
Stat 991: Multivariate Analysis, Dimensionality Reduction, and Spectral Methods Lecture: 7

Dimensionality Reduction and Learning: Margins and Classification

Instructor: Sham Kakade

1 Preserving Inner Products
As a simple corollary, we see that inner products are preserved under random projection.

Corollary 1.1. Let u, v ∈ Rd and that ‖u‖ ≤ 1 and ‖v‖ ≤ 1. Let f = 1√
k
Ax where A is a k × d matrix, where each

entry is sampled i.i.d from a Gaussian N(0, 1) (or from U(−1, 1)). Then,

Pr(|u · v − f(u) · f(v)| ≥ ε) ≤ 4e−(ε2−ε3)k/4

Proof. Applying Theorem ?? to the vectors u+ v and u− v, we have that with probability at least 1− 4e−(ε2−ε3)k/4:

(1− ε)‖u+ v‖2 ≤ ‖f(u+ v)‖2 ≤ (1 + ε)‖u+ v‖2

(1− ε)‖u− v‖2 ≤ ‖f(u− v)‖2 ≤ (1 + ε)‖u− v‖2

Now we have:

4f(u) · f(v) = ‖f(u+ v)‖2 − ‖f(u− v)‖2

≥ (1− ε)‖u+ v‖2 − (1 + ε)‖u− v‖2

= 4u · v − 2ε(‖u‖2 + ‖v‖2)

≥ 4u · v − 4ε

The proof of the other direction is analogous.

2 Margin Based Classification
For now, assume we have a distribution overX ∈ X ⊂ Rd and Y ∈ {−1, 1}. Assume that there exists a weight vector
β such that sign(β ·X) = Y , with probability one. Hence, the distribution is separable. Furthermore, let us scale the
distribution so that it is separable at margin 1, i.e.:

Y (β ·X) ≥ 1

What learning algorithm should we use? The The VC dimension of halfspaces is Ω(D), so naively minimizing the 0/1
loss in D dimensions may not be lead to good generalization properties (and it’s not clear how to do this anyways).
Instead, maximizing the margin can be shown to provide good generalization properties — however computationally,
this may be a little cumbersome (even though it is polytime).

Let us say say we have a training set T = {(Xi, Yi)}i.
Often, what is done, is that the perceptron algorithm is run on the training set. The perceptron algorithm run on

any sequence of points {(Xi, Yi)} ⊂ T sampled from this distribution makes at most:

M ≤ ‖X‖2‖β‖2

mistakes (regardless of the length of the sequence) where ‖X‖ = maxX∈X ‖X‖. Hence, if we repeatedly cycle
through the dataset, then eventually we will no longer make mistakes.

But what about generalization? Naively using this perceptron predictor does not necessarily lead to good general-
ization behavior since the VC dimension of halfspaces is Ω(D) (and no bound is known for this convergent point of
the perceptron).
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2.1 Random Projections and Margin Preservation
Now let us project β and X by P = 1

kA, where A ∈ Rk×d and each entry in A is sample independently from N(0, 1).
Is separability preserved under our training set?

Lemma 2.1. Assume ‖X‖ ≤ 1. If k = O(‖β‖2‖X‖2 log n
δ ), then with probability greater than 1− δ for all i

Pβ · PXi ≥
1

2

and
1

2
‖Xi‖2 ≤ ‖PXi‖2 ≤ 2‖Xi‖2,

1

2
‖β‖2 ≤ ‖Pβ‖2 ≤ 2‖β‖2

Proof. Choose ε = 1
2‖β‖‖X‖ and apply the inner product preserving lemma, which implies that for any particular Xi

and β, that |Pβ · PXi − β ·Xi| ≥ 1
2 , so that:

|YiPβ · PXi − Yiβ ·Xi| ≤
1

2

ForO(n2) events, we useO(δ/n2) so the total error probability is δ. The final claim follows from the norm preserving
lemma.

2.2 Generalization
If we run the perceptron algorithm, on the training set, then the total number of mistakes made is:

Mt ≤ O(‖β‖2‖X‖2)

Note that this implies that after O(‖β‖2‖X‖2) iteration the perceptron will stabilize to a constant solution, which has
zero error.

For generalization, we are now working with a space of dimension O(‖β‖2 log n
δ ).

There are other methods to obtain generalization but the important point here is that under the margin assumption,
we are essentially working in a finite dimensional space (and this subspace can be determine non-adaptively from the
labels {Yi}).

2.3 Random Projections and Maximum Likelihood Estimation
First note that if we project to k = O( logn

ε2 ) dimensions then (using P = 1√
k
A), we have that for all i:

|Pβ · PXi − β ·Xi| ≤ ‖β‖‖Xi‖ε

Let us define the loss using only XP> as:

LP (w) =
1

n
EY ‖Y −XP>w‖2

Let βP be the best fit of Y with XP>, i.e.
βP = arg min

w
LP (w)

and let β̂P be the MLE fit of Y with XP> (so λ = 0). Now by the previous corollary, then:

EY [LP (β̂P )]− LP (βP ) = EY [‖XP>β̂P −XP>βP ‖2] ≤ k

n
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Also note that:

LP (βP ) ≤ LP (Pβ)

=
1

n
E[‖Y −XP>Pβ‖2]

=
1

n
E[‖Y −Xβ‖2] +

1

n
‖Xβ −XP>Pβ‖2

= L(β) +
1

n

∑
i

(Pβ · PXi − β ·Xi)
2

≤ L(β)− ‖β‖2(
1

n

∑
i

‖Xi‖2)ε2

= L(β)− ‖β‖2‖Σ‖traceε
2

Theorem 2.2. (Risk Bound after Random Projection) Assuming Var(Yi) ≤ 1, and that P is ε inner product preserving
for k = O( logn

ε2 ), then:

EY ‖XP>β̂P −Xβ‖2 = EY [LP (β̂P )]− L(β) ≤ k

n
+ ‖β‖2‖Σ‖2traceε

2 =
20 log n

nε2
+ ‖β‖2‖Σ‖traceε

2

Hence, choosing ε2 = O(
√

logn
n‖β‖2‖Σ‖trace

), implies that k = O(‖β‖
√
‖Σ‖tracen log n) and:

EY ‖XP>β̂P −Xβ‖2 ≤ O

(√
log n‖β‖2‖Σ‖trace√

n

)

Proof. From above we have that:
L(β) ≥ LP (βP )− ‖β‖2‖Σ‖traceε

2

so that:

EY [LP (β̂P )]−L(β) ≤ EY [LP (β̂P )]−LP (βP ) + ‖β‖2‖Σ‖traceε
2 = EY [‖XP>β̂P −XP>βP ‖2] + ‖β‖2‖Σ‖traceε

2

and we have bounded the risk in the last terms as k
n .

This matches the risk bound up to log factors. Also, our algorithm is simply an MLE estimate in k = O(‖β‖
√
‖Σ‖tracen log n)

dimensions. Note that the number of dimensions we choose is growing as O(
√
n).
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