
Stat 991: Multivariate Analysis, Dimensionality Reduction, and Spectral Methods Lecture: 1

The Singular Value Decomposition

Instructor: Sham Kakade

1 Intro
The SVD is the single most important concept to understand in linear algebra. Intuitively, it precisely characterizes a
way to view how any linear map behaves.

Roughly speaking, the SVD corresponds to a certain natural notion of “geometric” regression. In fact, with this
interpretation, all of classical estimation issues (with noisy data) are relevant here.

1.1 Vanilla Regression and a “Best Fit Line”
Consider an input data matrix Xin ∈ Rn×d and our target prediction vector Xout. In regression, we desire to predict
the target with the inputs. In a least squares sense, the goal is to find w which minimizes:

min
w
‖Xout −Xinw‖2

Here, the solution is given by:
w = (X>in Xin)−1Xout

This is the least squares estimator.

Question 1. With noisy data, how accurate is our regression?

1. (fixed design) when Xout is random and Xin is fixed?

2. (random design) when Xout and Xin are random?

2 The Best Fit Line, Rotationally Invariant Regression, and Matrix Norms

2.1 The Best Fit Line
In “vanilla” regression, note that there was one preferred coordinate which we desired to predict, and we fit our data
with a line. Instead, let us say we have no preferred direction (with which to measure our error), and, yet, we still
desire to fit our data with a line. In particular, this can be viewed as a rotationally invariant, geometric generalization of
regression — precisely, what is the best fit line to our data, measured with respect to the rationally invariant Euclidean
norm.

Note that for any vector x, the best fit point on our line w is w·x
‖w‖2w. Without loss of generality, let us constrain w

to be unit norm, i.e. ‖w‖ = 1.
Now let X ∈ Rn×d. Let us consider fitting the best a line to the rows xi ∈ Rd of this matrix. Hence, the best fit

line w is the solution to the problem:
min
w

∑
i

‖xi − (w · xi)w‖2

(where w ∈ Rd). Equivalently, we can find w as a solution to the maximization problem in the following lemma:
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Lemma 2.1. We have that:∑
i

‖xi − (w · xi)w‖2 =
∑
i

‖x‖2 −
∑
i

(w · xi)2 = ‖X‖F − ‖Xw‖2

where ‖X‖F is the Frobenius norm (e.g. the sum of the squares of the entries). Hence, the best fit line is given by:

arg max
w: ‖w‖=1

‖Xw‖2 ..

Now one key step in understanding the SVD (presented later) is understanding the answer to the following ques-
tion:

Question 2. Let v be the best fit line to the rows of X . What is the best fit line to the columns of X , as a function of v
and X?

To answer this, let us first examine some norms.

2.2 The Spectral Norm and a little duality
The spectral norm ‖X‖ of a matrix X is defined as:

‖X‖ = max
a: ‖a‖=1

‖Xa‖

Note it is rotationally invariant.
Perhaps some intuition for this norm can be obtained by viewing the Euclidean norm as a certain maximization

problem: we can write the Euclidean norm of a vector a as:

‖a‖ =
√
a · a = max

b:‖b‖=1
b · a

which follows from Cauchy-Schwartz.
To understand the previous question (of the best fit line to the columns of X), observe that:

‖X‖ = max
b:‖b‖=1

b · a = max
a,b:‖a‖=‖b‖=1

b>Xa (1)

where b ∈ Rn and a ∈ Rd.

2.3 The Best Line of the Columns
Lemma 2.2. If v is the best fit line to the columns of X , then Xv is the best fit line to the rows of X .

Proof. Observe that if v is the argmax:

v = arg max
a: ‖a‖=1

‖Xa‖ = arg max
a: ‖a‖=1

(
max

b:‖b‖=1
b>Xa

)
Note that the b which achieves the max must be Xv

‖Xv‖ . This is because a
‖a‖ is the (unit length) b which maximizes b ·a.

Hence,the argmax over (u, v) in Equation 1 is achieved by:

(
Xv

‖Xv‖
, v) = arg max

a,b:‖a‖=‖b‖=1
b>Xa

Note this implies that:
Xv

‖Xv‖
= arg max

b:‖b‖=1

(
max

a:‖a‖=1
u>Xv

)
Equivalently,

Xv

‖Xv‖
= arg max

b:‖b‖=1

(
max

a:‖a‖=1
b>X>a

)
= arg max

b:‖b‖=1
‖X>b‖

Hence, Xv
‖Xv‖ specifies the best fit line to the columns of X . So Xv is also a best fit line (though not necessarily of unit

length).
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3 The Best Fitting Subspace and the SVD
Now we let us X be a general matrix. The maximal singular value is max‖w‖=1 ‖Av‖2 and the argmax is the
corresponding singular vector. We let Ai be a row of A.

Lemma 3.1. For an arbitrary matrix A ∈ Rn×d,

arg max
‖w‖=1

‖Aw‖2 = arg min
‖w‖=1

‖A− (Aw)w>‖2F = arg min
‖w‖=1

∑
i

‖Ai − (Ai · w)w‖2

where ‖ · ‖2F is the Frobenius norm (the Frobenius norm of a matrix M is ‖ · ‖2F =
∑

i,j M
2
i,j).

Proof. The proof essentially follows from the Pythagoras theorem.

Theorem 3.2. (SVD) Define the k dimensional subspace Vk as the span of the following k vectors:

v1 = arg max
‖v‖=1

‖Av‖2 (2)

v2 = arg max
‖v‖=1,v·v1=0

‖Av‖2 (3)

... (4)
vk = arg max

‖v‖=1,∀i≤k, v·vi=0∀i≤k
‖Av‖2 (5)

Then Vk is optimal in the sense that:

Vk = arg min
dim(V )=k

∑
i

distance(Ai, Vk)2

Furthermore,
σ1 = ‖Av1‖ ≥ σ2 = ‖Av2‖ ≥ . . . σmin{n,d} = ‖Avmin{n,d}‖

Let σiui = Avi, so ui is unit length. Then the set {ui} is orthonormal (so is {vi} by construction) and the SVD
decomposition of A is:

A =
∑
i

σiuiv
>
i = Udiag(σ1, . . . σmin{n,d})V

>

where U and V are orthogonal matrices with rows {ui} and {vi}, respectively.

Proof. The interesting part of the proof is that {ui} is orthonormal — the rest of the proof essentially follows by
construction.

As a corollary, we have that:

Corollary 3.3. Among all rank k matricesD,Ak = Σk
i=1σiuiv

>
i is the one which minimizes ‖A−D‖F . Furthermore,

‖X −D‖2F = ‖X‖2F −
k∑

i=1

σ2
i =

min{n,d}∑
i=k+1

σ2
i

3.1 Proofs
The argument is essentially an inductive one based on the previous argument.
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3.2 Three Interpretations
The relevance of the SVD is that it holds for all matrices (e.g. it’s a characterization of all linear maps).

1. The SVD shows that any linear map consists of a rotation followed by an (axis aligned) scaling followed by
another rotation.

2. The best fit k-dimensional subspace to the rows is Vk. Furthermore, the best fit k + 1-dimensional subspace
contains the best fit k dimensional subspace (even if there are equal singular values, we can always choose
subspaces such that this holds).

3. The best fit k-dimensional subspace is specified by the span of Xv1, . . . Xvk.

4 References
Material used was Wikipedia and Santosh Vempala’s lecture notes.
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