Stat 991: Multivariate Analysis, Dimensionality Reduction, and Spectral Methods

Lecture: 23A

Matrix Concentration Derivations

Instructor: Sham Kakade

1 Introduction

Let $X \in \mathbb{R}^{d_1 \times d_2}$ be a random matrix. In many settings, we are interested in the behavior of either:

$$\left\|\frac{1}{n}\sum_{i=1}^{n}X_{i} - \mathbb{E}[X]\right\|_{\mathrm{F}} \leq ?, \quad \left\|\frac{1}{n}\sum_{i=1}^{n}X_{i} - \mathbb{E}[X]\right\|_{2} \leq ?$$

where each X_i is sampled i.i.d. from some distribution. Here, $\|\cdot\|_2$ denotes the spectral norm (the largest eigenvalue) and $\|\cdot\|_F$ denotes the Frobenius norm.

The following theorem provides a high probability bound on these quantities.

Theorem 1.1. Assume that $X_i \in \mathbb{R}^{m \times n}$ are sampled i.i.d. Let $d = \min\{d_1, d_2\}$.

• (Spectral Norm) Suppose $||X||_2 \leq M$ almost surely. Then with probability greater than $1 - \delta$,

$$\left\|\frac{1}{n}\sum_{i=1}^{n}X_{i} - \mathbb{E}[X]\right\|_{2} \le 6M\sqrt{\frac{1}{n}}\left(\sqrt{\log d} + \sqrt{\log \frac{1}{\delta}}\right)$$

• (Frobenius Norm) Suppose $||X||_{\rm F} \leq M$ almost surely. Then with probability greater than $1 - \delta$,

$$\left\|\frac{1}{n}\sum_{i=1}^{n} X_{i} - \mathbb{E}[X]\right\|_{\mathrm{F}} \leq 6M\sqrt{\frac{1}{n}}\left(1 + \sqrt{\log\frac{1}{\delta}}\right).$$

1.1 Concentration and Strong-smoothness

Throughout we let \mathcal{X} be a Euclidean vector space equipped with an inner product $\langle \cdot, \cdot \rangle$. We also work with a norm $\|\cdot\|$ over \mathcal{X} (and this norm need not the one induced by $\langle \cdot, \cdot \rangle$).

Definition 1.2. A function $f : \mathcal{X} \to \mathbb{R}$ is β -strongly smooth w.r.t. a norm $\|\cdot\|$ if f is everywhere differentiable and if for all x, y we have

$$f(x+y) \le f(x) + \langle \nabla f(x), y \rangle + \frac{1}{2}\beta \|y\|^2$$

We now point out the role of strong smoothness in proving certain concentration results. In particular, we are interested in the behavior of a function $f(\sum_{i=1}^{n} Z_i)$ where Z_i is a martingale difference sequence. The following simple lemma bounds the expectation of this quantity.

Lemma 1.3. [Juditsky and Nemirovski; 08] Suppose that Z_i is a martingale difference sequence (where $Z_i \in \mathcal{X}$) and that $||Z_i|| \leq M_i$ almost surely. Also, suppose that f^2 is β -strongly smooth w.r.t. a norm $|| \cdot ||$ on \mathcal{X} and that $f(\mathbf{0}) = 0$.

$$\mathbb{E}f\left(\sum_{i=1}^{n} Z_i\right) \le \sqrt{\frac{1}{2}\beta \sum_{i=1}^{n} M_i^2}$$

Proof. By smoothness we have:

$$\mathbb{E}f^{2}\left(\sum_{i=1}^{n} Z_{i}\right) \leq \mathbb{E}f^{2}\left(\sum_{i=1}^{n-1} Z_{i}\right) + \mathbb{E}\left\langle \nabla f^{2}\left(\sum_{i=1}^{n-1} Z_{i}\right), Z_{n}\right\rangle + \frac{1}{2}\beta\mathbb{E}\|Z_{n}\|^{2}$$

$$= \mathbb{E}f^{2}\left(\sum_{i=1}^{n-1} Z_{i}\right) + \mathbb{E}\left[\left\langle \nabla f^{2}\left(\sum_{i=1}^{n-1} Z_{i}\right), \mathbb{E}[Z_{n}|Z_{1}, \dots Z_{n-1}]\right\rangle\right] + \frac{1}{2}\beta\mathbb{E}\|Z_{n}\|^{2}$$

$$\leq \mathbb{E}f^{2}\left(\sum_{i=1}^{n-1} Z_{i}\right) + 0 + \frac{1}{2}\beta X_{n}^{2}$$

where have used that Z_n is a martingale difference sequence. Proceeding recursively and using that $f(\mathbf{0}) = 0$, we have that:

$$\mathbb{E}f^2\left(\sum_{i=1}^n Z_i\right) \le \frac{1}{2}\beta\sum_{i=1}^n M_i^2$$
ity.

and proof is completed by Jensen's inequality.

To obtain concentration, we can directly appeal to Hoeffding-Azuma if f is a norm. However, note that in the following lemma we do not require f^2 to be strongly smooth (which is useful for the case of the spectral norm, which is not strongly smooth).

Lemma 1.4. Let f be a norm. Suppose that Z_i are independent (where $Z_i \in \mathcal{X}$) and that $f(Z_i) \leq M_i$ almost surely. Then with probability greater than $1 - \delta$,

$$f\left(\sum_{i=1}^{n} Z_{i}\right) \leq \mathbb{E}f\left(\sum_{i=1}^{n} Z_{i}\right) + \sqrt{8\log\frac{1}{\delta}\sum_{i=1}^{n} M_{i}^{2}}$$

Proof. Using that f is a norm,

$$\left| f\left(\sum_{i} Z_{i}\right) - f\left(\sum_{i \neq j} Z_{i} + Z_{j}'\right) \right| \leq f(Z_{j}) + f(Z_{j}')$$

for all Z_1, \ldots, Z_n , and Z'_j . Since the distribution over Z_i 's are independent, this implies (Doob's) martingale $D_j = \mathbb{E}[f(\sum_{i=1}^n Z_i) | Z_j, \ldots, Z_1]$ satisfies the bounded difference property:

$$|D_j - D_{j-1}| \le 2M_j.$$

The result now follows from Hoeffding-Azuma.

1.2 Matrix Concentration Proofs

The Schatten q-norm is defined as:

$$\frac{1}{2} \|X\|_{S(q)}^2 := \frac{1}{2} \|\sigma(X)\|_q^2$$

where $\sigma(X)$ is the singular values of X and $\|\cdot\|_q^2$ is the usual L_q -norm. The function f^2 :

$$f^{2}(X) = \frac{1}{2} \|X\|_{S(q)}^{2}$$

is (q-1)-strongly smooth, as shown in [Juditsky and Nemirovski; 08] (for $q \ge 2$).

Note that the spectral norm $\|\cdot\|_2$ is just the Schatten ∞ -norm $\|\cdot\|_{S(\infty)}$ and the Frobenius norm $\|\cdot\|_F$ is just the Schatten 2-norm $\|\cdot\|_{S(2)}$.

Proof. For the spectral norm case, note that our assumption that $||X||_{S(\infty)} \leq M$ (almost surely) implies $||X||_{S(q)} \leq d^{1/q}M$ (almost surely). Let $Z_i = X_i - \mathbb{E}[X]$. By convexity of norms and Jensen's inequality, $||\mathbb{E}[X]||_{S(q)} \leq \mathbb{E}[||X||_{S(q)}] \leq d^{1/q}M$. So we have that $||Z_i||_{S(q)} \leq 2d^{1/q}M$ (almost surely). Hence, by Lemma 1.3:

$$\mathbb{E}\left\|\sum_{i=1}^{n} Z_{i}\right\|_{S(\infty)} \leq \mathbb{E}\left\|\sum_{i=1}^{n} Z_{i}\right\|_{S(q)} \leq \sqrt{4(q-1)nd^{2/q}M^{2}}$$

and choosing $q = \log d$

$$\mathbb{E} \left\| \sum_{i=1}^{n} Z_i \right\|_{S(\infty)} \le 2Me\sqrt{n\log d}$$

Now let us apply Lemma 1.4 with f as the spectral norm $\|\cdot\|_{S(\infty)}$. Here, we have that $\|Z_i\|_{S(\infty)} \leq 2M$ (almost surely), and our first claim follows.

For the Frobenius norm case, again let $Z_i = X_i - \mathbb{E}[X]$. Then by convexity of norms and Jensen's inequality, $\|\mathbb{E}[X]\|_{S(2)} \leq \mathbb{E}[\|X\|_{S(2)}] \leq M$. So we have that $\|Z_i\|_{S(2)} \leq 2M$ (almost surely). Hence, by Lemma 1.3:

$$\mathbb{E} \left\| \sum_{i=1}^{n} Z_i \right\|_{S(2)} \le \sqrt{4nM^2}$$

Using Lemma 1.4 with this norm and $||Z_i||_{S(2)} \leq 2M$, we have our second claim.

Acknowledgements

These notes are from discussions with Ambuj Tewari and Shai Shalev-Schwartz. Also, they borrow heavily from ideas in [Juditsky and Nemirovski; 08].