
Stat 991: Multivariate Analysis, Dimensionality Reduction, and Spectral Methods Lecture: 19

Spectral Methods for Learning Vector State-Space Models

Instructor: Sham Kakade

1 Linear Algebra Review

Let M ∈ Rd×d′ .

• If M has rank k, then:

– M has k linearly independent rows and k linearly independent columns.

– the range of the linear map f(x) =Mx is of dimension k (same holds for the map f(x) =M>x).

– k ≤ min(d, d′)

• M has full rank if M = min(d, d′). We say M has full row rank if rank(M) = d (in which case, it must be that
d ≤ d′). We say M has full column rank if rank(M) = d′ (in which case, it must be that d′ ≤ d).

• If M = UDV > is the “thin” SVD of M , then the diagonal matrix D is k × k with all non-zero entries in the
diagonal; U is d× k matrix of rank k with orthonormal columns; V is d′× k matrix of rank k with orthonormal
columns.

• For a matrix B ∈ Rk×d where B has rank k, then rank(AB) = rank(A).

• Let M = UDV > be the “thin” SVD of M . Then the pseudo-inverse is defined as M+ = V D−1U>.

• Let M be a k× d matrix of rank k (so k ≤ d), CC+ = I. However, C+C 6= I (unless k = d in which case C is
invertible and C+ = C−1. )

• If A = BC where C is a k × d matrix of rank k, then AC+ = B.

2 Vector State-Space Models
At each timestep t, there is a vector valued hidden state ht ∈ Rk and observation xt ∈ Rd. We assume that d ≥ k.

Typically, state space models have the natural conditional independence structure (where conditioned on a hidden
state, we have that the past, future, and current observation are all independent). Here, we consider the weaker setting
of only pairwise independencies. In particular, assume that:

1. The next hidden state ht+1, conditioned on the current state ht, is not correlated with the previous ht′ and xt′
for t′ ≤ t (clearly, with appropriate conditional independence assumptions this would be satisfied. however, this
condition is weaker).

2. The observation xt, conditioned on the state ht, is not correlated with any other ht′ and xt′ . (Again, with the
natural independence assumption, this is satisfied).

3. In expectation, the next state ht+1 and (current) observation xt are linearly related to the current state ht:

E[ht+1|ht] = Tht and E[xt|ht] = Oht (1)

where T ∈ Rk×k and O ∈ Rd×k.
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2.1 Kalman filters
Linear state space models (e.g. those with additive Gaussian noise and appropriate independent assumptions) fall into
this setting. Here Kalman filters provide the Bayes optimal predictions (in terms of square loss).

2.2 Hidden Markov Models
HMMs also fall into this setting, if we represent both ht and xt as binary vectors (with only entry being 1). However,
observe that the noise process ηt, where xt = Oht + ηt, is heteroskedastic, i.e. the noise ηt depends on ht (this must
be the case since xt is binary vector).

3 Learning
The goal of learning is to estimate a model, using only samples, which accurately predicts the joint probability of long
sequences x1, x2, . . . or (accurately predicts the conditional probability of future events given past events). As our
vector space model is not completely specified, this is not possible to do exactly (with any amount of data). Though
we address this later (for linear Gaussian noise models and HMMs).

However, we may hope to recover both T and O using samples. Clearly, this also is not possible as the hidden
state can be transformed linearly (e.g. written in a different basis), and this would alter both T and O, yet give the
same observable probabilities. Instead, the best we can hope for is estimating T and O up to a linear transformation.

The key to this lecture is showing that this is possible (under a non-degenerate assumptions) with essentially a
closed form solution — which depends on a certain SVD/CCA.

3.1 Estimation
Now let us show that we can recover both T and O for this class of models, up to a linear transformation (which is all
that we could hope for in general).

Assumption 1 (Full Rank). Assume T , O and E[hth>t ] (for all t) are full rank. In other words, these matrices are all
rank k.

Now let us examine some properties with regards to the CCA of the cross correlation matrix.

Lemma 3.1 (CCA properties). Say τ is some arbitrary timestep Let the “thin” SVD of the cross correlation matrix at
some timestep τ be E[xτ+1x

>
τ ] = UDV > (where all zeros have been removed form D appropriately). Then

1. D is a Rk×k matrix.

2. The range of U equals the range of O.

3. U>O is invertible.

4. Define M = U>O. Consider the transformed hidden state variables:

h̃t =Mht and T̃ =MTM−1

Then ht =M−1h̃t (since M is invertible) and

E[h̃t+1|h̃t] = T̃ h̃t and E[xt|h̃t] = Uh̃t

In other words, this provides another representation of our time series.
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Proof. First, let observe that:

UDV > = E[xτ+1x
>
τ ]

= E[E[xτ+1x
>
τ |hτ ]]

= E[E[xτ+1|hτ ]E[x>τ |hτ ]]
= E[OThτ (Ohτ )>]
= OTE[hτh>τ ]O>

Hence, by assumption, the righthand side must have rank k. Thus, D must have rank k, which completes the first
claim. Also, as both U and O are rank k, then the above shows they have the same range, which proves the second
claim.

Since U>U = I ∈ Rk×k (though UU> is not necessarily I as UU> is d× d while being only rank k ).

DV > = (U>O)TE[hτh>τ ]O>

Thus U>O must have rank k since DV > is rank k. Hence, it is invertible as it is a k × k matrix, which proves the
third claim.

Due to the invertibility of M we have that E[h̃t+1|h̃t] = T̃ h̃t. Now note that UU> is a projection onto the range
of U (as U has orthogonal columns). As U and O have the same range, we have UU>O = O. Hence,

E[xt|h̃t] = OM−1h̃t = UU>OM−1h̃t = UMM−1h̃t = Uh̃t

which proves the final claim.

Theorem 3.2. Under the previous assumptions and conditions, we have that:

T̃ = (U>E[xt+2x
>
t ])(U

>E[xt+1x
>
t ])

+. (2)

where A+ denotes the pseudo-inverse of A.

Proof. First, as have shown above:
E[xt+1x

>
t ] = OTE[hth>t ]O>

Now observe that E[xt+1|ht] = OTht. Now,

E[xt+2x
>
t ] = E[E[xt+2x

>
t |ht]]

= E[E[xt+2|ht]E[x>t |ht]]
= OT 2E[hth>t ]O>

= OT (U>O)−1(U>O)TE[hth>t ]O>

= OT (U>O)−1U>E[xt+1x
>
t ].

where the last step uses our expression for E[xt+1x
>
t ]. Hence,

U>E[xt+2x
>
t ] = T̃ (U>E[xt+1x

>
t ]).

Also, as we have shown,
U>E[xt+1x

>
t ] = U>OTE[hth>t ]O>

which implies U>E[xt+1x
>
t ] must be rank k. The claim now follows (see the last property in the linear algebra review

above).
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