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Matrix Concentration

Instructor: Sham Kakade

1. Hoeffding review

2. say we have a random matrix

3. two natural norms

1 Hoeffding Bound
Let X1, . . . Xn be i.i.d. real valued random variables bounded in [0,M ], almost surely. Then with probability greater
than 1− δ,
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2 Matrix Concentration

2.1 Norms
Recall that the Frobenius norm of a matrix, ‖M‖F , is the square root of the sum of squares of the elements of the
matrix. The spectral norm of a matrix, ‖M‖2 is it’s maximal singular value.

Note that:
‖M‖2 ≤ ‖M‖F

2.2 Concentration
Let X ∈ Rm×n be a random matrix. In many settings, we are interested in the behavior of either:∥∥∥∥∥ 1n
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where each Xi is sampled i.i.d. from some distribution. Here, ‖ · ‖2 denotes the spectral norm (the largest singular
value) and ‖ · ‖F denotes the Frobenius norm.

The following theorem provides a high probability bound on these quantities.

Theorem 2.1. Assume that Xi ∈ Rd1×d2 are sampled i.i.d. Let d = min{d1, d2}.

• (Frobenius Norm) Suppose ||X||F ≤M almost surely. Then with probability greater than 1− δ,∥∥∥∥∥ 1n
n∑

i=1

Xi − E[X]

∥∥∥∥∥
F

≤ 6M√
n

(
1 +

√
log

1

δ

)
.

• (Spectral Norm) Suppose ||X||2 ≤M almost surely. Then with probability greater than 1− δ,∥∥∥∥∥ 1n
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2.3 Examples
Two special case of interest, are when:

1. The samples Xt are of the form xx> where x is a vector. Here if the Euclidean norm ‖x‖2 ≤ 1 then Xi‖F ≤ 1.

2. Another case may be where Xt only has one entry which is 1. For example, we are estimating a probability
matrix Pr(x1 = i, x2 = j), and each Xt is a sample (where the i, j entry being one corresponds to the event i, j
occurring). Again, the Frobenius norm is bounded by one.

Instead, it might be the case that random matrix Xt has large Frobenius norm. Here, we might hope that it’s
spectral norm is small, in which case the latter concentration result is more appropriate.

3 Accuracy of Projections
Let us assume that E[X] is “low rank”, say rank k. The question we ask is how accurate our projections are onto the
left (or right) singular subspace using the sample matrix X̂ = 1

n

∑n
i=1Xi. Let the SVDs be E[X] = UDV > and

X̂ = ŨD̃Ṽ >. Let
Let Ũ correspond to the top k singular vectors (so it is of size d1 × k ). Let Ũ⊥ be the matrix whose columns are

orthonormal and perpendicular to Ũ .
Let λk be the smallest (non-zero) singular value of E[X]. Following from Stewart and Sun (theorem 4.1 and

theorem 4.4, pages 260 and 264), we have that:

‖ sin(angles between U and Û)‖F = ‖Û>⊥U‖F ≤
‖X̂ − E[X]‖F

λk

and

‖ sin(angles between U and Û)‖2 = ‖Û>⊥U‖2 ≤
‖X̂ − E[X]‖2

λk
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