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Matrix based representations for HMMs

Instructor: Sham Kakade

1 HMMs
The HMM defines a probability distribution over sequences of hidden states (ht) and observations (xt). We write the
set of hidden states as {1, . . . , k} and set of observations as Ø = {1, . . . , d}, where k ≤ d.

Let T ∈ Rk×k be the state transition probability matrix with Ti,j = Pr[ht+1 = i|ht = j], so

E[ht+1|ht] = Tht .

Let O ∈ Rd×k be the observation probability matrix with Oi,j = Pr[xt = i|ht = j], so

E[xt|ht] = Oht .

Let π ∈ Rk be the initial state distribution with πi = Pr[h1 = i] = [Eh1]i. The conditional independence properties
that an HMM satisfies are that: 1) conditioned on the previous hidden state, the next hidden state is sampled inde-
pendently of all other events in the history and 2) conditioned on the current hidden state, the current observation is
sampled independently from all other events in the history. These conditional independence properties of the HMM
imply that T and O fully characterize the probability distribution of any sequence of states and observations.

Note that E[ht|x < t] is just the posterior distribution Pr(ht|xx<t), i.e.

(E[ht|x < t])i = Pr(ht = i|x<t)

since ht is a binary vector.
A useful way of computing the probability of sequences is in terms of ‘observation operators’, an idea which dates

back to the literature on multiplicity automata. The following definitions are useful.
For x = 1, . . . , d, define

Ax = T Diag(Ox,1, . . . , Ox,k).

Also, given x1, . . . xt, define the vector Pr(ht+1 = ·, x1, . . . , xt) as follows:

(Pr(ht+1 = ·, x1, . . . , xt))j = Pr(ht+1 = j, x1, . . . , xt)

Lemma 1.1. For any t:
Pr(ht = ·, x1, . . . , xt) = Axt

. . . Ax1
π.

and
Pr(x1, . . . , xt) = 1>mAxt

. . . Ax1
π.

Proof. We have:

Pr(ht+1 = j, x1, x2 . . . , xt) =
∑

h1,...ht

Pr[x1, h1, x2, h2 . . . , xt, ht, ht+1 = j]

=
∑

h1,...ht

Pr(ht+1 = j|ht) Pr(xt|ht) . . .Pr(h3|h2) Pr(x2|h2) Pr(h2|h1) Pr(x1|h1) Pr(h1)

=
∑

h1,...ht

Tj,ht
Oxt,ht

. . . Th3,h2
Ox2,h2

Th2,h1
Ox1,h1

πh1

=
∑

h1,...ht

[Axt
]j,ht

. . . [Ax2
]h3,h2

[Ax1
]h2,h1

πh1

= [Axt
. . . Ax1

π]j
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which proves the claim the first claim. Since

1>m Pr(ht = ·, x1, . . . , xt) =
∑
j

Pr(ht+1 = j, x1, x2 . . . , xt) = Pr(x1, x2 . . . , xt)

the second claim follows.

The point of this lemma is to show that HMMs have a certain natural linear algebra structure. In fact, we have a
concise (matrix based) method for keeping tracking of our belief state, which sufficient for making predictions. Note:

Pr[ht+1 = j|x1, . . . , xt] =
Pr[ht+1 = j, x1, . . . , xt]

Pr[x1, . . . , xt]

=
(Axt

. . . Ax1
π)j

1>mAxt . . . Ax1π

Define our belief state as:

gt = E[ht|x<t] = Pr[ht = ·|x1, . . . , xt−1] =
(Axt−1

. . . Ax1
π)j

1>mAxt−1
. . . Ax1

π

Hence,

gt+1 =
Axt . . . Ax1π

1>mAxt
. . . Ax1

π
=

Axtgt
1>mAxt

gt

Furthermore:

Pr[xt+1|x1, . . . , xt] =
Pr[x1, . . . , xt+1]

Pr[x1, . . . , xt]

=
1>mAxt+1

. . . Ax1
π

1>mAxt
. . . Ax1

π

= 1>mAxt+1
gt+1

from Bayes rule. Also note:
Pr[xt+1|x1, . . . , xt] = (Ogt+1)xt+1

= Oxt
· gt+1

One can also explicitly verify this
1>mAxt+1

= Oxt+1

using the definition of A·.

Lemma 1.2. We have the following concise matrix method for posterior probability updates and prediction:

g1 = π

gt+1 =
Axt

gt
1>mAxt

gt

Pr[xt+1|x1, . . . , xt] = Ogt+1

1>mAxt+1gt+1
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