Stat 991: Multivariate Analysis, Dimensionality Reduction, and Spectral Methods Lecture: 6

Dimensionality Reduction and Learning: Ridge Regression vs. PCA

Instructor: Sham Kakade

1 Intro

The theme of these two lectures is that for L_2 methods we need not work in infinite dimensional spaces. In particular, we can unadaptively find and work in a low dimensional space and achieve about as good results. These results question the need for explicitly working in infinite (or high) dimensional spaces for L_2 methods. In contrast, for sparsity based methods (including L_1 regularization), such non-adaptive projection methods significantly loose predictive power.

2 Ridge Regression and Dimensionality Reduction

This lecture will characterize the risk of ridge regression (in infinite dimensions) in terms of a bias-variance tradeoff. Furthermore, we will show that a simple dimensionality reduction scheme, simply based on PCA, along with just MLE estimates (in this projected space) performs nearly as well as ridge regression.

3 Risk and Fixed Design Regression

Let us now consider the 'normal means' problem, sometimes referred to as the fixed design setting. Here, we have a set of *n* points $\mathcal{X} = \{X_i\} \subset \mathbb{R}^d$, and let X denote the $\mathbb{R}^{n \times d}$ matrix where the *i* row of X is X_i . We also observe a output vector $Y \in \mathbb{R}^n$. We desire to learn $\mathbb{E}[Y]$. In particular, we seek to predict $\mathbb{E}[Y]$ as $X \hat{\beta}$.

The square loss of an estimator w is:

$$
L(w) = \frac{1}{n} \mathbb{E}_{Y} ||Y - Xw||^{2} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}(Y_{i} - X_{i}w)^{2}
$$

where the expectation is with respect to Y. Let β be the optimal predictor:

$$
\beta = \arg\min_{w} L(w)
$$

The risk of an estimator $\hat{\beta}$ is defined as:

$$
R(\hat{\beta}) = L(\hat{\beta}) - L(\beta) = \frac{1}{n} ||X\hat{\beta} - X\beta||^2
$$

(which is the fixed design risk). Denoting,

$$
\Sigma := \frac{1}{n} X^\top X
$$

we can write the risk as:

$$
R(\hat{\beta}) = (\hat{\beta} - \beta)^{\top} \Sigma (\hat{\beta} - \beta) := ||\hat{\beta} - \beta||_{\Sigma}^{2}
$$

Another interpretation of the risk is how well we accurately learn the parameters of the model.

Assume that $\hat{\beta}(Y)$ is an estimator constructed with the outcome Y — we drop the explicit Y dependence as this is clear from context. Let $\overline{\beta} = \mathbb{E}_Y \hat{\beta}$ be expected weight. We can decompose the expected risk as:

$$
\mathbb{E}_{Y}[R(\hat{\beta})] = \frac{1}{n} \mathbb{E}_{Y} ||X\hat{\beta} - X\overline{\beta}||^{2} + \frac{1}{n} ||X\overline{\beta} - X\beta||^{2}
$$

$$
= \mathbb{E}_{Y} ||\hat{\beta} - \overline{\beta}||_{\Sigma}^{2} + ||\overline{\beta} - \beta||_{\Sigma}^{2}
$$

where we have that:

(average) variance =
$$
\frac{1}{n} \mathbb{E}_Y ||X\hat{\beta} - X\overline{\beta}||^2
$$

and

prediction bias vector = $X\overline{\beta} - X\beta$

which shows a certain bias/variance decomposition of the error.

3.1 Risk Bounds for Ridge Regression

The ridge regression estimator using an outcome Y is just:

$$
\hat{\beta}_{\lambda} = \arg\min_{w} \frac{1}{n} ||Y - Xw||^2 + \lambda ||w||^2
$$

The estimator is then:

$$
\hat{\beta}_{\lambda} = (\Sigma + \lambda I)^{-1} \left(\frac{1}{n} X^{\top} Y\right) = (\Sigma + \lambda I)^{-1} \left(\frac{1}{n} \sum Y_i X_i^{\top}\right)
$$

For simplicity, let us rotate X such that:

$$
\Sigma := \frac{1}{n} X^\top X = diag(\lambda_1, \lambda_2, \dots \lambda_d)
$$

(note this rotation does not alter the predictions of rotationally invariant algorithms). With this choice, we have that:

$$
[\hat{\beta}_{\lambda}]_j = \frac{\frac{1}{n} \sum_{i=1}^n Y_i [X_i]_j}{\lambda_j + \lambda}
$$

It is straightforward to see that:

 $\beta = E[\hat{\beta}_0]$

and it follows that:

$$
[\overline{\beta}_{\lambda}]_j := \mathbb{E}[\hat{\beta}_{\lambda}]_j = \frac{\lambda_j}{\lambda_j + \lambda} \beta_j
$$

by just taking expectations.

Lemma 3.1. *(Risk Bound) If* $\text{Var}(Y_i) \leq 1$ *, we have that:*

$$
\mathbb{E}_Y[R(\hat{\beta}_{\lambda})] \leq \frac{1}{n} \sum_j (\frac{\lambda_j}{\lambda_j + \lambda})^2 + \sum_j \beta_j^2 \frac{\lambda_j}{(1 + \lambda_j/\lambda)^2}
$$

This holds with equality if $Var(Y_i) = 1$ *.*

Proof. For the variance term, we have:

$$
\mathbb{E}_{Y} \|\hat{\beta}_{\lambda} - \overline{\beta}_{\lambda}\|_{\Sigma}^{2} = \sum_{j} \lambda_{j} \mathbb{E}_{Y}([\hat{\beta}_{\lambda}]_{j} - [\overline{\beta}_{\lambda}]_{j})^{2}
$$
\n
$$
= \sum_{j} \frac{\lambda_{j}}{(\lambda_{j} + \lambda)^{2}} \frac{1}{n^{2}} \mathbb{E}[\sum_{i=1}^{n} (Y_{i} - E[Y_{i}])[X_{i}]_{j} \sum_{i'=1}^{n} (Y_{i'} - E[Y_{i'}])[X_{i'}]_{j}]
$$
\n
$$
= \sum_{j} \frac{\lambda_{j}}{(\lambda_{j} + \lambda)^{2}} \frac{1}{n} \sum_{i=1}^{n} \text{Var}(Y_{i})[X_{i}]_{j}^{2}
$$
\n
$$
\leq \sum_{j} \frac{\lambda_{j}}{(\lambda_{j} + \lambda)^{2}} \frac{1}{n} \sum_{i=1}^{n} [X_{i}]_{j}^{2}
$$
\n
$$
= \frac{1}{n} \sum_{j} \frac{\lambda_{j}^{2}}{(\lambda_{j} + \lambda)^{2}}
$$

This holds with equality if $Var(Y_i) = 1$. For the bias term,

$$
\|\overline{\beta}_{\lambda} - \beta\|_{\Sigma}^{2} = \sum_{j} \lambda_{j} (\overline{\beta}_{\lambda}]_{j} - [\beta]_{j})^{2}
$$

$$
= \sum_{j} \beta_{j}^{2} \lambda_{j} (\frac{\lambda_{j}}{\lambda_{j} + \lambda} - 1)^{2}
$$

$$
= \sum_{j} \beta_{j}^{2} \lambda_{j} (\frac{\lambda}{\lambda_{j} + \lambda})^{2}
$$

and the result follows from algebraic manipulations.

There following bound characterizes the risk for two natural settings for λ .

Corollary 3.2. *Assume* $\text{Var}(Y_i) \leq 1$

• *(Finite Dims)* For $\lambda = 0$,

$$
\mathbb{E}_Y[R(\hat{\beta}_\lambda)] \leq \frac{d}{n}
$$

And if $Var(Y_i) = 1$ *, then* $\mathbb{E}_Y[R(\hat{\beta}_\lambda)] = \frac{d}{n}$ *.*

• *(Infinite Dims)* For $\lambda =$ $\sqrt{\|\Sigma\|_{\text{trace}}}$ $\frac{1}{\|\beta\| \sqrt{n}}$, then:

$$
\mathbb{E}_{Y}[R(\hat{\beta}_{\lambda})] \leq \frac{\|\beta\|\sqrt{\|\Sigma\|_{\text{trace}}}}{2\sqrt{n}} = \frac{\|\beta\|\sqrt{\frac{1}{n}\sum_{i}||X_{i}||^{2}}}{2\sqrt{n}} \leq \frac{\|\beta\|\|\mathcal{X}\|}{2\sqrt{n}}
$$

where the trace norm is the sum of the singular values and $\|X\| = \max_i ||X_i||^2$. Furthermore, for all n there *exists a distribution* Pr[Y] *and an* X *such that the* $\inf_{\lambda} \mathbb{E}_Y[R(\hat{\beta}_{\lambda})]$ *is* Ω^* ($\frac{\|\beta\| \sqrt{\|\Sigma\|_{\text{trace}}}}{2\sqrt{\pi}}$ $\frac{\sqrt{||\Delta||_{\text{trace}}}}{2\sqrt{n}}$ (so the above bound is *tight up to log factors).*

Conceptually, the second bound is 'dimension free', i.e. it does not depend explicitly on d , which could be infinite. And we are effectively doing regression in a large (potentially) infinite dimensional space.

Proof. The $\lambda = 0$ case follows directly from the previous lemma. Using that $(a + b)^2 \ge 2ab$, we can bound the variance term for general λ as follows:

$$
\frac{1}{n}\sum_{j}(\frac{\lambda_j}{\lambda_j+\lambda})^2 \leq \frac{1}{n}\sum_{j}\frac{\lambda_j^2}{2\lambda_j\lambda} = \frac{\sum_{j}\lambda_j}{2n\lambda}
$$

 \Box

Again, using that $(a + b)^2 \ge 2ab$, the bias term is bounded as:

$$
\sum_{j} \beta_j^2 \frac{\lambda_j}{(1 + \lambda_j/\lambda)^2} \le \sum_{j} \beta_j^2 \frac{\lambda_j}{2\lambda_j/\lambda} = \frac{\lambda}{2} ||\beta||^2
$$

So we have that:

$$
\mathbb{E}_{Y}[R(\hat{\beta}_{\lambda})] \le \frac{\|\Sigma\|_{\text{trace}}}{2n\lambda} + \frac{\lambda}{2}||\beta||^2
$$

and using the choice of λ completes the proof.

To see the above bound is tight, consider the following problem. Let $X_i = \sqrt{\frac{n}{i}}$ and $\beta_i = \sqrt{\frac{1}{i}}$ and let $Y = X\beta + \eta$ where η is unit variance. Here, we have that $\lambda_i = \frac{1}{i}$ so $\sum_j \lambda_j \le \log n$ and $\|\beta\|^2 \le \log n$, so the upper is $\frac{\log n}{\sqrt{n}}$. Now one can write the risk as:

$$
\mathbb{E}_{Y}[R(\hat{\beta}_{\lambda})] = \frac{1}{n} \sum_{j} \left(\frac{\frac{1}{i}}{\frac{1}{i} + \lambda}\right)^{2} + \sum_{j} \frac{\frac{1}{i^{2}}}{\left(1 + \frac{1}{i\lambda}\right)^{2}}
$$
(1)

$$
=\sum_{j}\frac{\frac{1}{n}+\lambda^2}{(1+i\lambda)^2}
$$
\n(2)

$$
\geq \int_{1}^{n} \frac{\frac{1}{n} + \lambda^2}{(1 + x\lambda)^2} dx\tag{3}
$$

$$
= \left(\frac{1}{n} + \lambda^2\right)\left(\frac{1}{\lambda(1+\lambda)} - \frac{1}{\lambda(1+n\lambda)}\right) \tag{4}
$$

$$
= \left(\frac{1}{n\lambda} + \lambda\right)\left(\frac{1}{1+\lambda} - \frac{1}{1+n\lambda}\right) \tag{5}
$$

(6) \Box

and this is $\Omega(\sqrt{n})$, for all λ .

However, now we show that with L_2 complexity, we can effectively working in finite dimensions (where the dimension is chosen as a function of n).

4 PCA Projections and MLEs

Fix some λ . Consider the following 'keep or kill' estimator, which uses the MLE estimate if $\lambda_i \geq \lambda$ and 0 otherwise:

$$
[\hat{\beta}_{PCA,\lambda}]_j = \begin{cases} [\hat{\beta}_0]_j & \text{if } \lambda_i \ge \lambda \\ 0 & \text{else} \end{cases}
$$

where $\hat{\beta}_0$ is the MLE estimator. This estimator is 0 for the small values of λ_i (those in which we are effectively regularizing more anyways).

Theorem 4.1. *(Risk Inflation of* $\hat{\beta}_{PCA,\lambda}$ *) Assume* $Var(Y_i) = 1$ *, then*

$$
\mathbb{E}_Y[R(\hat{\beta}_{PCA,\lambda})] \le 4\mathbb{E}_Y[R(\hat{\beta}_{\lambda})]
$$

Note that the the actual risk (not just an upper bound) of the simple PCA estimate is within a factor of 4 of the ridge regression risk on a wide class of problems.

Proof. Recall that:

$$
\mathbb{E}_{Y}[R(\hat{\beta}_{\lambda})] = \frac{1}{n} \sum_{j} (\frac{\lambda_j}{\lambda_j + \lambda})^2 + \sum_{j} \beta_j^2 \frac{\lambda_j}{(1 + \lambda_j/\lambda)^2}
$$

Since we can write the risk as:

$$
\mathbb{E}_{Y}[R(\hat{\beta})] = \mathbb{E}_{Y} \|\hat{\beta} - \overline{\beta}\|_{\Sigma}^{2} + \|\overline{\beta} - \beta\|_{\Sigma}^{2}
$$

we have that:

$$
\mathbb{E}_{Y}[R(\hat{\beta}_{PCA,\lambda})] = \frac{1}{n} \sum_{j} \mathbb{I}(\lambda_{j} > \lambda) + \sum_{j:\lambda_{j} < \lambda} \lambda_{j} \beta_{j}^{2}
$$

where $\mathbb I$ is the indicator function.

We now show that each term in the risk of $\hat{\beta}_{PCA,\lambda}$ is within a factor of 4 for each term in $\hat{\beta}_{\lambda}$. If $\lambda_j > \lambda$, then the ratio of the $j - th$ terms is:

$$
\frac{\frac{1}{n}}{n} \left(\frac{\lambda_j}{\lambda_j + \lambda}\right)^2 + \beta_j^2 \frac{\lambda_j}{(1 + \lambda_j/\lambda)^2} \le \frac{\frac{1}{n}}{n} \left(\frac{\lambda_j}{\lambda_j + \lambda}\right)^2
$$

$$
= \frac{(\lambda_j + \lambda)^2}{\lambda_j^2}
$$

$$
\le (1 + \frac{\lambda}{\lambda_j})^2
$$

$$
\le 4
$$

Similarly, if $\lambda_j \leq \lambda$, then the ratio of the *j*-th terms is:

$$
\frac{\lambda_j \beta_j^2}{\frac{1}{n} (\frac{\lambda_j}{\lambda_j + \lambda})^2 + \frac{\lambda_j \beta_j^2}{(1 + \lambda_j / \lambda)^2}} \le \frac{\lambda_j \beta_j^2}{\frac{\lambda_j \beta_j^2}{(1 + \lambda_j / \lambda)^2}} = \frac{\lambda_j \beta_j^2}{(1 + \lambda_j / \lambda)^2} \le 4
$$

Since each term is within a factor of 4, the proof is completed.

References

The observation about the risk inflation of ridge regression vs. PCA was first pointed out to my by Dean Foster.

 \Box