Stat 991: Multivariate Analysis, Dimensionality Reduction, and Spectral Methods Lecture: 23

Matrix Concentration

Instructor: Sham Kakade

- 1. Hoeffding review
- 2. say we have a random matrix
- 3. two natural norms

1 Hoeffding Bound

Let X_1, \ldots, X_n be i.i.d. real valued random variables bounded in [0, M], almost surely. Then with probability greater than $1 - \delta$,

$$
\left|\frac{1}{n}\sum_{i} X_{i} - \mathbb{E}[X]\right| \leq \frac{M}{\sqrt{n}}\sqrt{\log(2/\delta)}
$$

2 Matrix Concentration

2.1 Norms

Recall that the Frobenius norm of a matrix, $||M||_F$, is the square root of the sum of squares of the elements of the matrix. The spectral norm of a matrix, $||M||_2$ is it's maximal singular value.

Note that:

$$
||M||_2 \leq ||M||_{\text{F}}
$$

2.2 Concentration

Let $X \in \mathbb{R}^{m \times n}$ be a random matrix. In many settings, we are interested in the behavior of either:

$$
\left\| \frac{1}{n} \sum_{i=1}^{n} X_i - \mathbb{E}[X] \right\|_{\mathrm{F}} \leq ?, \quad \left\| \frac{1}{n} \sum_{i=1}^{n} X_i - \mathbb{E}[X] \right\|_{2} \leq ?
$$

where each X_i is sampled i.i.d. from some distribution. Here, $\|\cdot\|_2$ denotes the spectral norm (the largest singular value) and $\|\cdot\|_F$ denotes the Frobenius norm.

The following theorem provides a high probability bound on these quantities.

Theorem 2.1. Assume that $X_i \in \mathbb{R}^{d_1 \times d_2}$ are sampled i.i.d. Let $d = \min\{d_1, d_2\}$.

• *(Frobenius Norm) Suppose* $||X||_F \leq M$ *almost surely. Then with probability greater than* $1 - \delta$ *,*

$$
\left\| \frac{1}{n} \sum_{i=1}^{n} X_i - \mathbb{E}[X] \right\|_{\mathrm{F}} \leq \frac{6M}{\sqrt{n}} \left(1 + \sqrt{\log \frac{1}{\delta}} \right).
$$

• *(Spectral Norm) Suppose* $||X||_2 \leq M$ *almost surely. Then with probability greater than* $1 - \delta$ *,*

$$
\left\| \frac{1}{n} \sum_{i=1}^{n} X_i - \mathbb{E}[X] \right\|_2 \leq \frac{6M}{\sqrt{n}} \left(\sqrt{\log d} + \sqrt{\log \frac{1}{\delta}} \right).
$$

2.3 Examples

Two special case of interest, are when:

- 1. The samples X_t are of the form xx^\top where x is a vector. Here if the Euclidean norm $||x||_2 \leq 1$ then $\mathcal{X}_i||_F \leq 1$.
- 2. Another case may be where X_t only has one entry which is 1. For example, we are estimating a probability matrix $Pr(x_1 = i, x_2 = j)$, and each X_t is a sample (where the i, j entry being one corresponds to the event i, j occurring). Again, the Frobenius norm is bounded by one.

Instead, it might be the case that random matrix X_t has large Frobenius norm. Here, we might hope that it's spectral norm is small, in which case the latter concentration result is more appropriate.

3 Accuracy of Projections

Let us assume that $\mathbb{E}[X]$ is "low rank", say rank k. The question we ask is how accurate our projections are onto the left (or right) singular subspace using the sample matrix $\hat{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$. Let the SVDs be $\mathbb{E}[X] = UDV^\top$ and $\widehat{X} = \widetilde{U}\widetilde{D}\widetilde{V}^{\top}$. Let

Let \tilde{U} correspond to the top k singular vectors (so it is of size $d_1 \times k$). Let \tilde{U}_\perp be the matrix whose columns are orthonormal and perpendicular to U .

Let λ_k be the smallest (non-zero) singular value of $\mathbb{E}[X]$. Following from Stewart and Sun (theorem 4.1 and theorem 4.4, pages 260 and 264), we have that:

$$
\|\sin(\text{angles between }U\text{ and }\widehat{U})\|_{\mathrm{F}}=\|\widehat{U}_{\bot}^{\top}U\|_{\mathrm{F}}\leq\frac{\|\widehat{X}-\mathbb{E}[X]\|_{\mathrm{F}}}{\lambda_{k}}
$$

and

$$
\|\sin(\text{angles between } U \text{ and } \widehat{U})\|_2 = \|\widehat{U}_{\perp}^\top U\|_2 \le \frac{\|\widehat{X} - \mathbb{E}[X]\|_2}{\lambda_k}
$$