̂(s)

[
r(s, a) + E

s′∼P (s,a)

[
V ⋆
h+1(s

′)
]]

definition of J π̂

≤ E
a∼π̂(s)

[
r(s, a) + E

s′∼P (s,a)

[
[J π̂(V ⋆

t+2)](s
′)
]]

above lemma

= E
a∼π̂(s)

[
r(s, a) + E

s′∼P (s,a)

[
E

a′∼π̂
r(s′, a′) + E

s′′
V ⋆
t+2(s

′′)

]]
definition of J π̂

≤ · · · apply at all timesteps

= E
τ∼ρπ̂

[Gt | sh = s] rewrite expectation

= V π̂
t (s) definition

And so we have V ⋆ = V π̂, making π̂ optimal.

Dynamic programming

Now that we’ve shown this particular greedy policy is optimal, all we need to do is compute the
optimal value function and optimal policy. We can do this by working backwards in time using
dynamic programming (DP).

11

CONTENTS 1.2. FINITE HORIZON MDPS

Definition 1.2.12: DP for optimal policy

We can solve for the optimal policy in an finite-horizon MDP using dynamic program-
ming.

• Base case. At the end of the episode (time step H − 1), we can’t take any more
actions, so the Q-function is simply the reward that we obtain:

Q⋆
H−1(s, a) = r(s, a)

so the best thing to do is just act greedily and get as much reward as we can!

π⋆
H−1(s) = arg max

a
Q⋆

H−1(s, a)

Then V ⋆
H−1(s), the optimal value of state s at the end of the trajectory, is simply

whatever action gives the most reward.

V ⋆
H−1 = max

a
Q⋆

H−1(s, a)

• Recursion. Then, we can work backwards in time, starting from the end, using our
consistency equations! i.e. for each t = H − 2, . . . , 0, we set

Q⋆
t (s, a) = r(s, a) + E

s′∼P (s,a)
[V ⋆

h+1(s
′)]

π⋆
t (s) = arg max

a
Q⋆

t (s, a)

V ⋆
t (s) = max

a
Q⋆

t (s, a)

At each of the H timesteps, we must compute Q⋆ for each of the |S||A| state-action pairs.
Each computation takes |S| operations to evaluate the average value over s′. This gives a total
computation time of O(H|S|2|A|).

Note that this algorithm is identical to the policy evaluation algorithm 1.2.10, but instead of
averaging over the actions chosen by a policy, we instead simply take a maximum over the action-
values. We’ll see this relationship between policy evaluation and optimal policy computation
show up again in the infinite-horizon setting.

Example 1.2.5: Optimal policy for the tidying MDP

Left as an exercise.

12

CONTENTS 1.3. INFINITE HORIZON MDPS

1.3 Infinite horizon MDPs

What happens if a trajectory is allowed to continue forever (i.e. H =∞)? This is the setting of
infinite horizon MDPs.

In this chapter, we’ll describe the necessary adjustments from the finite-horizon case to make
the problem tractable. We’ll show that the Bellman operator (1.2.3) in the discounted reward
setting is a contraction mapping for any policy. We’ll discuss how to evaluate policies (i.e.
compute their corresponding value functions). Finally, we’ll present and analyze two iterative
algorithms, based on the Bellman operator, for computing the optimal policy: value iteration
and policy iteration.

1.3.1 Differences from finite-horizon

Discounted rewards

First of all, note that maximizing the cumulative reward rh+rh+1+rh+2+ · · · is no longer a good
idea since it might blow up to infinity. Instead of a time horizon H, we now need a discount
factor γ ∈ [0, 1) such that rewards become less valuable the further into the future they are:

rh + γrh+1 + γ2rh+2 + · · · =
∞∑
k=0

γkrh+k.

We can think of γ as measuring how much we care about the future: if it’s close to 0, we only
care about the near-term rewards; it’s close to 1, we put more weight into future rewards.

You can also analyze γ as the probability of continuing the trajectory at each time step. (This
is equivalent to H being distributed by a First Success distribution with success probability γ.)
This accords with the above interpretation: if γ is close to 0, the trajectory will likely be very
short, while if γ is close to 1, the trajectory will likely continue for a long time.

Exercise: Assuming that rh ∈ [0, 1] for all h ∈ N, what is the maximum discounted
cumulative reward? You may find it useful to review geometric series.

The other components of the MDP remain the same:

M = (S,A, µ, P, r, γ).

Stationary policies

The time-dependent policies from the finite-horizon case become difficult to handle in the infinite-
horizon case. In particular, many of the DP approaches we saw required us to start at the end
of the trajectory, which is no longer possible. We’ll shift to stationary policies π : S → A
(deterministic) or ∆(A) (stochastic).

Exercise: Which of the policies in 1.2.2 are stationary?

13

CONTENTS 1.3. INFINITE HORIZON MDPS

Value functions and Bellman consistency

We also consider stationary value functions V π : S → R and Qπ : S × A → R. We need to
insert a factor of γ into the Bellman consistency equation (1.1) to account for the discounting:

V π(s) = E
τ∼ρπ

[rh + γrh+1 + γ2rh+2 · · · | sh = s] for any h ∈ N

= E
a∼π(s)

s′∼P (s,a)

[r(s, a) + γV π(s′)]

Qπ(s, a) = E
τ∼ρπ

[rh + γrh+1 + γ2rh+2 + · · · | sh = s, ah = a] for any h ∈ N

= r(s, a) + γ E
s′∼P (s,a)
a′∼π(s′)

[Qπ(s′, a′)]

(1.3)

Exercise: Heuristically speaking, why does it no longer matter which time step we condition
on when defining the value function?

1.3.2 The Bellman operator is a contraction mapping

Recall from 1.2.3 that the Bellman operator J π for a policy π takes in a “value function”
v : S → R and returns the r.h.s. of the Bellman equation for that “value function”. In the
infinite-horizon setting, this is

[J π(v)](s) := E
a∼π(s)

s′∼P (s,a)

[r(s, a) + γv(s′)].

The crucial property of the Bellman operator is that it is a contraction mapping for any
policy. Intuitively, if we start with two “value functions” v, u : S → R, if we repeatedly apply
the Bellman operator to each of them, they will get closer and closer together at an exponential
rate.

Definition 1.3.1: Contraction mapping

Let X be some space with a norm ∥ · ∥. We call an operator f : X → X a contraction
mapping if for any x, y ∈ X,

∥f(x)− f(y)∥ ≤ γ∥x− y∥

for some fixed γ ∈ (0, 1).

Exercise: Show that for a contraction mapping f with coefficient γ, for all t ∈ N,

∥f (t)(x)− f (t)(y)∥ ≤ γt∥x− y∥,

i.e. that any two points will be pushed closer by at least a factor of γ at each iteration.

14

CONTENTS 1.3. INFINITE HORIZON MDPS

It is a powerful fact (known as the Banach fixed-point theorem) that every contraction
mapping has a unique fixed point x⋆ such that f(x⋆) = x⋆. This means that if we repeatedly
apply f to any starting point, we will eventually converge to x⋆:

∥f (t)(x)− x⋆∥ ≤ γt∥x− x⋆∥. (1.4)

Let’s return to the RL setting and apply this result to the Bellman operator. How can we
measure the distance between two “value functions” v, u : S → R? We’ll take the supremum
norm as our distance metric:

∥v − u∥∞ := sup
s∈S
|v(s)− u(s)|,

i.e. we compare the “value functions” on the state that causes the biggest gap between them.
Then (1.4) implies that if we repeatedly apply J π to any starting “value function”, we will
eventually converge to V π:

∥(J π)(t)(v)− V π∥∞ ≤ γt∥v − V π∥∞. (1.5)

We’ll use this useful fact to prove the convergence of several algorithms later on.

Theorem 1.3.1: The Bellman operator is a contraction mapping

We aim to show that

∥J π(v)− J π(u)∥∞ ≤ γ∥v − u∥∞.

Proof: for all states s ∈ S,

|[J π(v)](s)− [J π(u)](s)| =
∣∣∣ E
a∼π(s)

[
r(s, a) + γ E

s′∼P (s,a)
v(s′)

]
− E

a∼π(s)

[
r(s, a) + γ E

s′∼P (s,a)
u(s′)

] ∣∣∣
= γ

∣∣∣∣ E
s′∼P (s,a)

[v(s′)− u(s′)]

∣∣∣∣
≤ γ E

s′∼P (s,a)
|v(s′)− u(s′)| (Jensen’s inequality)

≤ γmax
s′
|v(s′)− u(s′)|

= γ∥v − u∥∞.

1.3.3 Tabular case (linear algebraic notation)

When there are finitely many states and actions, i.e. |S|, |A| < ∞, we call the MDP tabular
since we can express the relevant quantities as vectors and matrices (i.e. tables of values):

r ∈ R|S|×|A| P ∈ [0, 1](|S×A|)×|S| µ ∈ [0, 1]|S|

15

CONTENTS 1.3. INFINITE HORIZON MDPS

π ∈ [0, 1]|A|×|S| V π ∈ R|S| Qπ ∈ R|S|×|A|.

(Verify that these types make sense!)

Note that when the policy π is deterministic, the actions can be determined from the states,
and so we can chop off the action dimension for the rewards and state transitions:

rπ ∈ R|S| P π ∈ [0, 1]|S|×|S| µ ∈ [0, 1]|S|

π ∈ A|S| V π ∈ R|S| Qπ ∈ R|S|×|A|.

For P π, we’ll treat the rows as the states and the columns as the next states. Then P π
s,s′ is the

probability of transitioning from state s to state s′ under policy π.

Example 1.3.1: Tidying MDP

The tabular MDP from before has |S| = 2 and |A| = 2. Let’s write down the quantities
for the policy π that tidies if and only if the room is messy:

rπ =

[
1
0

]
, P π =

[
0.7 0.3
1 0

]
, µ =

[
1
0

]
We’ll see how to evaluate this policy in the next section.

1.3.4 Policy evaluation

The backwards DP technique we used in the finite-horizon case (1.2.4) no longer works since
there is no “final timestep” to start from. We’ll need another approach to policy evaluation.

The Bellman consistency conditions yield a system of equations we can solve to evaluate a
policy exactly. For a faster approximate solution, we can iterate the policy’s Bellman operator,
since we know that it has a unique fixed point at the true value function.

Tabular case for deterministic policies

The Bellman consistency equation for a deterministic policy can be written in tabular notation as

V π = rπ + γP πV π.

(Unfortunately, this notation doesn’t simplify the expression for Qπ.) This system of equations
can be solved with a matrix inversion:

V π = (I − γP π)−1rπ. (1.6)

Note we’ve assumed that I − γP π is invertible. Can you see why this is the case?

(Recall that a linear operator, i.e. a square matrix, is invertible if and only if its null space is
trivial; that is, it doesn’t map any nonzero vector to zero. In this case, we can see that I − γP π

is invertible because it maps any nonzero vector to a vector with at least one nonzero element.)

16

CONTENTS 1.3. INFINITE HORIZON MDPS

Example 1.3.2: Tidying policy evaluation

Let’s use the same policy π that tidies if and only if the room is messy. Setting γ = 0.95,
we must invert

I − γP π =

[
1− 0.95× 0.7 −0.95× 0.3
−0.95× 1 1− 0.95× 0

]
=

[
0.335 −0.285
−0.95 1

]
.

The inverse to two decimal points is

(I − γP π)−1 =

[
15.56 4.44
14.79 5.21

]
.

Thus the value function is

V π = (I − γP π)−1rπ =

[
15.56 4.44
14.79 5.21

] [
1
0

]
=

[
15.56
14.79

]
.

Let’s sanity-check this result. Since rewards are at most 1, the maximum cumulative return
of a trajectory is at most 1/(1− γ) = 20. We see that the value function is indeed slightly
lower than this.

Iterative policy evaluation

The matrix inversion above takes roughly O(|S|3) time. Can we trade off the requirement of
finding the exact value function for a faster approximate algorithm?

Let’s use the Bellman operator to define an iterative algorithm for computing the value
function. We’ll start with an initial guess v(0) with elements in [0, 1/(1−γ)] and then iterate the
Bellman operator:

v(t+1) = J π(v(t)) = rπ + γP πv(t),

i.e. v(t) = (J π)(t)(v(0)). Note that each iteration takes O(|S|2) time for the matrix-vector
multiplication.

Then, as we showed in (1.5), by the Banach fixed-point theorem:

∥v(t) − V π∥∞ ≤ γt∥v(0) − V π∥∞.

How many iterations do we need for an ϵ-accurate estimate? We can work backwards to solve
for t:

γt∥v(0) − V π∥∞ ≤ ϵ

t ≥ log(ϵ/∥v(0) − V π∥∞)

log γ

=
log(∥v(0) − V π∥∞/ϵ)

log(1/γ)
,

17

CONTENTS 1.3. INFINITE HORIZON MDPS

and so the number of iterations required for an ϵ-accurate estimate is

T = O

(
1

1− γ
log

(
1

ϵ(1− γ)

))
. (1.7)

Note that we’ve applied the inequalities ∥v(0) − V π∥∞ ≤ 1/(1− γ) and log(1/x) ≥ 1− x.

1.3.5 Optimal policies

Now let’s move on to solving for an optimal policy in the infinite-horizon case. As in the finite-
horizon case (1.2), an optimal policy π⋆ is one that does at least as well as any other policy
in all situations. That is, for all policies π, states s ∈ S, times h ∈ N, and initial trajectories
τh = (s0, a0, r0, . . . , sh) where sh = s,

V π⋆

(s) = E
τ∼ρπ⋆

[rh + γrh+1 + γ2rh+2 + · · · | sh = s]

≥ E
τ∼ρπ

[rh + γrh+1 + γ2rh+2 + · · · | τh]
(1.8)

Once again, all optimal policies share the same optimal value function V ⋆, and the greedy
policy w.r.t. this value function is optimal.

Exercise: Verify this by modifying the proof 1.2.1 from the finite-horizon case.

So how can we compute such an optimal policy? We can’t use the backwards DP approach
from the finite-horizon case (1.2.12)) since there’s no “final timestep” to start from. Instead,
we’ll exploit the fact that the Bellman consistency equation (1.3) for the optimal value function
doesn’t depend on any policy:

V ⋆(s) = max
a

[
r(s, a) + γ E

s′∼P (s,a)
V ⋆(s′).

]

Exercise: Verify this by substituting the greedy policy into the Bellman consistency equation.

As before, thinking of the r.h.s. as an operator on value functions gives the Bellman opti-
mality operator

[J ⋆(v)](s) = max
a

[
r(s, a) + γ E

s′∼P (s,a)
v(s′)

]
.

Value iteration

Since the optimal policy is still a policy, our result that the Bellman operator is a contracting
map still holds, and so we can repeatedly apply this operator to converge to the optimal value
function! This algorithm is known as value iteration.

18

CONTENTS 1.3. INFINITE HORIZON MDPS

Definition 1.3.2: Value iteration pseudocode

v(0) ← 0
for t = 0, 1, 2, . . . , T − 1 do

v(t+1) ← J ⋆(v(t))
end for
return v(T)

Note that the runtime analysis for an ϵ-optimal value function is exactly the same as iterative
policy evaluation (1.3.4)! This is because value iteration is simply the special case of applying
iterative policy evaluation to the optimal value function.

As the final step of the algorithm, to return an actual policy π̂, we can simply act greedily
w.r.t. the final iteration v(T) of our above algorithm:

π̂(s) = arg max
a

[
r(s, a) + γ E

s′∼P (s,a)
v(T)(s′)

]
.

We must be careful, though: the value function of this greedy policy, V π̂, is not the same as
v(T), which need not even be a well-defined value function for some policy!

The bound on the policy’s quality is actually quite loose: if ∥v(T) − V ⋆∥∞ ≤ ϵ, then the
greedy policy π̂ satisfies ∥V π̂ − V ⋆∥∞ ≤ 2γ

1−γ
ϵ, which might potentially be very large.

Theorem 1.3.2: Greedy policy value worsening

We aim to show that

∥V π̂ − V ⋆∥∞ ≤
2γ

1− γ
∥v − V ⋆∥∞

where π̂(s) = arg maxa q(s, a) is the greedy policy w.r.t.

q(s, a) = r(s, a) + E
s′∼P (s,a)

v(s′).

Proof: We first have

V ⋆(s)− V π̂(s) = Q⋆(s, π⋆(s))−Qπ̂(s, π̂(s))

= [Q⋆(s, π⋆(s))−Q⋆(s, π̂(s))] + [Q⋆(s, π̂(s))−Qπ̂(s, π̂(s))].

Let’s bound these two quantities separately.

For the first quantity, note that by the definition of π̂, we have

q(s, π̂(s)) ≥ q(s, π⋆(s)).

Let’s add q(s, π̂(s))− q(s, π⋆(s)) ≥ 0 to the first term to get

Q⋆(s, π⋆(s))−Q⋆(s, π̂(s)) ≤ [Q⋆(s, π⋆(s))− q(s, π⋆(s))] + [q(s, π̂(s))−Q⋆(s, π̂(s))]

19

CONTENTS 1.3. INFINITE HORIZON MDPS

= γ E
s′∼P (s,π⋆(s))

[V ⋆(s′)− v(s′)] + γ E
s′∼P (s,π̂(s))

[v(s′)− V ⋆(s′)]

≤ 2γ∥v − V ⋆∥∞.

The second quantity is bounded by

Q⋆(s, π̂(s))−Qπ̂(s, π̂(s)) = γ E
s′∼P (s,π̂(s))

[
V ⋆(s′)− V π̂(s′)

]
≤ γ∥V ⋆ − V π̂∥∞

and thus

∥V ⋆ − V π̂∥∞ ≤ 2γ∥v − V ⋆∥∞ + γ∥V ⋆ − V π̂∥∞

∥V ⋆ − V π̂∥∞ ≤
2γ∥v − V ⋆∥∞

1− γ
.

So in order to compensate and achieve ∥V π̂ − V ⋆∥ ≤ ϵ, we must have

∥v(T) − V ⋆∥∞ ≤
1− γ

2γ
ϵ.

This means, using (1.7), we need to run value iteration for

T = O

(
1

1− γ
log

(
γ

ϵ(1− γ)2

))
iterations to achieve an ϵ-accurate estimate of the optimal value function.

Policy iteration

Can we mitigate this “greedy worsening”? What if instead of approximating the optimal value
function and then acting greedily by it at the very end, we iteratively improve the policy and
value function together? This is the idea behind policy iteration. In each step, we simply set
the policy to act greedily with respect to its own value function.

Definition 1.3.3: Policy Iteration

π(0) : S → A arbitrary
for t = 0, . . . , T − 1 do

V π(t) ← (I − γP π(t)
)−1rπ

(t)
▷ (Exact) Policy Evaluation (1.6)

Qπ(t)
(s, a)← r(s, a) + γ Es′∼P (s,a)[V

π(t)
(s′)]

π(t+1)(s)← arg maxa Q
π(t)

(s, a) ▷ Policy Improvement
end for

Although PI appears more complex than VI, we’ll use the same contraction property (1.3.1)
to show convergence. This will give us the same runtime bound as value iteration and iterative

20

CONTENTS 1.3. INFINITE HORIZON MDPS

policy evaluation for an ϵ-optimal value function (1.7), although in practice, PI often converges
much faster.

Theorem 1.3.3: Policy Iteration runtime and convergence

We aim to show that the number of iterations required for an ϵ-accurate estimate of the
optimal value function is

T = O

(
1

1− γ
log

(
1

ϵ(1− γ)

))
.

This bound follows from the contraction property (1.5):

∥V πt+1 − V ⋆∥∞ ≤ γ∥V πt − V ⋆∥∞.

We’ll prove that the iterates of PI respect the contraction property by showing that the
policies improve monotonically:

V πt+1

(s) ≥ V πt

(s).

Then we’ll use this to show V πt+1
(s) ≥ [J ⋆(V πt

)](s). Note that

[J ⋆(V πt

)](s) = max
a

[
r(s, a) + γ E

s′∼P (s,a)
V πt

(s′)

]
= r(s, πt+1(s)) + γ E

s′∼P (s,πt+1(s))
V πt

(s′)

Since [J ⋆(V πt
)](s) ≥ V πt

(s), we then have

V πt+1

(s)− V πt

(s) ≥ V πt+1

(s)− J ⋆(V πt

)(s)

= γ E
s′∼P (s,πt+1(s))

[
V πt+1

(s′)− V πt

(s′)
]
.

(1.9)

But note that the expression being averaged is the same as the expression on the l.h.s.
with s replaced by s′. So we can apply the same inequality recursively to get

V πt+1

(s)− V πt

(s) ≥ γ E
s′∼P (s,πt+1(s))

[
V πt+1

(s′)− V πt

(s′)
]

≥ γ2 E
s′∼P (s,πt+1(s))
s′′∼P (s′,πt+1(s′))

[
V πt+1

(s′′)− V πt

(s′′)
]

≥ · · ·

which implies that V πt+1
(s) ≥ V πt

(s) for all s (since the r.h.s. converges to zero). We
can then plug this back into (1.9) to get the desired result:

V πt+1

(s)− J ⋆(V πt

)(s) = γ E
s′∼P (s,πt+1(s))

[
V πt+1

(s′)− V πt

(s′)
]

21

CONTENTS 1.4. SUMMARY

≥ 0

V πt+1

(s) ≥ [J ⋆(V πt

)](s)

This means we can now apply the Bellman convergence result (1.5) to get

∥V πt+1 − V ⋆∥∞ ≤ ∥J ⋆(V πt

)− V ⋆∥∞ ≤ γ∥V πt − V ⋆∥∞.

1.4 Summary

• Markov decision processes (MDPs) are a framework for sequential decision making under
uncertainty. They consist of a state space S, an action space A, an initial state distribution
µ ∈ ∆(S), a transition function P (s′ | s, a), and a reward function r(s, a). They can be
finite-horizon (ends after H timesteps) or infinite-horizon (where rewards scale by γ ∈ (0, 1)
at each timestep).

• Our goal is to find a policy π that maximizes expected total reward. Policies can be
deterministic or stochastic, state-dependent or history-dependent, stationary or
time-dependent.

• A policy induces a distribution over trajectories.

• We can evaluate a policy by computing its value function V π(s), which is the expected
total reward starting from state s and following policy π. We can also compute the state-
action value function Qπ(s, a), which is the expected total reward starting from state
s, taking action a, and then following policy π. In the finite-horizon setting, these also
depend on the timestep h.

• The Bellman consistency equation is an equation that the value function must satisfy. It
can be used to solve for the value functions exactly. Thinking of the r.h.s. of this equation
as an operator on value functions gives the Bellman operator.

• In the finite-horizon setting, we can compute the optimal policy using dynamic program-
ming.

• In the infinite-horizon setting, we can compute the optimal policy using value iteration
or policy iteration.

22

	Markov Decision Processes
	Introduction
	Finite horizon MDPs
	Policies
	Trajectories
	Value functions
	The one-step (Bellman) consistency equation
	The Bellman operator

	Policy evaluation
	Dynamic programming

	Optimal policies
	Dynamic programming

	Infinite horizon MDPs
	Differences from finite-horizon
	Discounted rewards
	Stationary policies
	Value functions and Bellman consistency

	The Bellman operator is a contraction mapping
	Tabular case (linear algebraic notation)
	Policy evaluation
	Tabular case for deterministic policies
	Iterative policy evaluation

	Optimal policies
	Value iteration
	Policy iteration

	Summary

